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Stationary distributions for control policies in an M/G/1 queue with 

* removable server 

by 

H.C. Tijms 

ABSTRACT. This paper considers an M/G/1 queue where the idle fraction of 

the server's time is controlled by turning off the server when the system 

becomes empty and turning on the server when some critical congestion 

level is reached. For both the N-policy which turns the server on when 

the queue size becomes N and the D-policy which turns the server on when 

the workload exceeds D, we shall derive the stationary distributions of 

the workload and the waiting time of a customer. 

Also, we extend some of the results to the case where between arrivals 

the workload decreases at a general rate when the server is busy. 

KEY WORDS & PHRASES: M/G/1 queue, removabte server, N-poZicy 

D-policy, workload, queueing time, stationary 

distributions. 
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1. Introduction 

This paper deals with an M/G/1 queueing system in which the idle fraction 

of the server's time can be controlled by turning the server off when the system 

becomes empty and turning the server on as soon as the system reaches some 

critical congestion level. In our model customers arrive at a single-server 

station according to a Poisson process with rate A. Each customer involves an 

amount of work which is distributed as the random variable Shaving probability 

distribution F(x) = Pr{S~x} with F(O) = 0 and finite first momentµ. It is 

assumed that p=Aµ<l. To utilize the idle fr~ction of the server's time during 

which he may engaged to other duties, we consider the so-called N-policy and 

D-policy which both turn the server off only when the system becomes empty. 

The N-policy is a control policy based on the queue size and turns the server 

on as soon as the number of customers in the system reaches the level N where 

N is a positive integer. The D-policy is a control policy based on the workload 

(= total amount of work in the system) and turns the server on as soon as the 

workload exceeds the level D where Dis a non-negative number. 

The N-policy was studied amongst others in [4], [8], [11] and [14], whereas 

the D-policy was considered in [2], [3], [51 and [12]. In [14] an expression 

for the average queue size for the N-policy was obtained (cf. also [11] for a 

generalization to a non-preemptive priority model) and in [4] and [8] the 

optimality of this policy among other control policies was discussed. For the 

D-policy a formula for the average workload was obtained in [3] and [12], 

whereas in [5] and [12] the optimality of this policy was treated. Further, we 

note that the model of the D-policy is closely related to a general control 

model in [13]. 

In this paper we shall give for both the N-policy and D-policy an extremely 

simple derivation of the stationary distribution of the workload from which 

distribution the stationary distribution of the waiting time of a customer will 

be obtained. This derivation will be based on simple renewal-theoretic arguments 

and will give analytical results which are tractable for numerical computations. 

The stationary distributions will be derived in section 3 after we have given 

some preliminaries in section 2. In these sections it is assumed that between 

arrival epochs the workload decreases linearly at unit rate when the server is on. 

However, in the final section 4 we shall obtain some results for a general 

decrease rate for the workload. 
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2. Preliminaries 

For n = 1,2, •••• , let, be the arrival epoch of the nth customer and let 
n 

X be the amount of work involved by the nth customer. Define E(n)(t)=Pr{, ~t}, 
n n 

then for all n~l, 

(2. I) I -
n-1 k , -At (At) 

l e k 
k=O 

fort~ 0. 

Let F(O)(x) = I for x ~ 0 and F(O)(x) = 0 for x < O, and denote by F(n) the 

n-fold convolution of F with itself for n = ,,I ,2, •••• Define the renewal function 

~(x) by 

00 

(2.2) ~(x) = I 
n=l 

Next, for any fixed u ~ O, define the random variables 

(2. 3) K(u) = inf{n~l I 
n 
I 

j=l 
X. > u}, T(u) = 

J 
'K(u) and S(u) = 

K(u) 
I 

j=l 
x., 

J 

i.e. K(u) is the total number of customers whose cumulative amount of work 

firstly exceeds u, T(u) is the arrival epoch at which this occurs and S(u) is 

the total amount of work involved by these customers. Then, using well-known 

results from renewal theory and Wald's equation (e.g. [6] and [10]), we have 

for any u ~ 0 that 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

u 
EK(u) = l+~(u), E[K(u){K(u)-1}] = 2~(u) + 2/ ~(u-y) ~(y). 

0 
00 

Pr{T(u) ~ t} = I E(k)(t) Pr{K(u) = k}, t ~ o. 
k=l 

u 
Pr{S(u) ~ x} = F(x) - f {I - F(x-y)} ~(y), X > U. 

