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ABSTRACT 

A survey is given of the present state of the art of value-iteration 

and related successive approximation methods, as well as of resulting 
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finite Markov Decision Problems. 

KEY WORDS & PHRASES: value-iteration, turnpike results, asymptotic behaviour, 

geometric convergence, data-transformations 

* 

** 

I.B.M. Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598 
U.S.A. 

This report will.be submitted for publication elsewhere. 





I. INTRODUCTION 

This paper surveys both older and recent results on the asymptotic be

haviour of the value-iteration scheme 

(I.I) 
k N k 

v(n+l). = max [q.+B l P .. v(n).], 
1 kEK(i) 1 j=l iJ J 

n=0,1,2, ••• 

which arises in finite-state (N<00 ) and finite action (I~IK(i)l<00) Markov 

Decision Processes (cf.[3],[22]). Here q~ and P~. ~ 0 denote, respectively, 
1 1J 

the one-step expected reward and transition probability to state j when 

action k is chosen in state i <I.P~.=I; i = I, ••• ,N). The starting point 
J 1J 

v(O) (scrap value vector) is arbitrary and v(n). denotes the maximum pos-
1 

sible expected n-period reward starting from state i. 

Asymptotic results are of interest because they show the relation be

tween the finite-horizon and infinite-horizon models where use of the latter 

case is justified if the planning horizon is large, although possibly not 

(exactly) known. Two types of asymptotic results are presented. One type 

involves the asymptotic behaviour of the value function, i.e. 

(I) v(n) if the discount factor B satisfies O ~ B < I, or 

(2) * * v(n) - ng where g is the maximal gain rate vector in the undiscounted 

case where B = I. 

The other type of asymptotic result concerns the behaviour of the sequence 

of the sets of optimizing policies S(n), where 

(I. 2) 

with 

S(n) N = xi=l K(n,i); n=I,2,3, ••. 

K(n,i) = {k E K(i) I v(n). 
1 

k N 
=qi+ Bl 

j=I 

k 
P .. v(n-1) . } ; 

1J J 
1 = I , ••• ,N 

as well as the existence of so-called initially stationary or periodic op

timal or £-optimal strategies (see below). 

The following notation will be employed. We let S N 
= Xi=i K(i) denote 

the finite set of policies. 
_ (l) (I) 

A strategy~ - ( .•• ,A , ... ,A ) is an infinite sequence of policies 
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where applying strategy n means using policy A(l) when there are l periods 

to go. 

A strategy is said to be stationary if it uses the same policy at each 

period, i.e. if A(l) = A for all l = 1,2, .••• Note that each policy speci-

f . . L.k . ( A(l) A(I)) · 1es a stationary strategy. 1 ew1se, a strategy TI= •.• , , .•. , 1s 

called initially stationary if there exists an integer n0 ~ l and a policy 

A such that A(l) = A for all l ~ n0 • 

Finally, a strategy is optimal (or £-optimal for any£> O) if for each 

n = 1,2, ••. each component of its expected n-period reward vector equals 

(comes within£ of) the maximal vector v(n). 
(l) (I) 

Observe that a strategy TI= ( ••• ,A , ••• ,A ) is optimal if and only 

if A(l) E S(l) for all l = 1,2, ••.• For each£> O, and n = 1,2, ••. we de

fine S(n,£): 

i = 1 , ••• ,N}. 

Associated with each policy A= (A(l),A(2), ••. ,A(N)) ES are the reward 

vector qA = [q~(i)J and transition probability matrix (tpm) PA= [P~~i)]_ 
1 1J 

Thus (I.I) and (l.2) may be rewritten as: 

(I. 3) v(n+I) = Tv(n) = Tn+lv(O) n = 0,1,2,3, .•• 

where 

(1.4) 
A A Tx = max[q +SP xl (component by component maximization). 

AES 

Separate treatment will be given for the discounted and undiscounted cases. 

In both models, the geometric rate of convergence of the value function 

* (i.e. of v(n) or of v(n) - ng) plays a central role. 

Finally, in section 6 we show that elementary data-transformations 

turn both discounted and undiscounted Markov Renewal Programs (cf. [7], 

[23]) into (discrete-time) Markov Decision Problems which are equivalent 1n 

the sense that they have the same state- and policy space as well as the 

same total discounted return or gain rate vector for each policy. 
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2. DISCOUNTED CASE: ASYMPTOTIC BEHAVIOUR OF v(n) 

The discounted case possesses an elegant treatment because the Toper

ator defined by (1.4) is a contraction operator with contraction modulu~ 

less than or equal to 8 < 1 when the L -norm is used: 
00 

(2. 1) HTx-Tyll ::;;; Bllx-yll N all x,y EE . 

The classical theory of contraction operators summarized for example in 

DENARDO [6], may be brought to bear, with the following immediate results: 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

* * T has a unique fixed point v = Tv 

for any starting point x, Tnx converges geometrically to the 

fixed point: 

n= 1,2,3, ••• 

n * an upperbound on the distance between T x and v can be computed 

after just one iteration of T via 

n= 1,2, .•• 

which is fairly sharp provided 8 is not too close to unity. 

Additional properties follow from the fact that Tis a monotone oper

ator (x ~ y implies Tx ~ Ty). E.g. 

(2. 7) * v. 
l. 

A = max v., 
AES l. 

