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ABSTRACT 

This paper considers undiscounted Markov Decision Problems. With no 

restriction (on either the periodicity - or chain structure of the problem) 

we show that the value iteration method for finding maximal gain policies, 

exhibits a geometric rate of convergence, whenever convergence o~curs. 

In addition, we study the behaviour of the value-iteration operator; we give 

bounds for the number of steps needed for contraction, describe the ultimate 

behaviour of the convergence factor and give conditions for the existence 

of a unifoPm convergence rate. 
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I. INTRODUCTION AND SUMMARY 

The value-iteration equations for undiscounted Markov Decision Processes 

(MDP's) were first studied by BELLMAN [2] and HOWARD [9]: 

(I. I.) v(n+l). = Qv(n)., 
1 1 

i = I, ••• N 

where the value-iteration operator Q is defined by: 

(1.2.) Q:K. = 
1 

k 
P .. v(n)}., 

1J J 
1. N = 1, ... ,N; x EE . 

and with v(O) a given N-vector. K(i) denotes the finite set of alternatives 

in state i,q~: the one-step expected reward 
1. 

ty to state J when alternative k E K(i) is 

For all n = 1,2, ••. and i £ Q = {I, ... ,N} 

k . . . . 
and P .. the transition probabili-

1J 
chosen in state i (i = 1, ••• ,N). 

, v(n). denotes the maximal total 
1 

expected reward for a planning horizon of n epochs obtained when ending up 

at state j. 

BROWN DJ showed that{v(n)-ng*}:=l is uniformly bounded inn, provided 

* g is taken as the maximal gain rate vector. In [18] we proved the 

existence of an integer J such that 

(1.3.) u(r) = lim n-+<x> * [v(nJ+r) - (nJ+r)g J 

exists for aZ.l v(O) s EN and r = O, .•. ,J-1. (Previous proofsin[3] and [IO] 

are both incorrect or incomplete.) 
* 00 In general {v(n)-ng }n=l may fail to converge for arbitrary v(O) if 

some of the transition probability matrices (tpm's) are periodic i.e. J?: 2 
* 00 can occur. Sufficient conditions for the convergence of {v(n)-ng }n=l for 

aU v(O) s EN, were obtained by BATHER [I], LANERY [ 10], SCHWEITZER [ 14, 15] 

and WHITE [22:], while the necessary and sufficient condition was recently 

obtained in [18]. While the result in [18] settles the issue if one demands 

existence of lim {v(n)-ng*}00 

1 for every n-+<x> n= 
N v(O) EE, it should be noted 

* 00 that {v(n)-ng }~1 always converges for v(O) belonging 

closed set W c E (cf. lelillila 2.2). 

to some non-empty 
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In this paper we return to the issue of the rate of convergence. 

Our main result (th.4.2) is the fact that if lim v(n)-ng* exists, then the n-+<x> 
approach to the limit is geometric. Consequently this result shows that the 

value-iteration method for locating maximal gain policies (cf·. [12],[14] and 

~2]) exhibits a geometric rate of convergence. This result is of particular 

importance to the case N >> I where this value-iteration method is the only 

feasible one for finding maximal gain policies. 

This generalization of White's result (cf. [22] to the general multi

chain case is remarkable since the property of geometric convergence holds 

in spite of the fact that the operator Q is never a contraction mapping or 

a J-step contraction mapping for any J = 1,2, .•. (cf. DENARDO [4] and [7]) 
N N with respect to any norm on E . Note e.g. that for all x £ E and scalars c: 

(1.4.) Q(x+c_!) = Q x + c_!_, with the N-vector of ones. 

In addition, and even more remarkably, the Q-operator, does not need to be 

(J-step) contracting (for any J~ I) with respect to the following pseudo

norm either (cf. [I]): 

(1.5.) llxll d = x - x max min' 
N 

X £ E 

with x = max. x. and x. = min. x., the use of which is suggested by max 1 1 min 1 1 

the very property (1.4.) (cf. BATHER [I]). 

Indeed although we find a convergence rate (or ultimate average con

traction factor per step) which is strictly bounded away from one on W, the 

average contraction factor per step may initially be very close to one; 

and in general there does not exist an integer n ~ such that then-step 

contraction factor is strictly bounded away from I (cf. section 7). 

One should point out that the geometric convergence result holds for 

all v(O) E W, with no restrictions imposed on e.g. - the chain - and period

icity structure. In addition if v(O) is such that (1.3.) holds with J ~ 2 

the same th.4.2 applied to a related "J-step" decision process shows that 

the approach to the limit in (1.2.) will be geometric for each r = O, .•• ,J-1 

as well. 
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In section 2 we give the notation and preliminaries. In section 3 we 

study the evolution of the Q-operator. The geometric convergence result is 

obtained in section 4. In section 5 we give some additional properties for 

MDP's satisfying condition (Hl) to be stated below; in particular, we show 

that the number of steps needed for contraction is bounded by a quadratic 

function in N. In section 6 we characterize the ultimate behaviour of the 

Q-operator and of the average contraction factor per step. In section 7, 

finally, we derive for MDP's satisfying (HJ) the necessary and sufficient 

condition for the existence of a uniform n-step contraction factor (for some 

n ~ 1) -i.e. an-step contraction factor which is strictly bounded away from 

one on w. 
We refer to [7] for some necessary and some sufficient conditions for 

the Q-operator to be contracting with respect to the 11-lld norm. 

2. NOTATION AND PRELIMINARIES 

A (stationary) randomized policy is a tableau [f.k] satisfying f.k ~ 0 
l. . l. 

l f 1.k = 1 (f 1.k denotes the probability that the k th alternative is and kEK(i) 
chosen when entering state i). 

We let SR denote the set of all randomized policies, and Sp the subset 

of all pure (non-randomized) policies, i.e. for f E S , each f .k = 0 or I. p l. 

For f E Sp, ~,e use the notation f(i) = k, where k denotes the single alter-

native used in state i. Associated with each f E SR' are the N-component 

"reward" vector q(f) and the N x N matrix P(f): 

q(f). I fik 
k i 1 , ••• , N = qi' = 

l. kEK(i) 
(2. 1) 

p (f) .. I fik 
k 

1, ... ,N; l, .•• ,N. = p .. , l. = J = 
l.J kEK(i) l.J 

Note that P(f) is a stochastic matrix, for any f E SR' and define the 

stochastic matrix TI(f) as the Cesaro limit of the sequence {Pn(f)}:=l. 

* Define the maximal-gain rate vector g : 

(2. 2) TI(f)q(f)., 
l. 

l. = 1, ... ,N. 



4 

DERMAN [SJ proved that there exists a pure policy that achieves the N su

prema in (2.2) simultaneously, In addition Howard's Policy Iteration 

1 . ( - [ 9 ]) d h h . . k l.N k * * A gorithm ct. showe tat t e quantities a.= . 1 P .. g. - g., 
i 'J= iJ J i 

i en, k e K(i) satisfy: 

(2.3) max 
ke:K(i) 

k a.= 0 
i 

,i = l, .•• ,N, 

* as well as the existence of vectors v satisfying the optimality equation: 

(2.4) ?' k * I k * v. = max {q.-g.+ p .. V.}' i = l, .•. ,N, where 
]_ 

ke:L ( i) i i . iJ J 
J 

L(i) = {k e K(i) la~ 0}' i = l, ••• ,N. i 

Accordingly define SPMG and SRMG as the set of pure and randomized maximal

gain policies i.e. 