0 

ET(u) = { I + ~(u)}/A, ES(u) = µ{I+ ~(u)}, 
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We note that in the special case of F(x) 

any u ~ O, 

-nx = I - e , x ~ O, we have for 

(2.9) Pr{K(u) 
-nu (nu) k-l 

= k} = e (k~l)! fork= 1,2, ••• , ~(u) = nu, 

(2. IO) Pr{S(u)::;; x} = -n(x-u) - e for x > u, 

(2. 11) aPr{T(u) :,; t} = 'e-(nu+\t) ( ✓--at /\ IO 2 \nut), t > O, 

where I 0 is the modified Bessel function .. (e.g. [1 ]) 

00 

I k 'lk' 
k=O •. 

We now define the (defective) distribution function H by H(x) = 0 for x<O and 

X 

(2. 12) H(x) = A f {1-F(y)}dy for x ~ 0 
0 

and its renewal function by 

00 

~(x) = I Hn(x) 
n=l 

where H(n) denotes then-fold convolution of H with itself. For the case of 
-nx F(x)=l-e , x ~ O, we have 

(2.13) -(n-\)x Ae for x > 0. 

For any z >- O, define now for the queueing system considered 

(2.14) k(x;z) = expected amount of time during which the workload is less 

than or equal to z up to the first epoch at which the system 

is. empty given that the workload is x at epoch O, x ~ 0. 

Observe that, by definition, for any z ~ 0 

(2.15) k(O;z) = 0 and k(x;z) = k(z;z) for x ~ z. 
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Further, it is iDDllediately verified that for any z the function k(x;z) is 

continuous in x ~ 0. We shall now derive a formula for k(x;z) where it is 

assumed that betwe.en arrival epochs the workload decreases linearly at 

unit rate when the server is on. Fix z ~ 0. By using standards arguments, 

we have for any O < x < z, 

z-x 
k(x+tix;z) = I + >.tix[ J k(x+y;z) dF{y) + k(z;z){ 1-F(z-x) }J + 

0 

so, for O < x < z, 

z-x ak(x;z) 
ax 

=I+ \{1-F(z-x)} k(z;z) - \k(x;z) + A J k(x+y;z)dF(y). 
0 

Using partial integration, it is readily verified that, for O < x < z, 

ak(x;z) = 
ax 

z-x 
I+ A{I-F(z-x)} k(z;z) +A aax J k(x+y;z){I-F(y)} dy. 

0 

Hence, for some constant b , 
z 

(2. 16) k(x;z) = d(x;z) + b + 
z 

z-x 
J 

0 

where H(y) is defined by (2.12) and 

X 

k{x+y;z) dH{y) for 0 :S: X :S: z, 

d(x;z) = x + \k(z;z) J {1-F(z-y)}dy = x + k(z;z){H{z)-H{z-x)}, 0 :S: x :S: z. 
0 

The equation (2.16) is a (defective) renewal equation whose unique solution 

is given by (e.g. [6] and [9]), 

(2. I 7) k(x;z) = d(x;z) + b + 
z 

z-x 
f 

0 
:S: X :S: z. 

The constant b and the value k(z;z) follow by putting x=z in (2.17) and using z 
the boundary condition k(O;z) = 0. 

For the special case where F(x) 

any z ~ 0 that 

(2.18) 

-nx = 1-e , x~O, we find by using (2.13) for 



-5-

3. The stationary distributions 

In this section we shall derive the stationary distributions of the 

workload and the waiting time of a customer, where it is assumed that between 

arrival epochs the workload decreases linearly at unit rate when the server 

is on. Further, we suppose that the customers are served in order of arrival. 

Observe that the distribution of the workload is independent of the latter 

assumption. 

From now on we assume for ease that the system becomes empty at epoch 0. 

We say that the system is in phase 1(0) when the server is on (off). We now 

define the following random variables. 

(3 .1) V(t) = workload at time t, t ~ O, 

A(t) = i when the system is in phase i at time t, t ~ o, 
W(t) = amount of time a customer would have to wait until his service 

starts if he arrived at time t, t ~ o, 
D = amount of time the nth customer has to wait until his service 

n 
starts, n ~ 1. 

Observe that each of the processes {(V(t), A(t)), t ~ O}, {W(t), t ~ O} 

and {W, n ~ 1} is regnerative where the epochs at which the system becomes 
n 

empty are regeneration epochs. Define now a cycle as the time interval between 

two successive epochs at which the system becomes empty, and let 

(3.2) B = expected length of one cycle, 

y.(z) = expected amount of time that during one cycle the workload is 
l. 

less than or equal to z and the system is in phase i, z ~ 0 and 

i = 0, 1. 