::;;; i ::;;; N 

where vA is the total expected discounted return vector associated with 

policy A: 

(2.8) A 
V 

* A Observe that both v and v, AES, are independent of the scrap value 
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N 
vector v(O) e E • 

As a consequence the unique fixed point of the T-operator coincides 

with the maximal total discounted return vector. Moreover, 

(2.9) * ( *) . . .Jl * ( n *) x ~ v xsv implies L x+v T xtv 

Some of these results have been modified by using instead of (2.1): 

(2.10) S(x-y) . s (Tx-Ty) . s (Tx-Ty) s S(x-y) 
min min max max 

where x . = min. x. and x = max. x .. 
min i i max i i 

Thus (2.6) is replaced by 

(2.11) * s v. 
i 

Sn 
s Tnx. + --~ (Tx x) i (1-B) - max 

where A(n) E S(n) and vA(n) is the associated total return vector. Note that 

the bounds in (2.11) are invariant to adding a constant c to each component 

of x. This bound was originally derived for n = 0 by MAC QUEEN [29] and 

* PORTEUS [32] later pointed out that Tx 1.s a better approximation to v than 

x because then= 1 bound is tighter. 

Additional imporvements on the bounds as well as on the rate of conver

gence can be based upon data transformations ([33], [39], [11], [40]) or Gauss

Seidel variants of the iterative scheme ([16],[24],[39]), extrapolation 

and over-relaxation techniques ([35],[36],[48]), as well as by removal of 

self-transitions. These transformations obviously destroy the interpreta-

tion of v(n). 

X = 

(a) 

(b) 

In terms of the original value-iteration scheme v(n) = Tnx where 

v(O), the above results have been useful in at least four ways: 

v(n) is shown to approach v * geometrically fast 

the n = 0 or 1 versions of (2.6) or (2.11) get computable bounds 

the error between the fixed point v* and the current best guess 

(x or Tx) 

on 

(c) elimination via the bounds of alternatives which are not optimal for 

the oo-horizon problem, cf. MAC QUEEN [29], HASTINGS [19] and GRINOLD [15] 



(d) prior estimation of how many additional iterations n(x) are required 

given that the current estimate of v* is x, until the new estimate 

5 

Tnx lies within£ of v* or until a policy A(n) E S(n) found at the end 

of these n iterations has a return vector vA(n) which lies within£ of 

* V • 

Bounds on n(x) are obtained by setting (cf. (2.6)) 

(2. l 2) 
SnllTx-xll 

:S ---- :S £ 
1-S 

or cf. FINKBEINER and RUNGALDIER [ 14]: 

(2.13) 
A(n) 

- V $ 
2Sn11Tx-xll 

1-S 

with the result that at most 

(2. l 4) 

additional iterations are required. This has the property n(Tx) :S n(x)-1, 

so that the number of remaining iterations to get accuracy E decreases 

by at least unity with each iteration; hence the termination criterion 

will be met after a finite number of steps. 

Unfortunately n(x) can be large if Sis close to unity or if the ini

tial guess xis far from v*. An encouraging feature is that n(x) varies 

only logarithmically with£ so that it is practical to achieve high 

precisions as long as Sis not too close to unity. 

We finally note that using (2.11) the upperbound for n(x) rn (2.14) 

may be replaced by: 

(2.14') n(x) :S 1 f sp[Tx-x]l / lln(S)j 
nl dl-S) J 

where sp[x]= x - x. denotes the span of x (cf. BATHER [2]). 
max min 
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3. DISCOUNTED CASE; ASYMPTOTIC BEHAVIOUR OF S(n) AND THE EXISTENCE OF INI

TIALLY STATIONARY £-OPTIMAL STRATEGIES 

The main question of interest is the relation of the sets S(n) to the 

sets* of policies which are optimal for the infinite horizon problem. 

(3. I) s* = {A Es I * A A * V = q + BP V }. 

Note thats* is uniquely determined and has a Cartesian product structure. 

It follows directly from (2.13) and (2.14) that for each starting point 

* x = v(O), S(n) ~ S, for sufficiently large n, say n ~ n 1(x). As a choice of 

n 1 (x) one may evaluate (2.14) with 

{min{v~-v~ I A e Sand I < • :;;; N such that - 1. 

(3.2) 
1. 1. * A if s* £ < £0 = Vi > V •}, * s 

1. 
* 

00 if s = s. 

Thus value-iteration eventually settles upon optimal policies. Unfortunately 

this result can not be used in general while performing calculations because 

* the lack of prior knowledge about v - and the resulting inability to eval-

uate £0 - makes it impossible to calculate n 1(x) a priori. Estimation of 

n 1(x) remains an outstanding problem. Until the problem is resolved, no ways 

are available to deduce whether a policy in S(n) lies ins*, except by elim

ination of suboptimal actions. That is, a policy can appear during the first 

(say) 50 iterative steps yet fail to be optimal for the infinite horizon

model. Furthermore a policy from s* might appear in say S(l), not appear in 

S(2) and reappear in S(4) (or never reappear); so that a policy which has 

"dropped out" of S(n) cannot be eliminated as suboptimal (cf.[45]). 

In the special case where v* is known, £0 may be estimated (cf. 

SHAPIRO [45]) from: 

where 

* A (v -v ). = 
1. 

00 N 

1 1 
n=O j=l 
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A * A A* r = [v -q -SP v J ~ o. 

Namely assuming thats* is a proper subset of S, i.e. £0 < 00 we can pick a 

pair (i,A) which achieve £0 in (3.2) and a state j and an integer n::; N, 

such that (SPA)1:. > 0 and r~ > 0. We thus find: 
l.J J 

where 

a= min{Pk 
rs 

all 1 ::; r,s::; N and k E K(r) with Pk > 0} 
rs 

oo==min{rt I all A E S,l ::; J::; N with r~ > O} > 0 
J 

* the last inequality following from the assumption S =I= S. Hence it suffices 
N to take £0 = (Sa) o0 when computing n 1(x) via (2.14). 