* g = IT(f)q(f)} and 

S = {f e SR RMG 
* g = IT(f)q(f)} 

Let R(f) = {j en I IT(f) .. > 0} i.e. R(f) is the set of recurrent states 
JJ 

for P(f), and define R* = Uf S R(f). 
e RMG 

In th.3.2. of [17] we proved that 

(2.5) 
.,., 

R = U R(f). 
feSPMG 

* and that there exists f e SRMG with R(f) = R. Let V denote the non-empty 

solution set to the optimality equation (2.4). Observe that if v e V then 

v + c 1.!_ + c 2~;* e V for all scalars c 1 ,c2 . For any v e EN, define 

(2.6) b(v)~ , i 

and 

k * = q. - g. + 
i i 

N 

I 
j=l 

k 
p • • V • 
iJ J 

i e n, k € K(i) 



and 

k 
Note that maxkEL(i) b(v)i = 0 for every 1. En, if and only if v EV. As a 

consequence we define for any v EV: 

(2. 7) L(i, v) = {t E L(i) J b(v)~ = 
I. 

max 
kEL(i) 

k b(v). = 
I. 

O}. 

In th.3.1. part (e) of [17] we established the following characterization 

of SRMG: 

(2.8) Fix v EV. Let f E SR; then f E SRMG if and only if: 

fik > 0 implies k E L(i,v) for all 1. E R(f) and k E L(i) 

for all i E Q\R(f). 

In addition to the pseudo-norm 

llxll = max.Jx.J. Note that 

II d (cf. (1-5)) we will use the norm 

CX) I. I. 

(2.9) x . :.,; O :.,; x => II xii :o:: II xii d; 
min max 00 

N 
Finally, define for x EE : 

(2.10) 
+ 

{min{xi I X = x. 
I. 

0 

X = {max{xi I x. 
I. 

0 

> 0, I. E Q} 

> O,i E Q} 

N 
X E E • 

if X > 0 max 
otherwise 

if X < 0 
min 

otherwise 

5 

Lemma 2,1. below enumerates a number of elementary properties of the q-oper

ator that will be needed in the remainder. First, let Qn denote then-fold 

application of the operator: 

n = I , 2, ••• and X E 
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and define for all x E W, L(x)=lim Qnx~ng*: n~ 

LEMMA 2. 1. 

(a) 

(b) 

(c) 

and 

(d) 

(e) 

(f) 

(g) 

(x-y)min :,; (Qx-Qy) . :,; (Qx-Qy) :,; (x-y) ·x y 
min max max' ' 

II Qx-Qyll d $ Il x-yll · II Qx-Qyll :,; II x-yll ;x, y E EN d' CX) CX) 

If x,y E w then for n = 0,1, ..• : 

L(x) 1,,s a Lipschitz continuous function on W. · 

Wis closed and unbounded. 

E EN 

m m * If x E W:, then Q x E W for all m = 1,2, ••• and L(Q x)=L(x) + mg • 

Suppose (Qx-Qy) = (x-y) ; stater satisfies max max 
(Qx-Qy) = (Qy-Qy) and alternative k E K(r) achieves 

r max . 

k I k ( Qx) , i . e • ( Qx) = q + . P . x .• 
r r r J rJ J 

Then (Qy) = qk + I,Pk.y. as 
r r J rJ J 

well3 and Pk > 0 only if states satisfies 
rs 

(x-y) = (x-y) . s max 
(h) Similary3 if (Qx-Qy) = (Qx-Qy) . r min = (x-y) . for min 

some r E r2 and 

k E K(r) achieves (Qy) ,i.e. (Qy)r 
k r 

k k 
q + L·P .y. 

r J rJ J 
then k achieves (Qx) 

r 
as well and P > 0 only if rs (x-y) = (x-y) .. s min 

PROOF: The proof of part (a) is easy and may be found in lemma 2.1 of [1]; 

part (b) follows from part (a). A repeated application of (a) shows that for 
n n n+m * n+m * all n,m ~ 0: (Q x-Q y) . :,; [(Q x-(n+m)g) - (Q v-(n+m)g )] • :,; min - min 

[(Qn+mx-(n+m)g*) - (Qn+~-(n+m)g*)J :,; (Qnx_Qny) . 
max max 

Next, the first assertion of part (c) follows by letting m tend to infinity, 

whereas the second assertion and part (d) are an immediate consequence of the 

first one, 

Next, consider a sequence {xa}:=I with xa E W, a= 

Pick s > 0 and xa. such that II xa.-x*II < s/ 3. 
00 

1 , 2 , . . . and 1 im 
a~ 

a 
X * = X • 



Since xa e: W, there is some n0 (e) ~ I such that for all n,m ~ n0 (e): 

n a * ma * II II (Q x -ng) - (Q x -mg) < e/3. 
00 

Hence, for all n,m ~ n0 le): 

II (Qnx*-ng*) 

ll(Qnxa-ng*) -

m * * II I n * n a - (Q x -mg) s; IQ x -Q x II + 
"" 00 ma * m*··ma (Q x -mg ) 11 + 11 Q x -Q x II 
00 00 

s; 211x*-xall + ~/3 = e:, 
00 

7 

the last inequality following from pa?t (a). Hence, by Cauchy's convergence 

criterion, lim Qnx* - ng* exists, which proves that Wis closed, whereas W 
n-+<><> 

is unbounded in view of x e: W implying x + c..!_ e: W for any scalar c, with 

L(x+c..!_) = L(x) + c..!_, thus proving part (e). 
( ) . n( m ) * 1 . {Qn+m ( ) *} * f: follows from l1m Q Q x - ng = 1m _ x- n+m g + mg = 

n-+<><> n-+<» 
* L(x)+mg. 

The proofs of part (g) and (h) are easy, and may also be found in BATHER [1], 

lemma 2.2. D 

In addition to the Q-operator defined by (1.2), we introduce: 

(2. 11) 
k N k 

Tx.=.max - {q.+ l P .. x.}, 
1 ke:L(i) 1 j,.;1 1J J 

N i € Q; XE E • 

We let Tn denote then-fold application of the T-operator and in analogy to 

Wand L(x),x e: W we define: 

W= {x e: ENjlim Tnx - ng* exists} and for all x E W, 
n-t«-

L (x) = lim Tnx-ng*. 
n-+<><> 

Observe that the T operator is the value-iteration operator associated with 

a related MDP in which the policy space is restricted to x:~l L(i). As a 

consequence it has aZZ of the properties of the Q-operator as exhibited in 

the previous lemma. 

The following lemma shows that the Q-operator reduces to the T operator 

in at least two ways, and that the latter has a number of additional 
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, n oo 
properties which induce that the sequence {T x}n= 1 has a more regular 

n oo 
behaviour than {Q x}n= 1• 

First_define: 

( 2. 12) n * e(n,x)= Q x - ng - L(x), x € W, n;;:: 0. 
~ n * ~ e(n,x)= T x - ng - L(x), x € W, n;;:: O. 

By definition, lim e(n,x) = 0 for x €Wand lim ;(n,x) = 0 for x € W: n~ n-+oo 

LEMMA 2.2. 

* (a) * T(x+cg )= Tx + cg for any scalar c. If X € w, then for any scaZar c, 

* _., "-I * r,.,,J * X + tg € W and L(x+cg ) = L(x) + cg . 
(b) For any V € v, Tnv = v+ ng * • AZso vs wand t(v) = v for any v £ v. 
(c) For any n;;:: 1 and i = 1, ••• N. 