Then, by a standard result in the theory of regenerative processes (e.g. 

Proposition 5.9 in [9] and Theorem ·1 in [10]), we have both for the 

N-policy and D-policy that for any z ~ 0 and i = 0,1, 

long-run expected fraction of time during which the workload is less than 

or equal to z and the system is in phase i = yi(z) . 

SIBLIOTHEEK i,M\ T1•FJ,JA°l" 1,;ch ~:.r.1 ,\<.,ti, 
AMSTERDAM 

B 
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Since the length,of one cycle has an absolutely continuous distribution, it 

follows from Theorem I in [10] that for both the N-policy and the D-policy 

(3.3) lim Pr{V(t) 
t-+<» 

:;;; z, A(t) 
Y. (z) 

1 
= i} = ---

13 
for all z ~ 0 and i = 0, I , 

which gives the jointly stationary distribution of the workload and the 

phase of the system. 

From this result we can get the stationary distribution of the waiting time 

of a customer as follows. Using Theorem 3 in [10] which roughly states that 

Poisson arrivals see the system in the same way as a random observer, we 

have for both control policies 

(3.4) lim Pr{D :;;; y} = 
n n-+<» 

lim Pr{W( t) :;;; y} 
t-+<» 

for y ~ 0. 

Using the fact that for the N-policy we have for j = O, •.. ,N-1 that I/Al3 

gives the expected fraction of time during which j customers are present 

and the system is in phase O, we find for the N-policy 

(3.5) lim Pr{W(t) 
t-+<» 

for y ~ 0 

where F(j-l) * E(N-j) denotes the convolution of the distribution functions 

F(j-l) and E(N-j). Recalling definition (2.3) of T(u), we similarly find 

for the D-policy 

(3.6) lim 
t-+<» 

Pr{W( t) :;;; y} = 
min[y,DJ dy0 (z) 
J l3 [1-F(D-z) + 

0 
D-z 

+ J 
0 

Pr{T(D-z-x):;;; 
y 1 (y) 

y-z} dF(x)J + 13 , y ~ 0. 

Hence it remains to determine the quantities 13 and y.(z) for both control 
1 . 

policies. 

(i) The.N-poZicy. Since the expected length of one busy period in the standard 

M/G/1 queue without removable server is equal to µ/(1-p), we have the well

known result 

(3. 7) 13 = N/A + Nµ/(1-p) = N/A(l-p). 

Clearly, using (2.3), (2.4), (2.14) and (2.15), we have for any z ~ 0 
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(3 .8) 

+ ~ Pr{K(u) 2 N} =.!_NII F(k)(z) 
/\ "k=O 

and 

(3. 9) 
oo (N) z IN> (N> 

= f k(x;z) dF-(x) = f k(x;z) dF Ge)+ k(z;z){l-F (z)}. 
0 0 

-nx For the special case of F(x) = 1-e , x 2 0 these formulae become 

N = - -
A 

N-1 
I 

j=O 

N-1-j -nz (nz)J 
( A )e -. ,-, 

J • 
z 2 0 

and 

e-nz (~~)j] +{ ~ _ 
J . n->-

N-1 
A 2} l 

(n->-) j=O 

-nz (nz)J e _;_;. __ ;...,-+ 
J • 

z 2 0. 

(ii) The D-policy. It is well-known for the M/G/1 queue that x/(1-p) gives 

the expected time until the system becomes empty when the workload is equal 

to x at epoch 0. Hence, using (2.3) and (2.8), we get the well-known result 

(3.10) s 
l+~(D) µ{ 1 +~(D)} l+~(D) 

-· + = 
A 1-p >-(1-p) 

Clearly, using (2.3), (2.7), (2.8), (2.14) and (2.15), we have 

(3.11) Yo (z) = ET(z) = {I +~(z)}/>. for z 2 0, 

and 

CX) 

(3.12) Y 1 (z) = f k(x;z) dPr{ S (D) :,; x} = 
D 

r(z;z) 
= 

~ k(x;z) dPr{S(D) :,; x} + k(z;z) Pr{S(D) > z} 

for O :s; z :s; D 

for z :s; D. 
D 

For the special case of F(x) 

and (2. 18), 

-nx 1-e , x 2 0 we find by using (2.10) 
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S = (l+nD)/A(l-p), r0 (z) = (l+nz)/A for z ~ O 

for O:;; z:;; D, 

for z > D. 