The following properties are known regarding convergence of S(n) for 

large n 

(a) ifs* is a singleton, S(n) must reduce to s* for large enough n (i.e. 

for n ~ n 1(x)) 

(b) ifs* 1.s not a singleton, S(n) does not need to possess a limit as n 

tends to infinity. SHAPIRO [45] has constructed a 2-state example where 

* S(n) oscillates with period 2 between the two members of S 

Both his example, and an example in BROWN [5] suggest that the set S(n) 

exhibits at least an ultimately periodic behaviour. 

However, an example which is similar to the one given 1.n BATHER [2] 

for the undiscounted case (see below) shows that the worst behaviour 

of S(n) will be non-periodic oscillations. 

(c) since S(n), for large n, may oscillate or contain only a proper subset 

of s*, the individual S(n)'s do not by themselves determines*. How

ever, one may find the entire sets* from £-optimal policies, i.e. 

from 

(3.3) s* = lim S(n,£) 
n n-+oo 
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00 

where {En}n=l may be taken as an arbitrary sequence of positive numbers 
00 

approaching O, provided that the rate of convergence of {En}n=l is 

slower th~n the one {v(n)}00 I exhibits, i.e. whenever£ s-n ➔ 00 , as 
n: n_ 1 

n +co.One choice is£ = n and more generally, take£ as a posi-
n n 

tive polynomial inn. To confirm (3.3) note that 

S(n,£) ={AES I v(n) - qA-sPAv(n-1) s +£I} 
n ~ 

where I is the N-vector with all components unity. Insert v(n) = 

= v* + 0(8n) to obtain 

+ £ I 
n-

o < + 

S(n,£) 
n 

= {A Es I * A A * V - q - BP V s 

n 
+ 0(8) approaches zero; hence for all n large enough, 

the limit result in (3.3). Enl + 0(8n) < £al which proves 

We finally turn to the issue of determining initially stationary opti

mal strategies. We observed before that an optimal strategy must lie in 
00 

Xn=l S(n). SHAPIRO's example (cf. [45]) shows that in general there may be 

no (optimal) policy which is contained within all of the sets S(n) for all 

n large enough. That is, lim inf S(n) may be empty, or, none of the 
n➔co 

sequences of policies that may be generated by value-iteration needs to 

converge. So in general, no initially stationary optimal strategy may exist 

and the adaptation of example 1 in BATHER [2], mentioned above, shows that 

in general no initially periodic optimal strategy needs to exist either. 
. * . . ( * { }) Only in the case where S is a singleton S = B , do we know that 

S(n) = {B} for all n ~ n 1(x), so that in this case every optimal strategy 

is initially stationary. Or, in other words, Bis the best choice of current 

policy if the planning horizon is at least n 1(x) additional periods and 

this choice is optimal without knowing the exact length of the planning 

horizon. 

We observe however that every policy ins* comes closer and closer to 

being optimal at the nth stage, as n tends to infinity. This may be veri

fied from 
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A A . * A * 
llv(n)-q -BP v(n-1)11 = llv(n)-v -BP [v(n-1)-v ]II 

n . 
s 28 IITx-xll /(1-B), A Es* 

using (2.6). 

This in turn implies for every£> O, the existence of an initially 

stationary strategy that is £-optimal. In addition we point out the follow

ing two properties: 

(1) Any policy ins* may be used in the initially stationary part of the 

£-optimal strategy; i.e. the initially stationary part does not depend 

upon the scrap~value vector v(O). 

(2) An upperbound for the length of the non-stationary tail of the £-opti

mal strategy is given by 

m(x) s ln[211Tx-x~l / jln(B)I 
£(1-B) J 

which varies again logarithmically with the precision£, 

. * 4. UNDISCOUNTED CASE: ASYMPTOTIC BEHAVIOUR OF v(n)-ng 

( 4. 1) 

In the undiscounted case, B = 1 and Tis a non-expansive operator: 

(x-y) . s (Tx-Ty) . s (Tx-Ty) min min max 
N 

s (x-y)max; all x,y EE . 

In addition the T operator has the property 

(4.2) T(x+c!) = Tx + c! for all x E EN and scalars c. 

Note as a consequence of (4.1) that the T operator never has a unique fixed 

point and hence is never a contraction operator on EN (and neither is any 

of its powers). Both (4.1) and (4.2) suggest choosing 

(4.3) sp[x] = X max - X . min 
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as a quasi-norm (cf. BATHER [2]). However, example I in [13].shows that T 

(or any of its powers) is not necessarily contracting with respect to the 

sp-norm either. That is, only under special conditions with respect to the 

(chain- and periodicity) structure of the problem, (cf. [13]) does there 

exist a number O ~a< 1, and an integer n ~ 1 such that 

n n N sp[T x-T y] ~a sp[x-y]; for all x,y EE . 

00 

As a consequence the asymptotic behaviour of {v(n)}n=I requires an entirely 

different and more complicated analysis in the undiscounted case. 

Define the gain rate vector gA of policy AES by 

A . -1 A A 2 A m-1 A g = lim m [I+P +(P) + ••• (P) ]q 
m+oo 

* and define the maximal gain rate vector g by 

(4.4) * A g. = max g.; 
i AES i 

::;; i ::;; N. 

HOWARD [22] and DERMAN [8] have shown that policies exist which attain the 

N maxima simultaneously, so the set 

of maximal gain policies is non-empty. 