(2.13) 
k k N k e(n+1,x) .= max [n.a.+b(L(x)). + 2 P •. e(n,x). J, X € W i kEK(i) i i . 1 i] J 3= 

(2. 14) ;(n+1,x) .= [b(L(x))~+ 2 k ;(n,x) .],x € w. max P .• i kEL(i) i j i] J 

(d) For each x € K" there exists an integer n0 (x) such that QnO+mx = 
m no no ~ ~ no T (Q x) form= 1,2, •••• AZso if x E W, then Q x E W with L(Q x) = 

* L(x)+n0g • 

(e) For aii x € W: 

e(n+1,x) . ;;:: e(n,x) . ; . min min n = 0,1, ••• 

{
e(n,x) ; n > 

e(n+1 ,x) max 

max 

~ max. k b(L(x))~ 
i, i 

Hence, for aU x E W and n = o, 'I, ••• : 

+ e(n,x) ; max 



(2.15) 

H;'(n+l,x)lld ~ ll;'(n;x)lld; ll';(n+l,x)ll 00 ~ ll;(n,x)ll 00 

(f) For each x E EN there exists a scalar t 0 (x) such that 
n * n * Q (x+tg )= T (x+tg) for n = 0,1,2, ••• and t ~ t 0 (x). 

9 

Hence if v EV then v + tg* E W if t large enough i.e. Wis non-empty. 

(g) For any XE W,L(x) EV and for any XE w,T(x) Ev. 

(h) W\V= {x E W I llx-L(x)lld > O}. 

PROOF. 

(a) 

(b) 

Innnediate from the definition of L(i). 

* For v EV, Tv=v + g follows from (2.4). By induction, we obtain 

Tnv= v + ng*. 

(c) Part (c) follows straightforward from the definitions (2.3), (2.6) and 

(d) 

(e) 

(2.12). 

The fact that for large n, the Q-operator only uses alternatives in 

L(i) was proved in th.4.4 of [3] (cf. also remark 1). 
. m n * . m+n * * * Next, lim~ T (Q Ox) - mg = limffi4<"> {Q 0~-(m+n0)g }+n0g = L(x)+n0g. 

Since by (2.7) and (2.13), e(n+l,x). ~ l.· P .. e(n,x). fork E L(i,L(x)) 
1 'J 1J J 

we have e(n+l,x) . ~ e(n,x) . for all x E W. Next by (2.3): 
min min 

k \ k e(n+l,x). ~ max. K(") {b(L(x)). + l· P .. e(n,x).}, i E Q so 
1 KE 1 1 J 1] J 

k e(n+l,x) ~ max. k b(L(x)). + e(n,x) ; n=0,1, .•• max i, i max 

Since part (d) shows that for all n > n0 (x) the maximum in (2.13) is 

attained by an alternative in L(i), for all i E Q, we obtain the 

sharper bound e(n+l,x) ~ e(n,x) for all n > n0 (x) in view of max max 
(2.7). Next, the outer inequalities in (2.15) follow immediately from 

the above, whereas the inner ones are due to {;(n,x) }:=O and 

{;(n,x) }00 

0 being monotonically non-decreasing and non-increasing to 
max n= 

lim ;(n,x) . =lim ;(n,x) =O. n~ min n~ max 
(f) Fix v EV. By repeating the proof of part (e) with repect to 

~ n * N n * 00 e(n,x) = T x - ng - v, for any x EE, one shows that {T x-ng }n=l 
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(g) 

is bounded for all x E EN (cf. also;BROWN [3] and remark 1). 

n * Q(T x+tg ). = 
i 

max 
kEK(i) 

it follows that there exists a scalar t 0 (x) such that for all t ~ t 0 (x) 

only alternatives in L(i) achieve the maximum, for all n = 0,1, •••• 

Hence the first assertion of part (f) trivially holds for n = 0 and 

proceeding by complete induction, assume it holds for some integer n. 
n+ 1 * n * n * n * n+ 1 * Then Q (x+tg) = Q[T (x+tg )] = Q[T x+tg] = T[T x+tg J = T (x+tg) 

n * * for all t ~ t 0 (x). Finally if v EV and t ~ t 0 (v) then Q (v+tg) - ng = 
n * * * . T v + tg - ng = v + tg for all n = 0,1 ••. (cf. part (b)) which 

* proves v + tg € W for all t ~ t 0 (v). 

Letting n tend to infinity in (2.14) and recalling lim e(n,x)=O 
~ ~ k n-+oo 

one observes that for x E W, ma~EL(i)b(L(x))i=O; hence L(x) EV. 

Since L(x)= L(Qilox) - n0g* for any x € W (cf. part (e)) it follows that 

L(x) EV for any x E W. 

(h) Let x E W. If x E V then llx-L(x)II d = 0 follows form part (b). 

Conversely if llx-L(x)lld = 0 then x = L(x) + cl for some scalar c; so 

x EV in view of part (g). D 

3. THE EVOLUTION OF THE Q OPERATOR. 

n * oo Convergence of {Q x-ng }n=I occurs in three phases. During the first 

phase the Q operator still uses alternatives in K(i)-L(i). Leilll!la 2.2 part 

(d) shows that for any x E EN after finitely many steps namely for n ~ n0 (x), 

alternatives in L(i) achieve the maximum in (2.13) or in other words Q 

reduces to T. (In fact the proof of this part of the leillllla shows that from 

a certain point on, only alternatives in L(i) achieve the maxima). 

1 2 2 ( ) h h . [ n *] d . Next, ennna • part e sows tat the distance between Q x-ng an its 

limit L(x) as measured e.g. by the II II is guaranteed to be monotonically 
00 

non-increasing after these first n0 (x) steps. This is why we say ·that the 

first n0 (x) iterations constitute the first phase of the convergence process 

during which the behaviour of either II e(n,x)lld or lle(n,x)ll 00 may be very 

irregular. 
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Observe that the first phase is non-existing when K(i)=L(i) for all i En 

* * as is e.g. the case when g = <g > ..!., i.e. when :the maximal gain rate is in-

dependent of the initial state of the system. 

While for n ~ nO(x) the Q-operator reduces to the T-operator,- for still 

larger n and x E W due to lim e(n,x)=O the maximum in (2.13) can only 
n-+-<x> 

be achieved by alternatives for which b(L(x))~=O i.e. alternatives that 
1. 

belong to L(i,L(x)) (cf. (2.7)). 

Hence for very large n (say for n~n1(x)) we get the behaviour: 

(3.1) e(n+l,x) = U(L(x)) e(n,x), 

where for any v EV the U(v)-operator is defined by: 

(3.2) [U(v)y]. = max [2.P~.y.], 
1. kEL(i,v) J 1.J J 

i = 1, ••• ,N. 

Observe that the U(v)-operator is a value-iteration operator with zero 

rewards. Since the associated maximal gain rate vector is Q i.e. has 

identical components, it has all of the properties of the T-operator. 

In addition it distinguishes itself by the following special (positive 

homogenity) feature: 

(3.3) U(v)[ax] = a U(v)x, N x EE and for any scalar a~ 0 

as well as by: 

x ~ [U(v)x] ~ [U(v)x] . ~ x .• max max min m1.n 

Note that there are only a finite number of distinat U(v)-operators, since 

there are only finitely many subset of X. L(i). 
1. 

For any v EV, define: 

(3.4) (X) 

o(v) = 

min{-b(v)~ 
1. 

otherwise 

if b(v)~ = 0 for all i En, k E L(i) 1. 

k 1. En, k E L(i), such that b(v). < O}, 
1. 



12 

Note that for all x E W, the reduction to the U(L(x))-operator occurs at 

the very last when lle(n,x)lld drops below the o(L(x))-level. 

We will say that the second phase of the convergence process starts at 

the n0 (x)+l-th iteration and terminates at the n 1(x)-th iteration. 

It is followi~d by the third phase from there on. In the following section 

we will show that in the second and third phase lle(n,x)II decreases to zero 
00 

at a geometric rate of convergence for all x E w. Whereas the contraction 

factor per step initially depends upon the starting point x and may be very 

close to unity, the ultimate convergence rate or average contraction factor 

per step is determined by the behaviour of the U(v)-operator in the third 

phase and will be shown to be uniform i.e. strictly bounded away from one, 

on w. 
The remainder of this section is devoted to a description of the first 

phase as well as to a preliminary characterization of the U(v)-operators in 

the third phase. 