REMARK. The averages V = lim 
t 

t- 1E[ J V(s)ds] and W 
0 q 

may be determined from the obtained stationary distributions. However, these 

averages can be much more easily determined in a direct way. Therefore denote 

by L the average expected number of customers in the system. For the N-policy 

a formula for Lis easily obtained and given by (cf. [11] and [14]), 

(3.13) 
N-1 +--
" ' " 

where it is assumed that the second moment µ( 2) of Fis finite. Next we 

obtain for the N-policy the averages W and V from 
q 

(3.14) 

where the second relation in (3.14) follows by using the same simple arguments 

as on pp. 556-558 in [10]. 

(3. 15) 

For the D-policy, 
D 

{D+cf ~(y)dy} 

l+~(D) 

we have (see [3] and [12]), 

However, for the D-policy the second relation in (3.14) does not hold since 

under this policy the waiting time of a customer may depend on his service 

time. The fundamental relation L = A[W +µ] does apply for the D-policy and a 
q 

formula for Lis easily obtained as follows. Using the well-known results 

that in the standard M/G/1 queue tbe expected length of one busy period is 

µ(1-p) and the total expected amount of time spent by customers in the system· 

during one busy period is µ/(1-p) + Aµ( 2) /2(1-p) 2, we easily find that under 

the D-policy the total expected amount of time spent by customers in the system 

during one cycle is given by 

00 

l ![k(k-1) + k{-µ- + 
k=I A 1-p 

A (2) 
µ 2} + !k(k-1) _µ_] 

1-p 2(1-p) 
Pr{K(D) = k}, 
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so, since L is the ratio of this quantity and the e~pected length S of 

one cycle and using (2.5) and (3.10), we get for the D-policy 
D 

(3. 16) L p + 
).2/2) 

+ 
~(D) + 0J ~(D-y)~(y) 

= 2(1-p) l+~(D) 

4. A general decrease rate for the workload. 

In this section we consider the case in which between arrival epochs 

the workload decreases at rate r(x) when the workload equals x and the 

server is on, where r(x) is a continuous function for x > 0 so that 

r(O) = 0, inf r(x) > 0 and lim r(x) > p. 
x>O 

To derive the stationary distribution of the workload, we first note 

that, by using the same quantities as defined in the previous sections, the 

relations (3.3), (3.8), (3.9), (3.11) and (3.12) also apply to the present 

case. Hence it remains to determine Sand the function k(x;z). Clearly, 

letting t(x) = lim k(x;z) for x ~ 0, we have 

( 4. I) s = 

CX) 

{

N/). + J t(x) d:ifN\x) 

[l+lf,,(:)]/A + !
00 

t(x) dPr{S{D) S x} 
D 

for the N-policy 

for the D-policy. 

Consider now the determination of k(x;z). Fix z ~ 0. We again have that k(x;z) 

is continuous in x ~ 0 with k(O;z) = 0 and k(x;z) = k(z;z) for x ~ z. 

Similarly as in section 2, we find for O < x < z 

(4.2) r(x) ak(x;z) 
ax 

z-x 
=I+ ).{J-F(z-x)}- ).k(x;z) +). J k(x+y;z)dF(y). 

0 

In general we cannot analytically solve this equation, except for the 

special case of 

F(x) -nx = I - e and r(x) = ax+b for x > 0 where a,b > 0. 
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To do this, we first apply the following transformation used also in [7]. 

Suppressing the dependency on z, define the function h(x) for Os x s z by 

( 4. 3) k(x;z) = enx dh(x) , h(i) = 0 
dx 

We can then write (4.2) in the equivalent form 

(4.4) d2h(x) dh( ) . ( ) (ax+b) --"----- + (anx+bn+:\) x + Anh(x) = e-nx{l+Ae-n z-x k(z;z)}, 
dx2 dx 

for O < x < z. 

To solve this second-order linear differential equation, let 

(4.5) -nx. g(x) = e n(x) forx> 0. 

Then (4.4) becomes 

(4. 6) 
-n(z-x) l+Ae k(z;z), 0 < x < z. 

We now define the new variable t, the functions f(t) and a(t), and the 

constant K by 

(4. 7) = nb 
t nx + a' f (t) a(t) = -1-{l+Ae-n(z-t/n+b/a)}k(z z) K = ~ 

na ' ' a 

Then (4.6) is equivalent to 

(4.8) d2f(t) df nb t 2 + (K-t) dt = a(t), < t < nz 
dt a 

nb + -• 
a 

The homogeneous part of (4.8) is a special case of Kunnner's differential 

equation, cf. chapter 13 in [1]. However, by the special form of (4.8), it 

is easy to determine directly the general solution of (4.8) fort> 0. 