In contrast with the discounted case, a pair of optimality equations 

is needed in order to characterize the set of optimal (maximal gain) poli

cies 

(4.5) g. = i 

(4.6) v. = 
l. 

where 

L(i) 

I k i 1 , ... ,N max P .. g.' = 
1J J kEK(i) j 

k I k g.J, max [q.-g.+ P .. 
kEL(i) i i j 1J J 

= {k E K(i) I g.=I P~. g.}, 
1 . 1J J 

J 

i = 1 , .•• ,N 

i = 1 , ••• , N 
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(4.5) and (4.6) always have a solution pair (cf. HOWARD [22]) and each solu-

* tion pair (g,v) has g = g, so that the sets L(i) are uniquely determined 

as well. However, unlike the discounted case, vis not uniquely determined 

by (4.6). Note e.g. that if v satisfies (4.6) then so does v + cl for any 

scalar c. A characterization of the set V = {v I v satisfies (4.6)} is given 

in [41], and is rather complex. For each v EV, we define 

* A * A S (v) ={AES Iv= q - g + P v} 

i.e. s*(v) is the Cartesian product set of policies achieving the maxima in 

(4.6) for the particular solution v EV. 

A policy A is ma.ximal gain if for some v E EN satisfying (4.6), A(i) 

attains the maximum in (4.5) for all i = 1, ••• ,N as well as in (4.6) for 

every state that is recurrent under PA. Conversely, if A is maximal gain, 

then A(i) satisfies (4.5) for all i = 1, •.• ,N, as well as (4.6) in the re

current states for any solution to (4.6). 

In the case where each PA> 0, BELLMAN [3] showed that v(n) has the 

asymptotic behaviour v(n) ~ ng* for any v(O) E EN. BROWN [SJ showed in all 
* 00 generality that {v(n) - ng }n=I is bounded inn, permitting the interpreta-

tion of g~ = lim v(n)./n as the maximal expected return per unit time start-
1. l. 

n~ ing from state 1.. 

Two cases can be distinguished. 
. * 00 

In the first case {v(n) - ng }n=l has a limit for any choice of v(O). 

This corresponds roughly to the situation in the discounted process. In the 
* 00 second case, {v(n) - ng }n=I has a limit for some, but not all choices of 

v(O). It is possible 
N exist v(O) EE such 

to show that for each Markov Decision 

that lim [v(n)-ng*J exists, namely n~ 
where a>> 0 and v* satisfies the optimality equation (4.6) 

Process there 

* * v(O) = v + ag 

above. 

It is also possible to construct MDP's in which case 2 holds, namely 

when certain tpm's have periodic states. For example consider a four-state 

MDP with only one policy A having 

A q = 

0 

0 

0 

0 

0 

0 0 

0 0 

0 

0 0 0 

0 0 0 

* g = 

0 

0 

0 

0 
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(4. 7) 

(4.8) 

(4.9) 

lim v(n) exists if and only if v(O) = (b,b,b,b) 
n--+= 

(X) 

lim v(2n) exists, whereas {v(n)}n=I has two distinct limit points, 
n--+= 
if v(O) = (b,c,b,c) with b * c 

lim v(4n) always exists, whereas {v(n)}:=l has four distinct 
n--+= 
limit points, if v(O) = (b,c,d,e) with b,c,d,e distinct. 

* Conditions determining the existence of lim [v(n)-ng] are of importance n--+= 
for at least the following reasons: 

(l) 

(2) 

(3) 

If v(O) is such that lim [v(n)-ng*J exists, then v(n)-v(n-1) con-n-+oo 
* verges tog , and nv(n-1)-(n-l)v(n) converges to a solution v EV. 

That is, both the maximal gain rate vector and a solution to the opti

mality equation (4.6) can be computed. 
* co Convergence of {v(n)-ng }n=l guarantees that S(n) ~ SMG for all n large 

enough (cf. ODONI [31]), hence value-iteration may be used to identify 

maximal gain policies. However if v(O) is such that lim [v(n)-ng*J 
n-+oo 

does not exist then S(n) :=_ SMG is not guaranteed to hold for all large 

n: LANERY [25] has given an example where S(n) ~ S\SMG for infinitely 

many n ,. and the authors have given an example (cf. [ I OJ) where 

S(n) ~ S\SMG for every n. In such cases value-iteration will not settle 

on maximal gain policies. In section 5 a more detailed analysis of the 
00 

asymptotic behaviour of {S(n)}n=l will be given, both for the case 
* 00 where {v(n)-ng }n=l converges and for the one where it fails to con-

verge. 

Since value-iteration is the only practical computational method for 

finding maximal gain policies when N >> l, it is desirable to check 

whether lim [v(n)-ng*] is guaranteed to exist, or whether a data n--+= 
transformation should be performed (cf. section 6) on the original 

data so as to enforce convergence. 
* 00 Convergence of {v(n)-ng }n=l guarantees the existence of initially 

stationary E:-optimal strategies for any positive E:. 

Conversely, MDP's may be constructed in which for some choices of the 

scrap value vector v(O) for which {v(n)-ng*}:=l fails to converge, no 



initially stationary strategy can be found which is £-optimal for€ 

sufficiently small (see section 5 below). 

* CX) Sufficient conditions for the convergence of {v(n)-ng }n=l were ob-

13 

tained by WHITE [49], SCHWEITZER [37] and others. BROWN [5] and LANERY [25] 

both obtained, albeit with faulty proofs, that there exists a positive in

* teger J, such that 

lim [v(nJ* +r)-(nJ* +r)g*] exists for any v(O) and any r = 
n-+<><> 

* o, ... ,J -1. 