We first observe that (2.13) may be rewritten as: 

(1.5) e(n+l,x).= max {b(L(Qnx))~ + l- P~. e(n,x).},i E rt 
i kEK(i) i J iJ J 

k k * k since na. + b(L(x)). = b(L(x)+ng ). 
i i i b(L(Qnx))t the last equality following 

from lemma 2,1 part (f). Define: 

(3.6) '¥(n,x) max 
iE0.,kEK(i) 

n k 
b(L(Q x)).; 

i 
XE W. 

00 

The next theorem shows that {1/J(n,x)}n=I decreases in at least a linear way 

with n, so it reduces in a finite number of steps to O, after which the 

non-increasing of lle(n,x)lld is guaranteed. Hence convergence is lexico

graphic in the sense that first {1/J(n,x)}:=I + 0 and next {lle(n,x)lld}:=l + O. 

THEOREM 3.1. Let x E W. 

(a) 1/J(n,x)~ 0 ; n = 0,1 •••• If K(i) = L(i) for all i, then 1/J(n,x) = 0 for 

aZZn=O,I •••• 

(b) 1/J(n+l,x) $1/J(n,x); if 1/J(n+l,x) > 0 then iµ(n+l,x) s: iµ(n,x) + t::. where 

(3. 7) 11 = { 

00 ) if 

max{a~ J 

K(i) = L(i), i E r2 
k 

a. < O; i E n,k E K(i)}, 
i 

otherwise 
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(c) There exists an intener n0'(x) $ ,(o,x) with ,(n x)=O ~or n>n'(x) 
l:7 ,~, ' J' - 0 

Al,,so lle(n+l,x)lld $ e(n,x)lld for n > n0. 

PROOF. 

(a) ~(n,x) ~ max. n k L(")b(L(Qnx))~ = 0 since L(Qnx) EV (cf. lemma 2.2 iE•,, € i i 
part (g)) while the equality sign holds if K(i)=L(i) for all i E n. 

(b) 
· k k 

w(n+l,x) = ma~. n k K(.){(n+l)a. + b(L(x)).} $ iE•,, e i i i 
k k 

max. n k K(.){na. + b(L(x)).} = w(n,x) iE•,, € i i i 

(c) 

Assume w(n+l,x) > O. Then w(n+l,x) =a~+ b(L(Qnx))~ for some i En, 
i i 

and k i L(i) since b(L(Qnx))~ $ 0 and a~= 0 fork E L(i). Hence, 
k i i 

a. $~and w(n+l,x) ~ w(n,x) + ~. 
i 

The existence of n0(x) $ Wf~jx) follows immediately from part (b). 

Next, assume w(n,x) = 0 and use (2.13) to obtain: 

k k , k 
e(n+l,x). $ maxk K("){na. + b(L(x)).} + max. K(.){l.P .. e(n,x).} i € i i i KE i J iJ J 

$ w(n,x) + e(n,x) = e(n,x) max max 

Hence, e(n+l,x) $ e(n,x) , whereas e(n+l,x) . ~ max max min 
shown in lemma 2.2 part (e). Since w(n,x) = 0 for n ~ 

conclude that lle(n,x)lld is non-increasing for n ~ n0. 

e(n,x) . was min 
no(x), we 

D 

Part (c) of the previous theorem shows that both n0 (x) and n0(x) are 

bounds on the number of iterations before {lle(n,x)lld}:=I starts to be mono

tonically non-increasing. The following example will show that: 

(a) the behaviour of lle(n,x)II /or lle(n,x)II,.) may be very irregular during 

the first phase: in this particular example, II e(n,x) II d first decreases, 

then increases during a number of steps that is of the order of N 

(b) both n0 (x) and n0(x) as defined in lemma 2.2. and th.3.1, may be very 

large and are not uniformly bounded in x E W 

(c) the convergence of {w(n,x)}:=I to O is exactly linear, i.e. 

w(n+l,x) = w(n,x) +~for all n < n0(x) 

(d) both cases n0 (x) > n0(x) and n0 (x) < n0(x) may occur. 
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EXAMPLE 1: 

2 

2 2 

3 

4 

k q. 
l. 

0 

2(N-4) 

2(N-5) ·* g = 

(1,1,0, ••• ,o) 
N-

N- 2 

N-1 1 I 0 2 2 

N 0 0 

1 1 (P .• +l = 1 for 3 s i S N-2; q. = 2(N-i-1) for 3 sis N - 2. 
l.·l: l. 

Take x = [0,1,0,A,A, ••• ,A+l,A]. 
n * Since L(2) = {1}, for n large we have (Q x) 2 - ng2 = 0, hence L(x) 1 = 

L(x) 2 = 0. Moreover L(x). = ,N-! 2(N-r-l)+A = (N-i)(N-i-l)+A for i ~ 3. 
1. lr=1 

Let l = 0: 

and 

lle(0,x)lld=e(o,x) - e(o,x) . = l+(N-4)(N-3)+A max · min 
II e ( 1 , x) II d =e ( 1 , x) 2-e ( 1 , x) 3 =0-2 (N-4) + (N-4) (N-3) 

(2(N-4)+A-1)-2(N-3)=A+l,for n=2 

11 e (n, x) 11 d-11 e (n-1, x) 11 a= (2 (N-n-2)-1 )-2 (N-n-3)= 1, 2<nSN-3 

-1 for N-3SnsA+(N-3)(N-4) 

lle(n,x)II d = 0 for n >A+ (N-3) (N-4). 

2 1 2 ~=a2=-l;b(L(x))i=0 for all i;b(L(x)) 2 = A+(N-4)(N-3)-1 



hence 

{
A+(N-4)(N-3)-(n+l) 

1/J(n,x)= 
0 

for n<A+(N-4)(N-3) 

for n>A+(N-4)(N-3) 
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and conclude that 

Finally note 

dent of l,n0 (x) > 

1/J(n+l,x) = 1/J(n,x) - ~ for n < n0(x). 

that since the quantities b(L(x))~ and 1/J(n,x) are indepen-
1. 

n1(x) occurs when l >> 0 and n0 (x) < n0(x) when l << O. 

* - n * * N REMARK 1. Fix v EV. Let e(n,x) = Q x - ng - v for any x EE , and 

~(n,x) = max. n k K("){na~+b(v*)~}. An examination of the proof of th.3.1 1.E••, E 1. 1. 1. 
with e(n,x) and 1/J(n,x) replaced by e(n,x) and "ijj°(n,x), shows that: 
( ) { n * }oo • d . N a Q -ng n=l 1.s bounde 1.n n, for all x EE 

Next it follows from (a) and (2.15) with e(n,x) and L(x) replaced by 
- * e(n,x) and v, that 

(b) for n large enough, the Q-operator uses only alternatives in L(i). 

These results were already obtained in BROWN [3], who employed limiting 

results from the discounted case. 

Lennna 3.2 below gives some preliminary properties of the U(v)-operator (as 

appearing in the third phase) and concludes this section: 

LEMMA 3.2. 

(a) 

(b) 

(c) 

Fix v Ev. If lly-vlld < o(v) then 
n * ) n n n Ty - (ng +v = T y-T v = U(v) (y-v): n = 0,1,2, ••• 

Take x E W with llx-I(x)lld < o(L(x)). Then for any). E [0,1]., the 

vector x(;\) = (l-;\)L(x) + Ax satisfies x(;\) E Wand L(x(;\)) = L(x). 