Therefore, that (4.8) for t > 0 can be written as 

(4.9) 

(4.10) 

df(t) = 
dt 

td¢(t) 
dt 

¢ ( t), t > 0 

+ (K-t) <jJ(t) = a(t), t > 0. 
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It is standard to verify that, for some constant c 1~ the general solution 

of (4.10) equals 

(4.11) 
t -u K-] t -K 

= { J a(u)e u du+ c 1} e t 
0 

= 

t{r(K) *c t) ,, 1 -n(z+b/a) k( ) -K} ;,: O = e -- y K, + - e z;z + c 1t , t , 
µa n 

where (cf. chapter 6 in [1 ]) , 

t-K t -u K-] * y (K, t) = r(K) J e u du, t > o. 
0 

Next, using (4.9), (4. 7), (4.5) and (4.3), we find 

(4.12) k(x;z) = eZnx {ng(x) + dg(x)} 0 s x s z, 
dx ' 

where, for some constant c2, 

nx+nb/a 
g(x) = J ~(y)dy + c2 for Os x s z. 

1 

The constants c 1, c2 and the value k(z;z) follow by putting x=z in (4.12) 

and using the boundary conditions k(O;z) = 0 and g(z) = O. 

Finally, we would remark that although relation (3.4) holds it seems 

a formidable task to determine the stationary distribution of the waiting 

time of a customer except for the case of N = I or D = 0 where this 

distribution is the same as the stationary distribution of the workload. 

Acknowledgement. I am indebted to B. Dijkhuis for his help in solving the 

differential equations in section 4. 



-12-

References. 

I. ABRAMOWITZ, M. and I. STEGUN (eds.), Handbook. ofi Ma..themwc.ai. Func.:Uon6, 
Dover, New York, 1965. 

2. BALACHANDRAN, K.R., Control policies for a single server system, Management: 
,, 

Su., 19 (1973), 1013-1018. 

3. BALACHANDRAN, K.R., and H.C. Tijms, On the D-policy for the M/G/1 queue, 

Management: Su., 21 (1975), 1073-1076. 

4. BELL, C., Characterization and computation of optimal policies for operating 

an M/G/1 queueing system with removable server, OpeJta.tion6 Ru. 19 (1971), 

208-218. 

5. BOXMA, O.J., Note on a control problem of Balachandran and Tijms, Management: 
Su. 22 (1976), 916-917. 

6 • FELLER, W. , An I n:tlr.oduc.:Uon .to PJc.o babUJ..ty TheoJc.y and -U-6 AppUc.wo n6, Vol. 2 . , 

Wiley, New York, 1966. 

7. GAVISH, B. and P.J. SCHWEITZER, The M/M/1 queue with bounded virtual waiting 

time, IBM Thomas J. Watson Research Center, Yorktown Heights, 1976, (to appear 

in Management: Su.). 
8. HEYMAN, D.P., Optimal operating policies for M/G/1 queueing systems, 0peJc.WOn6 

Ru. 16 (1968), 362-382. 

9. ROSS, S.M., AppUed PJc.obabUJ..ty Modei..6 wlih Op.timiza.uon AppUc.woM, 
Holden-Day, Inc., San Francisco, 1970 •. 

10. STIDHAM, S., JR., Regenerative processes in the theory of queues, with applications 

to the alternating priority queu.e, Adv. App£.. PJz.ob •. 4 ( 1972), 542-577. 

11. TIJMS, H.C., A control policy for a priority queue with removable server, 

0peJc.WOn6 Re.6. 22 (1974), 833-837. 

12. TIJMS, H.C., Optimal control of the workload in an M/G/1 queueing system with 

removable server, Ma.th. 0peJc.a.uon66oMc.h. u. Stazl6t. 7 (1976), 933-943. 

13. TIJMS, H.C. and F.A. VAN DER DUYN SCHOUTEN, Inventory control with two 

switch-over levels for a class of M/G/1 queueing systems with variable arrival 

and service rate, Report BW 69/77, Mathematisch Centrum, Amsterdam, 1977 

(to appear in Stoc.h. PJc.oc.. and thw Appl.). 
14. YADIN, M. and P. NAOR, Queueing systems with a removable server station, 

OpeJta.tion6 Re.6. QuaJz.t. 14 (1963), 393-405. 