A new proof was provided by the present authors who obtained the following 

generalizations (cf. [42]): 

(a) there exists an integer J* ~ 1 such that lim [v(nJ+r)-(nJ+r)g*J exists 
N n-+<><> 

for every v(O) EE and r = O, ••. ,J-1 if and only if J is a multiple 

of J * 
(b) f . (0) N h . . JO or any given v EE , t ere exists an integer ~ I which depends 

upon v(O) such that 

* lim [v(nJ+r)-(nJ+r)g J exists for some r = O, .•• ,J-1 
n-+<><> 

if and only if 

(4.10) J is a multiple of Jo. 

In addition, if (4.10) holds then lim 
n-+<><> 

for all r = O, ••• ,J-1. 

* [v(nJ+r)-(nJ+r)g] exists 

0 As an illustration of part (b), (4.7) - (4.9) show J = 1,2,4 de-

pending upon v(O). Note also that JO divides J*, which is 4 in this example, 
0 * and that for some v(O), J equals J. 

The above results require a detailed investigation of the chain- and 

periodicity structure of the set of maximal gain policies, including the 

randomized ones. In fact J* can be computed using a finite algorithm, and 

can be expressed as a function of the periods (and the chain structure) of 

the policies in SMG" 

The consequence of (a) is that lim [v(n)-ng*] exists for all v(O) 
n-+<><> 
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if and only if J* = 1, which holds if and only if 

(I) there exists an aperiodic ra:ndomized maximal gain policy A, the set of 

recurrent states of which equals R* = {i I i is recurrent under PA, 

for some A E SMG} 

or if and only if 

(II) each state i ER* lies within an aperiodic subchain of some randomized 

maximal gain policy. 

Randomization is essential in the analysis and is e.g. indispensible in 

the formulation of conditions (I) and (II), as may be illustrated by the 

following example: 

EXAMPLE 1. 

N = 4; K(l) - K(3) = K(4) = {l} = K(2) = {1,2}; 

P: 2 = P~4 = P!2 = P! 1 = P~3 = l; all q: = 0, i.e. 

Note that the two policies in S (and SMG) are both periodic with periods 

2 and 3; however a ra:ndomized policy which uses both actions in state 2 is 
* . . as a consequence J = I in this example. aperiodic and 

Whenever * 00 {v(n)-ng }n=I converges, it can be shown (cf. [43]) that the 

approach to the limit is ultimately geometric in the sense that there exist 

numbers c and A, with O $A< I such that 

(4.11) * sp[v(n)-ng -L(v(O))]:,;; for all n = l , 2 , ••• 

where L(v(O)) = lim v(n)-ng* EV. n-+<x> 
A characterization of the ultimate convergence rate was obtained in 

[43] which is independent of the starting point v(O) and which in the 

special case where a unique maximal gain policy A exists reduces to the 

subdominant eigenvalue of the matrix PA (cf. also MORTON and WECKER [30]). 

(4.11) is derived by showing that there exists an integer M ;:::1 which is 
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independent of v(O), and an integer n0 (v(O)} ~ 1 such that for all n ~ n0 : 

(4.12) * * sp[v(n+M)-(n+M)g -L(v(O))] ~ µ(v(O)) sp[v(n)-ng -L(v(O))J 

where O ~ µ(v(O)) < 1. 

In (4.12) n0 (v(O)) < 00 indicates the number of steps after which 

{v(n)-ng*-L(v(0))}:=1 is monotonously non-increasing in sp[x]-norm. The 

latter is guaranteed as soon as the T operator selects policies A E X.L(i) 
l. 

exclusively which is known to occur after a finite number of steps. The 

first n0 steps of value-iteration thus constitute a first phase of the 
* m convergence process, during which the behaviour of {sp[v(n)-ng -L(v(O))J}n= 1 

may be very irregular (it may e.g. be alternatively increasing and decreas

ing). The first phase is obviously non-existent whenever L(i) = K(i) for 

all i = 1, ••. ,N which in turn is guaranteed to hold whenever the maximal 

gain rate is independent of the initial state of the system (g* is a multiple 

of_!_). M indicates the number of steps needed for strict contraction in the 

second phase and is uniformly bounded in v(O). Clearly one would like to 

obtain an upperbound for M, as a function of N. Using a combinatorial proof 

the present authors obtained the bound M ~ N2 - 2N + 2 (cf. [43]) under the 

special condition 

(H): v EV is unique up to a multiple of .1 

which is equivalent to the existence of a randomized maximal gain policy 

which has R* as its single subchain (closed, irreducible set of states). 

An example shows that the bound is at least sharp up to a term of O(N). 
2 

The upperbound N - 2N + 2 for the number of iterations needed for con-

traction represents the worst case behaviour and is enormously high com

pared with the empirical fact that in most cases M = I or M = 2. For example, 

SU[46] and TIJMS [47]have solved up to 1000-state with good convergence 

after 10-100 value iterations. 

The geometric convergence result is surprising since it was noted 

above that T is not necessarily contracting with respect to the sp[x] -"norm". 

In fact it can be shown that no uniform m-step contraction factor needs to 

exist, for any m = 1,2, .•• , i.e. we may have for all m = 1,2, ... and n ~ n0 : 
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(4.13) 

_n+m * . I fP['f x-(n+m)g -L(x)J . 
supr n * 

sp[T x-ng -L (x)] I 
for all x, for which L(x)} = 
exists, and Tn xi V 

Under (H), the present authors obtained the necessary and sufficient condi

tion for the existence of a uniform m-step contraction factor for some 

m = 1,2, ... (cf. [43]). 