If v EV and the vector p satisfies llplld = 1 and lim U(v)np = 0 n-+oo 
then for O ~A< o(v), v + A p E Wand L(v+).p) = L(v) = v. 

n * n PROOF. We first observe that, by lennna 2.2 (b), T v = ng + v, and T v EV, 

for all n ~ 1. 

k ~ k * · k 
(a) Tyi - Tvi = ma~EL(i) {qi+ lj pij Yj - (vi+gi)} = maxkEL(i){b(v)i + 

l· P~. (y.-v.)} 
J 1.J J J 

Let k(i) achieve this maximum. Then applying lemma 2.1, part (a) to T: 
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< ) < )k(i) ', k(i) k(i) (y-v) . - (Ty-Tv . - b(v. + l.P .. ·(y.-v.) ~ b(v). + (y-v) min min i J iJ J J 1 max, 

for all i En. Hence O ~ -b(v)~(i) ~ lly-vlld < o(v), or b(v)~(i) = 0 
i i 

for i = 1, ••• ,N (cf. (3.4)). This proves part (a) for n = 1. 
n * k n k · . Next, observe that by T v = v·'+ ng ,b(v). = b(T v). for all. i and 

i i 

k E L(i). Hence, for all n,o(v) = o(Tnv) and the U(v)-operator and the 

U(Tnv)-operator coincide. Now assume that the assertion holds for one 

value of n. This implies using lemma 2.1 part (b): 

IITny-Tnvlld ~ lly-vlld < o(v) = o(Tnv), and invoking the induction 
. n+1 n+1 n n n n assumption: T y - T v = T(T y) - T(T v) = U(v)(T y-T v) = 

U(v)n+1(y-v), which proves the equality for n+1. 

(b) Since llx(A)-L(x)II d = Allx-L(x)II d ~ o(L(x)) for A E [O, 1 ], it follows 
~ n * ~ n from part (a) with v = L(x) that T x(A) - ng - L(x) = U(v) (x(A) -

_, n _, n _, 
L(x))= U(v) (A(x-L(x))) = ;,.U(v) (x-L(x)), the last equality following 

n ~ n * ~ from (3.5). Since, U(v) (x-L(x))= T x - ng - L(x), part (b) follows 

by letting n tend to infinity. 

(c) Since for O ~ A < o (v), II (v+Ap)-vll d < o (v), it follows from part (a) 
n * n and (3.5) that T (v+Ap) - (ng +v) = AU(v) p. The assertion follows 

again, by letting n tend to infinity. 

4. GEOMETRIC CONVERGENCE IN PHASE 2 AND PHASE 3. 

* 00 Thanks to lemma 2.2, part (d), the behaviour of {v(n)-ng }n= 1 for 

v(O) E Win phase 2 and phase 3 can be studied by considering the conver-
n 00 ~ . n * ~ gence of {T x - ng} for x E w. Since for x EV, x = T x - ng = L(x) 

n=l 
for all n = 1,2, ••• we can in general restrict ourselves to (cf. lemma 2.2 

part (h)): 

w* = W\V = {x E W I 11;(0,x)II d = llx-I(x)II d > O} 

Since ll;(n,x)lld is monotonically non-increasing (cf. lemma 2.2 part (e)) 

we will consider for n = 1,2, ••• then-step contraction factor f (x), 
n 

defined by: 
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( 4. 1) 
ll';(n,x) II d n * •~ n n~ 

f (x) 
II T x-ng ..:.L(x) II d II T x-T L (x) II d for X € w = = = 

n Ke(O,x)II d II x-L(x) II d llx-I(x)II d 
, 

0 for X € V 

the last equality following from parts (b) and (g) of lemma 2.2. 

Observe using lemma 2.2 part (e) that o ~ fn+l(x) ~ fn(x) ~ 1 for all 

n = 1,2, ••• and that for fixed n, f (x) is a continuous function on w* 
n 

(cf. lemma 2. 1 part (d)). We now prove our main result: 

THEOREM 4. 1 • Ther~ exists an integer M ~ 1 such that fM (x) < 1 , for every 
X € W. 

PROOF. Define: 

w*A = {x € w* e(o,x) > 0 and ;(o,x) . ~ 0 } max min 

w* = {x E w* ;(o,x) = 0 and ;(o,x) . < 0} 
B max min 

Note, using (2. 15) that w* = w: u w; . Define for x E w* Sn (x) = 

{il;(n,x). = ;(o,x) }. It follows from lemma 2.1 part (g) that: i max 

( 4 • 2) Sn+ 1 (x) = {ii there exists an alternative k € L(i,L(x)), such that 
k 

Note 

u 
V€V 

p •. = 1} 
iJ 

For any v € V define the set of pure policies SP(v) = X~_ 1L(i,v). 

that there exists a finite sequence {v(l) , ••• ,v(R)} suchi~hat 

SP(v)= ui=tSP(v(l)). 

· (k) N Let {n ; k = 1, ••• ,2 -1} be the finite collection of non-empty 

subsets of n, and define the following partition of w;. 

w;,m = {x € w; I SP(L(x)) = SP(v(l)),So(x) = n(m)},l = 1, ••• ,R;m= 
N 

1, ..• ,2 -1. 

Finally let I(x) = inf {n I n;(n,x)lld < 11;(0,x)lld}, which is finite, for 

x € w*, since lim ;(n,x) = O. n-+oo 
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In part I) below we show sup w* I(x) 
xe: A 

N 
< 2 -I and in part II) 

sup * xe:W 0 -L,m 
I(x) < 00 for fixed 1 ~ l ~Rand ~ m ~ ZN - 1, which together 

imply the theorem: 

I) * Since lim e (n,x) = 0, for each x e: WA let I 0 (x) be the smallest n~ max 
integer such that Sn(x) is empty for n ~ I 0 (x). 

Now, 11;(I0 (x),x)lld < n;(O,x)lld. In addition, in the sequence 

· {S0 (x), ••• ,SI (x)-l} no two members can be equal since using (4.2) 
0 

this would imply that S (x) is non-empty for all n ~ 1. 
N n N 

Hence I 0 (x) ~ 2 - 1 since there are only 2 - 1 distinct non-empty 

subsets of n. 
II) Fix x0 e: wi m· Due to (3.1) and (3.2) there exists an integer N1 such 

~ 'o - ~ o 

(4. 3) 

(4 .4) 

that e(n+l ,x ) . - [P(f ) ••• P(f +l)e(n1 ,x ) J. for i = 1, •• _.,N; 
i n n 1 i 

. (l) 
n ~ n1+t where f , ••• ,f 1 e: SP(v ). Define I 1 as follows: 

n n 1+ 

· ~ 0 ~ 0 - 0 
0 ~ ·e(n,x ) . > e(n1 ,x ) } if S (x ) 1' n. 

min n1 

otherwise 

Then in both cases I 1 is finite, since n 1 is finite and 
~ 0 lim e(n,x) . = O. In addition, we shall prove for both cases: n~ min 

Ije:S (xo) [P(fll) ••• P(nl)Jij > o, for all i e: n. 
nl 

(4.3) trivially holds if S (xO) = n, and for the other case we have 
n1 

~ 0 ~ 0 -e(I 1,x) . ~ e(n1,x ), if (4.3) does not hold. This contradicts the 
min l 

definition of I 1. Next fix for r = I, ••• ,n1+I, fr e: SP(v( )) such 

·that 

the existence of which follows from S (xO) 
n1 

0 in combination with len:nna 2.1 part (g). 

1' ~ in view of ; (O,x) = max 

Now observe that for all x e: w: we have b(L(x),f) = O for 
-L,m n 
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since f E SP(v(l)) = SP(L(x)). Hence, using (3.1), (3.2) 
n 

arid (4,l~) ;(I 1,x) 2::: l· n S () [P(fI ) ... P(f 1)J .. 
J E,.- 0 X l 1J 

* This implies that for all x E wl,m : I(x) < I 1• □ 

n *. oo 
In order to prove the geometric convergence of {T x-ng }n==l' we 

define: 

(4 .5) h (x)= 
Ill 

sup 
n=O, I , ••• 

n f (T x), 
m 

XE W and m = 0,1, ••• 

which has the following easily verified properties: 

(4.6) * hm(x) = hm(x+c 1g +c2_!), for all scalars c 1 ,c2; x E W; m =O, 1, ••.•. 