An open question is obtaining a computationally tractible estimate of 

the size of;~. Nothing is known with the exception of the above mentioned 

case where SMG is a singleton, and the cases studied by WHITE [49] and 

ANTHONISSE and TIJMS [I] where an-step generalization of the ergodic- (or 

scrambling-) coefficient provides an upperbound for A. Until a better under

standing of A is available, it appears unlikely that bounds on 

* v(n)-ng -L(v(O)) can be developed similar to (2.11) in the discounted case 

(cf. also FEDERGRUEN, SCHWEITZER and TIJMS [ 13], section 4). 

Applying the same analysis to so-called multi-step policies (cf. sec-
0 tion 5), we obtain in general that for all r = 1,2, ... ,J 

0 0 * v(nJ +r)-(nJ +r)g approaches its limit geometrically fast 

where JO was defined above. 

* By contrast, bounds on the maximal gain rate vector g are available. 

* * In the case where g = <g >l these were obtained by ODONI [31], and 

HASTINGS [17] namely: 

(4.14) [Tx-x] . 
min 

A * s g. s <g > s 
1 

[Tx-x] 
max 

N 
for all x E E and 1 = 1, •.. ,N and A achieving Tx. 

Moreover, both bounds are sharp when x EV. In the context of value-itera

tion this becomes 

(4.15) * [v(n+l)-v(n)] . s <g > s [v(n+l)-v(n)] . 
min max 

The bounds move inward (monotonously) as n increases and if lim v(n)-ng* 
n-+<» 

exists, the bounds both converge geometrically fast to <g*>. In the case 
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* * where g = <g >lit is common to avoid the linear divergence of v(n) with 

n by using instead the variables y(n) = v(n)-v(n)Nl introduced by WHITE [49] 

and employing the iterative scheme 

(4.16) y(n+l) = Ty(n)-[Ty(n)]Nl 

* with the property that when v = lim v(n)~ng* exists n-+<x> 

(4.17) 

y(n) * +v * - V I E V N-

[Ty(n)]N + g * 

[Ty(n)-y(n)] + g 
max 

[Ty(n)-y(n)] . t g 
min 

* 

* 

where all four limits are approached geometrically fast. The bounds in (4.14) 

have been generalized to semi-Markov Decision Processes where g* = <g*>!, 

see HASTINGS [17] and SCHWEITZER [40]. They have recently been generalized 

by the present authors [44] to the multichain case where the components of 

* g are ~equal. 

* Under (H) the bounds on the scalar gain rate <g > have been unac-

companied by corresponding bounds on the deviation of the current vector x 

* from v e: V which is unique up to a multiple of I. In view of the latter, 

this bound should be invariant to a replacement of x by x + al for some 

scalar a. The existence of such bounds is also useful for demonstrating 

convergence of this or related types of value-iteration schemes. Speci

fically, ZANGWILL [50] has shown that an iterative scheme x(n+l) = Qx(n) 

will converge to x* if the continuous operator Q and a continuous Lyapunov 

function ¢(x) satisfy: 

(4.18) (a) Hx) ;,: 0 

(b) Hx) = 0 

N 
all x e: E 

if and only if x 

(c) ¢(Qx) ~ ¢(x) all x e: EN 

* = X 

(d) for some integer m;,: I, (Qmx) < ¢(x), for all x with ¢(x) > 0. 
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* One choice of a Lyapunov function, not computable until v is known, is 

(4.19) Qx = Tx-(Tx)Nl (cf. (4.16)) 

which confinms (4.16); condition (4.18d) may be verified as the scalar gain 

rate version of (4.12), with M = N2 - 2N + 2 (see above), assuming that 

J* = I. 

Another choice of Lyapunov function which may be computed while in the 

midst of the value-iteration process is 

(4.20) t 2 (x) = sp[Tx-x] 

* with the sam,e choice of Q and x The conditions (4.18) (a)-(c) are easily 

verified while (4.18) (d) holds e.g. when every policy in SMG is unichained, 

and assuming that a data-transfonmation has been applied so as to ensure 

that J* = I (cf. section 6 and [12]). 

* The important new property is that the deviation of v from x may be 

deduced from t 2 (x) just as (2.6) and (2.11) were used in the discounted 

case. Specifically, under (H) there exists a constant p "2:: 0 such that 

(4.21) for all x if and only if 

-(H2): there exists a randomized policy which has R = {i Ii is recurrent 

under some policy AES} 2 R* as its single subchain. 

Under (H) a unique representation v* of v E: V can be obtained by re-
. . * * quiring that vN = O. So far, bounds for each of the components of v have 

only been obtained for the case where every policy is unichained (cf. 

FEDERGRUEN, SCHWEITZER and TIJMS [13]). The bounds arise by showing that the 

MDP can be transformed into an equivalent one (cf. section 6) in which the 

operator T: 

(4.22) 
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""'N N is a N-step contraction operator on E = {x EE I~= O}. The bounds are 

of the same type as in (2.11) and allow for the derivation (although not 

for the actual computation prior to solving the MDP) of upperbounds on the 

number of iterations needed to have 

(1) 

(3) 

Tnx within E of v*, (2) S(n) S SMG' 

* v as a relative value vector for any policy in S(n), 

as well as on 

i.e. S(n) * * S S (v ). 

(4) the length of the tail of an initially stationary (periodic) E-optimal 

strategy. 
-1 

All of the bounds in (1)-(4) vary logarithmically with E sp[Tx-x] where 

. ( ) . { * A I * A} d . (3) h in 2 , E has to be taken~ ming -g A E S,g > g an in , E as to 
. * A * A be taken~ min{sp[v -v J I AES, sp[v -v] > O}. Except for the case where 

every policy is unichained (cf. [13]) and due to the lack of bounds on v EV, 

no tests have been proposed for permanent elimination of non-optimal actions. 

However, a device for temporary elimination was recently obtained in HASTINGS 

[18], 

5. UNDISCOUNTED CASE; ASYMPTOTIC BEHAVIOUR OF S(n) AND THE EXISTENCE OF 

INITIALLY STATIONARY OR PERIODIC E-OPTIMAL STRATEGIES 

As discussed earlier, separate treatment is given to the cases where 

lim [v(n)-ng*] exists and where the sequence fails to converge. n-+<x> 
We mentioned earlier having constructed in the latter case an example 

in which S(n) lies outside SMG for every n. In this case one merely knows 

(cf. BROWN [5]) that for large n, S(n) s XiL(i). 

In the case where v* = lim [v(n)-ng*J exists then for large n: n-+<x> 

(5. l) 

Thus (5.1) shows that value-iteration settles upon maximal gain policies 

provided that convergence is guaranteed. 

The explanation of this discrepancy with respect to the behaviour of 

* S(n) between the case where [v(n)-ng] converges and the one where it fails 
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to converge, requires the notion of multistep policies and periodic strate

gies. 

For each integer J 2 I, a J-step policy is a J-tuple of policies 

(A*(I) , •.. ,A*(J)) and specifies a J-periodic strategy 

(£.) (l) 
TI = ( ... ,A ••• ,A ) 

with 

for a 11 n = 0 , I , . . . and r= I , . . . , J , 

so, a J-step policy is called maximal gain, if the long run average return 

vector of the associated J-periodic strategy equals g*. 

(5.1) holds for the special case where v(n)-ng* exists, i.e. where 

O( ( )) d f 11 . 1· . f O 2 b b . d J v O = I, an the o owing genera ization or J 2 may e o taine 

(cf. [ I OJ): 

(5. 2) 
0 

For all n large enough, each J -tuple of policies in 

S(n+l) x ••. x S(n+JO) is maximal gain as a J 0-step policy. 

Apparently a multistep-policy may be maximal gain, with each of the component

policies being non-maximal gain. Indeed, this phenomenon is explained by 

the fact that the actions prescribed by the component policies need to 

satisfy the optimality equations (4.5) and (4.6) only in a very special 

subset of {I, ... ,N} (cf. [ I OJ). 

The aforementioned example in [2J shows that even in the case where 

* v(n)-ng converges (in fact even in the case where each policy is unichained 

and aperiodic), S(n) may have a very irregular behaviour, the worst case of 

which exhibits nonperiodic oscillations. 

As a consequence we are only guaranteed to have an initially stationary 

(or periodic) strategy if s*(v*) is a singleton where v* = lim v(n)-ng*. n-+«> 
Using the geometric convergence result as discussed in section 4, we obtain 

however (cf. [!OJ) that for all E > 0, there exists an initially periodic 

strategy which is E-optimal. In fact, the (initial) period of this strategy 
0 

may be taken to be equal to J (v(O)) . 
. 1 h. O h () *. In particu ar, we see tat in case J = l, i.e. wen v n -ng exists, 



an initially stationary E-optimal strategy exists for all E > 0, and in 

addition s*(v*) represents the set of policies which can be used in the 

initially stationary part of the strategy. 

who established the above result for all E 

This generalizes LANERY [26] 
* 0 ~ (some) E. When J ~ 2, a 

21 

0 similar characterization may be given for the set of J -step policies which 

can be used in the initially periodic part of any E-optimal strategy. 

!n addition, MDP's can be constructed in which there exist choices of v(O) 

for which every initially J-periodic E-optimal strategy (withe small enough) 

has J as a multiple of JO (this result obviously doesn't hold for every 

MDP with J* ~ 2 as is illustrated by the case where Sis a singleton). 

Observe that unless condition (H) is met, and unlike the discounted case 

the best (or E-best) choice of current policy depends upon the terminal 

reward vector v(O), whatever the length of the planning horizon. 

Since this terminal reward vector may not be known (exactly) in ad

vance, and since s*(v*) may depend discontinuously upon v(O), it would be 

desirable to choose a policy which lies in the intersection of the sets 

{s*cv*) Iv* EV}. However, n V s*(v), which may be written as a finite 
VE 

intersection, may be empty. 

In [41] we showed that convexity of Vis the necessary and sufficient 

condition for n V s*(v) I 0, i.e. for the existence of a policy which can 
VE 

be used in the initially stationary part of the E-optimal strategy, in 

complete independence of v(O). Moreover an example was provided in which 

convexity of V fails to hold. Sufficient conditions for convexity of V are 

given by: 

* * (1) R = n; (2) K(i) is a singleton for all i E Q\R; (3) (H). 

It is worthwhile observing that in some cases a (Blackwell-) optimal 

policy, i.e. a policy which is optimal in the discounted model for all S 

sufficiently close to 1 (cf. BLACKWELL [4]) cannot be used in the initially 

stationary part of the E-optimal policy (cf. [10]). 

In the unichained case, i.e. when all policies are unichained, an ex

plicit upperbound may be derived for m(v(O)) the length of the non-station

ary (or non-periodic) tail of the E-optimal strategy; the latter being due 

* to the existence of bounds for the distance between v and the relative 

value vector of a policy in S(n) (cf. section 4). 