0 ~ h 1(x) ~ h (x) ~ 1, x E W; m = 0,1, ••• m+ m 
r ~ 

h (T x) ~ h (x), x E W; m,r = 0,1, ••• 
rn m 

THEOREM 4.2. (Geometric convergence result). 

(a) h (x) < l for aU m 2::: M and x E W. 
m 

(b) 11;(nM+r,x)ll 00 ~ II ;(nM+r,~)lld ~ [hM(x)Jnll;.'(o,x)lld for n = 0,1,2, ••• ; 

r = 0 , 1 , .••• ; M- l and x E W. 
n * oo Hence the convergence of {T x-ng} is geometric for aU x E W. 

n=l 

PROOF. 

(a) Suppose to the contrary that hM(x) = l for some x E W. It then follows 

from (4.:1) and lemma 2.2 part (b), 
j oo n· * oo subsequence {x }. 1={T Jx-n.g }. 1 J= J J= 

Using lermna 2.1 part (f), it easily 

that x E w; and that there exists a 

such that lim. f (xj) = J. 
J-+q, M . 

follows that xJ E W with L(xJ) = 

L(x) and llxj-L(x)II > 0 for all j = 1,2, ••• 
. d . 

Put xJ = L(x) + ~J. Since for j large enough, llxJ-L(x)lld < o(L(x)), we 

have using lemma 3.2 part (a), for all n 2::: 1: 

Tn(xj) = L(x) + ng* + U(L(x))n(~j), and lim U(L(x))n(~j) = 0 for J 
n-+<» 

sufficiently large. Hence, 
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= 

lim. 
J"?<lO 

For any v EV, define Y(v)={y E EN llylld = and lim U(v)ny=O}, and n~ 

(4. 7) {
sup Y( ) II U(v)nyll d 

r (v) = YE V 
n 

0 

if Y(v) 'f 0 

otherwise 

Observing with the help of (3.3) that ~j /II ~jll d E Y(L(x)), j = I ,2, ••• 

and recalling that r (v) $ I, n = 1,2, ••• and v EV (cf. lemma 2.1 
n ~ 

part (b)), we conclude that rM(L(x)) = I. 

Observe by lemma 2.1 part (e) that Y(v) is closed for any v EV. 

In addition Y(v) is bounded since for any y E Y(v),y ~ 0 ~ y. max min 
as a result of lemma 2.2 part (e) being applied to the U(v)-operator, 

and hence llyll 00 $ llylld = I for any y E Y(v) (cf.(2.9)). 

We conclude that in (4.7) the supremum is taken of a continuous func

tion (cf. lemma 2.1 part (d)) over a compact set, and this implies 
0 ~ ~ M 0 the existence of a vector y E Y(L(x)) with llu(L(x)) y lld = I. 

Invoking lemma 3.2 part (c) we find that l(x) + AYO E w: for 
,-..,J ,..._,,...,,, 0 r,.J 

0 <A< o(L(x)) with L(L(x) + AY) = L(x). Next using lemma 3.2 part 

(a) and (3.3): 

~ 0 I M~ 0 M~ I ~ M 0 
fM(L(x)+Ay) =I IIT (L(x)+Ay )-T (L(x))Hd =I IIU(L(x)) (Ay )lld = 1, 

thus contradicting th. 4.1. 

(b) Fix x E W,n = 0,1, ••• and I$ r $ M: 

The first inequality follows from part (c) of lemma 2.2 and (2.9). 

If ll';(nM+r,x)Hd = O, we trivially have: 



(4 .8) 

Next assume ll;(nM+r,x)lld > 0. Then 

ll;'(nM+M+r,x)II d 

n;(tiM+r,x)II d 

the last inequality following from (4.6). 

This proves the second inequality in part (b) for all x E W,n = 0,1, ••• 

and r = 1, ••• ,M. D 
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Th.4.2 in combination with lemma 2.2 part (d) establish the geometric 

convergence result for all x E W. If x / W, then certain subsequences of 

the type: 

(4.9) nJ+r * oo 
{Q x - (nJ+r)g }n=l;J = 2,3, ••• and r = O, ••• ,J-1 

will converge. We refer to th. 5.8 of [18] for a characterization of the 

integers J ~ for which convergence occurs. Fix J = 2,3, ••• and note that: 

(cf. section 4 in [18]): 

(4. 10) 
J ~s where = P . . x.} Q x. 

l. maxsEK(i) {q~ + 
l. l-

J l.J J 

K(i) 
] J ] J 

Sp} = {(f , ••• ,f) f ' ••• 'f E 

~s < i + P(f1)q(f2). i J-1 J q. = q f ). + ••• + P(f ) ••• P(f )q(f )., 
l. l. l. l. 

~s P •. 
l.J 

] J 
=P(f) ... P(f) .. ; 

l.J 

i En, s = (f 1 , .•• ,fJ) E K(i) 

~ i,j ~ N ands ] J ~ 
= (f , ••• ,£) E K(i). 

Let Q = QJ, and define a related "J-step"-MDP, denoted by a tilde, with 

Q as its state space, K(i) as the ~init~ set of alternatives in state 

i En, q~ as the one-step expexted reward and P~. as the transition proba-
1. ~ ~ 

bility to state j, when alternatives E K(i) is chosen when entering state 1.. 

~* * Recalling from th. 4.1 part (a) in [18] that g = Jg we obtain in 
nJ+r * 00 ':::'TI. r ~* oo * view of {Q x-(nJ+r)g }n=I = {Q [Q x]-ng }n=l - rg and by applying the 
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above analysis to the J-step MOP, the fol1owing generalization of the geo

metric convergence result. 

COROLLARY 4.3. Fix J = 1,2, .•• and r = o, ... ,J-1. 

If limn-+<» QnJ+rx - (nJ+r)g* exists, then the approach to the limit exhibits 

a geometric rote of convergence. □ 

* * REMARK 2.: Assume g = <g > 1 so Q = T and consider White's iterative scheme 

for solving MDP's (cf. [22]). Define: 

y(n)i = v(n)i - v(n)N, 1 = 1, ••• ,N; 

and verify that 

y(n+l) = Qy(n) - [Qy(n)N]l 

Then if v(O) E W = W: 
(a) lim y(n). = L(v(O)). - L(v(O))N n-+<» l. i. 

(b) [Qy(n) - y(n)]max = [v(n+l) - v(n)]max 

(c) [Qy(n) - y(n)]min = [v(n+l) - v(n)]min 

* + g 

* t g 

n ➔ 00 (cf. ODONI [12], th.l). 

(cf. ODONI 12 , th.l). 

It follows from th. 4.2 that the convergence in (a), (b) and (c) is geometric 

since I y(nM+r)i - L(v(O))i - L(v(O) >NI ~ lle(nM+r,v(O))lld ~ 

[hMv(O)Jn lle(O,v(O))lld. 

5. THE SIZE OF M 

In this section we restrict ourselves to MDP's that satisfy the 

condition: 

(Ht): there exists a f 0 E SRMG that is aperiodic and has R* as its single 

subchain. 

In [17] we proved that (Ht) is satisfied e.g. if all the tpm's of the 

pure maximal gain policies are unichained, whereas the greatest connnon 

divisor of their periods equals 1. 

Fix v E V; we first observe that the policy f*, defined by: 

(5. l) i € Q 
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is one of the policies with the properties menti~ned in (HI). 
. ( * * * Using 2.8) one first observes that f € SRMG hence R(f) .s R. 

Due to (HI) all states of R* communicate with each other under P(f0 ) and 

since for all i € R*,fk > 0 implies by (2.8) k € L(i) and b(v)~ = 0, hence 
1 · 1 

f7k > 0 they communicate with each other under P(f*). Hence P(f*) is 
1 . 

aperiodic and has R* as its single subchain. 

Lemma 5.1 below gives some implications with respect to the chain

and periodicity structure that result from (HI). 

LEMMA 5.1. Suppose Cl holds. Then: 

( ) * * • . (.) (") -,-, d a g = <g >~, 1.e. K 1 = L 1 for avv i € n, an Qx = Tx for all N 
X € E • 

(b) v EV is unique up to a rrrultiple of 1. 

(c) For all i € n, and k € K(i), b(v)~ i-; ind,ependent of v € v. 
l. 

~ N (d) W = W = E . 

(e) 

(f) 

If v € V, i € R* and b(v)~ = 0 
i N 

For any bounded subset B c E: 

k * then P. . > 0 only if j € R • 
1J 

sup Bf (x) < 1 (where Mis 
X€ M 

defined as in 

th. 4. 1) • 

PROOF. Parts (a) and (b) follow from th. 3.2 parts (c) and (e) and remark 

2 in [17]. Part (c) follows from (2.6) and part (b); part (d) is proven in 

[18]. To show part (e), suppose there exists (i,j,k) with 
k k * * b(v). = 0 for v € V and P .. > 0. Then f.k > 0 and P(f ) .. 
1 1J * * 1 1J 

contradicting the fact that R(f) = R. 

. * . .J * 1ER,J1tR, 
* k 

~ f.kp .. > 0 1 1J 

(f): Assume to the contrary that for some bounded·subset 
N 

B c E, supx€B fM(x) = 1. Considering the definition of fn(x)(n ~ 1) 

* we assume without loss of generality that B c W . Then there exists a 

sequence {x~}j=I' with xj EB such that limj-+<x>xJ = c E W (say) and 

lim. fM(xJ) = I. 
J-+-

* The case c € W leads 

in view of th. 4.1 and the 

The remaining case has c € 

to the contradiction l = lim. 

continui~y of_fM(·) _on w*. 
J--

V. Put xJ=L(xJ) + ~J. Following 

th. 4.2 part (a) we obtain for j sufficiently large: 

n j * n j n j T (x )=v+ng +U(v) ~ and so lim U(v) [~] n-+<x> 

the proof of 
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Since it follows from part (b) that L(xj) - vis a multiple of 1 we 

obtain: 

where 

yj = (~j+v-f_(xj))/ll~jlld E Y(v). The remainder of the proof is completely 

analoguous to that of th. 4.2 part (a). D 

We next derive (for MDP's satisfying (HI)) an upperbound for M the 
number of steps needed for contraction: 

First define: 

(5. 1) I * n y = min{n ~ N P(f ) .. > O, 
iJ 

for all i = 1, ••• ,N, . R*} J E 

Clearly y < 00 , since lim P(f*)~. > 0 for all i = 1, ••• ,N and j ER*. 
n-+oo iJ 

Note that P(f*)~. > 0 for all i En, j ER* and m ~ Y, since form~ y 
* m _ l.N i J * m-y * y * 

P(f ) .. - k lP(f ).k. P(f )k. > 0 for all i E n,j ER. iJ . = i J 

2 THEOREM 5.2. If (HI) holds then M ~ N - 2N + 2, (where Mis defined as 

the smallest integer satisfying the condition of th.4.1.). 

PROOF. We will first show that y ~ N2 - 2N + 2. Assume that R~ R(f*) contains 
i 

N + k ~ 1 states. Then it follows from th. 2.8 of [17] that P(f*)~. > 0 for 
2 iJ 

n ~ n1-k) -2(N-k) + 2 and i,j ER*. In addition for any i E Q-R*, there 

exists a path {t0 = i,t1, •.. ,tm} such that P(f*)t_e,tf+l > 0 for .t = 0, •.. , 

m-1 and t ER*, where without loss of gener~lity t 1, ..• ,t are all taken 
m m 

to be distinct. Hence m ~ k and l.tER* P(f*)~.e_ > 0 for all i E Q, 
. . l' h (f*)n ' ( *)k ( *)n-k O 1 . · * This imp ies tat P .. ~ Lo R* Pf . 0 P f 0 • > for al i En, J ER 

2 iJ -I.-€ ' i-1.- 2 -1.-J 2 
and n ~ N - 2N + 2 (verify that k + (N-k) - 2(N-k) + 2 ~ N - 2N + 2 in 

view of the quadratic form (3-2N) k + k2 being nonpositive fork= O, .•• ,N-1). 

Next we fix x E w*. Let L(x) = * v and define: 

X(m)={iEnl (Tmx-Tmv*).= (x-v*) }; m=0,1,2, ••• 
1. max 

I m m * * Y(m)={iEQ (T x-T v ).= (x-v). }; m=0,1,2, .•• i min 
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12 
We will prove that M $ y and hence M $ N - 2N + 2, by showing that.the 

* * assumption M > y implies (a) Y(O) 2 R and (b) X(O) n R 'f 0, hence 

X(O) n Y(O) ,;. 0 contradicting x E w*, i.e. llx-v*II d > O. Assume now y < M. 

Then X(m) 1 ~ # Y(m) for O $ m $ y. Fix m $ y, and i E Y(m). Observe using 

part (h) of lemma 2.1, that for any k E L(i,v*) P~. > 0 only if j E Y(m-1). 
l.J 

Using the definition off*, we conclude that P(f*) .. > 0 only if j E Y(m-1). 
. l.J 

Proceeding by induction, and invoking the definition of y we obtain for 

i E Y(y): R* s {j I P(f*)ij > O} ~Y(O). 

The nested sequence X(N); X(N) UX(N-1); ••• ; U~=OX(i) cannot exhibit 

strict growth since there are only N states, hence there exists am$ N -

such that X(m) c S = u1=m+lX(l). Accordingly define a policy h in the 

following way: 

(a) for i ·E Q-S, define h(i) = k for some k E L(i,v*) 

(b) for i ES, choose an index l(m+l $ l $ N) such that i E X(l), and define 

h(i) = k for any k E L(i,v*) such that P~. > 0 only if j E X(l-1), the 
l.J 

existence of such an alternative k being guaranteed by part (g) of 

leillllla 2.1, and the fact that L(i,Tlv*) = L(i,v*). 

It clearly follows from (2.6) that h E SPMG; in addition S contains a 

subchain of P(h) since it follows from X(m) c S, that Sis closed under 

P(h). Hence, Sn R* f ~, or there exists an index r, such that X(r) n R* f ~ 
Accor:clingly fix i E X(r) n R*. Then, again applying part (g) of leillllla 2.1 

. * k we obtain the existence of an alternative k E L(i,v) such that P .. > 0 
l.J 

only for j E X(r-1). 

In addition, since i ER* and k E L(i,v*) it follows from lemma 5.1 
k * * part (e) that P .. > 0 only for J ER. Hence X(r) n R 1 0 
l.J 

X(r-1) n R* f 0 and proceeding by induction we obtain X(O) 

This together with Y(O) 2 R* implies X(O) n Y(O) f ~, i.e. 

* thus contradicting x ~ W. □ 
2 The following example shows that M = 0 (N ) may occur. 

implies 

n R* f 0. 
llx-L(x)II d= 0 
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Example 2: 

k 
k k k k k k 

l. q. pil pi2 pi3 PiN-1 piN l. 

1 0 0 

2 0 0 0 K(i) = { l }for i 7 N - 2· 
' 1 

K(N-2)={1,2};P. ·+i=l for 

i N -
k i 1. 

:,; 2;q. = 0 for 
l. 

-2 0 all i,k; hence * 0 g = 

-2 2 0 and K(i) = L(i) for 

-1 0 ½ ½ all l. E Q. 