However, in the general multichain case and unlike the discounted 
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model no bounds have been obtained as yet for m(v(O)). In analogy with the 

discounted case, m(v(O)) can however in aU generality be shown to vary 

logarithmically with the precision E:. For the case of continuous time Markov 

Decision Problems, in which no periodicity problems arise, some of the above 

results were obtained by LEMBERSKY [27], and [28]. 

Finally, several difficulties appear when trying to find the set SMG" 

* First for all v E V,S (v) can be a strict subset of SMG so that value-

iteration fails to yield aU maximal gain policies. Indeed even U s*(v*) 
v*EV 

can be a strict subset of SMG so that varying the starting point v(O) of 

value-iteration will fail to identify all maximal-gain policies. The ex

planation is that a maximal gain policy A is merely required to choose actions 
A within L(i), in states that are transient under P (cf. section 4). 

The second difficulty is provided by the irregular 

sets {S(n) }:,=I as described above. This difficulty can 

* by noting as in the discounted case that whenever v = 

behaviour of the 

however be overcome 
. ( ) * . lim v n -ng exists: n~ 

(5.3) ( ) S*cv*) S n,E: = 
n 

for all n sufficiently large 

00 

provided that {i::} 1 is taken as a sequence of positive numbers approaching 
n n= 

0, at a slower rate than the (geometric) convergence rate of [v(n)-ng*], i.e. 
-I 

whenever lim E /An= 00 , e.g. when taking E = n 
n~ n n 

6. DATA-TRANSFORMATIONS 

In section 4 we observed that only if [v(n)-ng*J converges, will value

iteration be guaranteed to ultimately settle upon maximal gain policies and 
00 • * only then can sequences be derived from {v(n)}n=I which converge tog and 

some v EV. 

In case J* ~ 2, i.e. in case v(n)-ng* may fail to converge, the fol

lowing two alternatives have been proposed: 

(A) Use the discounted value-iteration scheme with discountfactor 8 depend

ing upon the index of the iteration stage, i.e. 

( 6. l) w(n+l). = 
i 

N 

I 
j=l 

k 
P .. w(n). J, 
lJ J 

l = l , ••• , N 
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* * where Sn+ 1 (cf. HORDIJK and TIJMS [20]). In case g = <g > 1 then, 

(6.2) as n + 00 

00 

where {yn}n=l is obtained recursively by yn+I = 1 +Sy and y0 = 0 provided 
n n 

that 

(a) 

(b) 

S .s 1 ••• s1 +O n n-

,1;- 2 S • · • S. l I SJ· -s. I I + 0 LJ= n J+ J-
-b 

(a) and (b) a.re guaranteed to hold when choosing S = 1 - n O ~ b ~ 1. 
n 

The numerical difficulty of divergence of w(n) is again avoided by using in 

stead the variables ;(n) = w(n) - w(n)N _!; related sequences have been 
. . * * . derived which converge tog and w, and at each iteration step upper and 

* lower bounds for g can be computed. 

The convergence rate is O(n-bln n) which is considerably slower than 

the geometric rate ordinary undiscounted value-iteration exhibits. The nice 

properties of this scheme are: 

(I) 

(2) 

convergence is guaranteed regardless of the periodicity structure of 

the problem 
* 00 {w(n)-yng }n=l converges to the optimal bias-vector (cf. BLACKWELL [4]) 

rather than to an arbitrary solution v EV. 

(B) The following data-transformation was proposed in SCHWEITZER [40]: 

(6. 4) P~. = T(P~.-o .. )+o .. ; 
1.J 1.J iJ 1J 

~ i,j ~ N and k E K(i) 

where O < T < 1 • 

This transformation turns the MDP into on equivalent MDP in the sense 

that it has the same state- and policy-space and that the gain rate vector 

of each policy is identical in the original and in the transformed MDP. 

The transformed problem has the nice property of aperiodicity for all 

of the policies since all of the diagonal elements of the transition 

probability rnatrices are positive. That is, the transformed problem has 
* * 00 J = 1 and convergence of {v(n)-ng }n=l is guaranteed for any v(O). In 

addition the following relation exists between V and V, the set of solutions 

to the optimality equation (4.6) in the transformed model: 
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(6.5) ~ N V = {v EE I TV EV}. 

A generalization of this data-transformation (cf. SCHWEITZER [40] and [11]) 

turns every undiscounted Markov Renewal Program (cf. JEWELL [23], DENARDO 

and FOX [7]) into an equivalent undiscounted MDP, in which each policy is 

aperiodic. 

Hence, undiscounted value-iteration when applied to the transformed 

model, is guaranteed to settle upon maximal gain policies, and sequences 

may be derived which converge to the maximal gain rate vector and a solu

tion to the optimality equation for Markov Renewal Programs. 

A similar transformation may be applied in order to turn every dis

counted Markov Renewal Program into a discounted MDP which is equivalent 

in the sense that it has the same state- and policy space and each policy 

has the same total discounted return vector vA in both models. This trans

formation enables us to apply value-iteration to the transformed model thus 

frequently improving the convergence rate, as well as to use all of the 

bounds and tests for non-optimal actions as discussed in section 2. Some 

of these bounds turn out to be sharper than the ones that have been derived 

by direct analysis of the Markov Renewal Program. 

Concerning the case of a denumerable state space, the data-transforma

tion may still prove useful for reducing the Markov Renewal Program to a 

discrete-time process (cf. FEDERGRUEN and TIJMS [9]). However the conver

gence analysis given in section 4, now needs obvious care due to the pos

sibly more complex chain structure (cf. HORDIJK, SCHWEITZER and TIJMS 

[21]). 
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