N 0 

Let fk(k=l,2) denote the pure policy that chooses alternative kin 

state N-2. Observe that (HI) holds since P(f 1) and P(f2) ci.re unichained with 

P(f 1) aperiodic. Consider x, with xi= 0 for 1. -I- N-1 and xN-l:= I. 

Clearly [T·J(N-l)x]N = [P(f 2)(J-l)(N-l)P(f 1)N-lx]N = I, for J = !,'.?, ••• 

Observe that whatever decisions are taken when entering state N-2, the 

only states j that can be reached from state 1, after J(N-1) steps are 
( < ) [ (N-3) (N-1) J j = 1, ... ,J+I J_N-1 . Hence T x 1 = 0. 

Note, using lemma 5.1, parts (b) and (c) that x E w* with L(x) = \I 

for some scalar\. Hence, ttr(N-l)(N-J)x-L(x)lld = [T(N-l)(N-J)x]N 

[T(N-l)(N-J)xJ 1 =I= llx-L(x)lld, and M:::: (N-3)(N-l). 

REMARK 3. 
2 

The upperbound N - 2N + 2 for the number of iterations needed 

for contraction is enormously high, compared with the empirical fact 

that in most cases M = 1 or 2. For example SU [20] and TIJMS [21] have 

solved up to 1000-state problems with good convergence after JO - 100 value 

iterations. In addition if P(f*) has at least one positive diagonal entry, 

it may be shown that the upperbound for M becomes linear in N. 

Since it was shown in [8] that in this case y:,; 2N - r - l, where r ~ is 

* the number of positive diagonal entries of P(f) the result M = 0(2N) 

again follows from the proof of th.5.2. 

In SCHWEITZER [6] a data-transformation was introduced which turns every 

MOP into an equivalent one in which all of the diagonal elements of the 
n * oo tpm 1 s are positive thus ensuring convergence of {Q x - ng }n=l' for all 

N x EE . By the above analysis it follows that thanks to this transforma-



tion, M the number of steps needed for co~traction, is in addition bounded 

by N-1. Finally in case SP consists of·a single unichained and aperiodic 

policy, we have M ~ ½N(N-1) as a result of the following argument: 

We know (cf. th.4.4 on pp. 89 of [19]) that any aperiodic and ·unichained 

policy f, has P(f)n sc~arribling for all n ~ ½N(N-1), i.e. 

min .. l· min[P(f)~ .;P(f)~ .] = ~ ·> 0 for all n ~ ½N(N-1). 
1 1' 1 2 J · 1 1J 1.2J 

One next verifies (cf. th.5 in C7J) that lle(n,x)Ud ~ (1-a.)lle(O,x)Hd 

for all x € EN and n ~ ½N(N-1). 

6. THE THIRD PHASE; THE ULTIMATE CONVERGENCE RATE 

In this section we analyze the ultimate convergence rate or average 

contraction factor per step which is defined as the limit as n tends to 

infinity of: 

["0(n,x)lld 

. II'~ ( n- I , x) II d 

0 

ll;(n-1,x)II d. 

II ; ( n-2, x) II d 

~ 1/n 
II : ( I , x) II d] , 

II e(o,x)II d 

if ll';{n-1 ,x) II d>O 

otherwise 
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n Note that f (x) may be interpreted as the (geometric) mean n-step contrac-
n 

tion factor. In section 3 we observed that for n ~ n1(x) (cf. (3.1)) i.e. 

in the third phase, the sequence ie(n,x)}:=I satisfies the recursion 

equation: 

(6.2) e(n+l,x) = U(L(x))e(n,x), 

Thus, in order to characterize the ultimate convergence rate, the following 

two theorems give some properties of the U-operator and of the quantities 

r (v) ;v E V: 
n 

(6. I) 

where 
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First, define for all v EV, WU()= {y E EN I 
00 v_ n 

lim U(v)ny exists}, and n~ 
for ally E WU(v)' let U(v) y = limn-+ooU(v) y. 

THEOREM 6.1. 

(a) (Cf.th.4.1). There exists an integer M1 s 

and y E WU(v) with lly-U(v) 00ylld > O: 

N 
2 such that for au v E V 

IIU(v)Mly-U(v) 00ylld < lly-U(v) 00ylld 

Fix V E V, 

(b) If Y(v) f- (/J then r (v) = max Y() IIU(v)nylld; n = 1,2, ... 
n YE v N 00 

(c) IIU(v)M1ylld :s (I-P 1)11ylld, for aU y EE such that U(v) y = 0, where 

(6. 2) 1-p 1 = max rM (v) < I 
VEV I 

(d) 

(e) 

r (v) s r (v).r (v) for all m,n 
m+n m n I/ 

Define r*(v) = lim r (v) n Then 
n n--i,oc, 

* r (v) for all n = 0,1, •••• 

= 0,1,2, ••• 

r*(v) s (l-p 1) 1/Ml < I and rn(v) ~ 

PROOF. 

(a) Fix v EV and y E WU(v) and recall from lennna 2.2 part (e) that 
00 CO 

(y-U(v) y) . s O s (y-lJ(v) y) • Define for n = 1,2, .•• 
min max 

s = {i 
n 

and 

T = {i I U(v)n(y-U(v) 00y).=(y-U(v) 00y) . }. n 1 min 

Observe using the arguments in part I) of the proof of th.4.1 that 
N . oo S must be empty for n ~ 2 if (y-U(v) y) > 0. However, for the 

n max N 
U-operator the same arguments show that T must be empty for n ~ 2 

n 
CX) ' 

if (y-U(v) y) • < 0, as well. min 
(b) In the proof of th.4.1. part (b) we showed that the supremum in (4.6) 

is always achieved by some y0 E Y(v). 

(c) It follows from part (a) and (b) that rM1(v) < I for any v EV. 

Since there are only a finite number of distinct U(v)-operators, we 



have max vrM (v) < l, which proves '(6.2) and hence the remainder of 
VE J 

part (e). 

(d) For y E Y(v) with IIU(v)nylld=O, we have: 

(e) 

n+m o = IIU(v) ylld s r (v)r (v) m n 

while for y E Y(v), with IIU(v)nylld > 0: 

IIU(v)n+mylld = If U(v)m { U(v)ny l !! IIU(v)nylld s rm(v)rn(v) 

IIU(v)nylldf d 

n+m 
Hence I' (v) = max Y( )IIU(v) ylld s r (v)r (v). n+m yE v / m n 
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The existence of r*(v) = lim r (v) 1 n and the relation 
n-+<io n 

r* (v) ~; r (v) 1 /n for all n = l, 2, ••• follows from part (d) and a well-
n 

known theorem of KINGMAN (cf. e.g. [19], appendix A, th. A4). 

It follows from (6.2) that rM1(v) s 1-_p 1, and hence using part(d),that 

rnM1 (v) s (1-p 1)n. This implies: 

r~' (v) = lim n-+a> 
rnM (v)l/nM1 

1 
□ 

6 * . Th •• 2. below proves that for any x E W the ultimate average 

contraction factot per step is at worst r*(L(x)), so_that for all x e w*, 
the ultimate convergence rate is strictly bounded away from one. 

In addition, part (b) shows that for any fixed n, there are x E w* for 

which the average n-step contraction factor is at least equal to 
1/n 

max vr (v) . VE n 

THEOREM 6.2. 

(a) 

(b) 

. 1/n * ~ limsup f (x) s r (L(x)) for n"?<>> n 
sup ~ f (x)l/n ~ max r (v)l/n 

xEW n VEV n 

PROOF. 

* any x E W. 

* ~ max V r (v), for all n = VE 

(a) Fix x E Wand observe that by (4.1): 

f +m(x) -- f (Tnx-ng *) f (x). Fix n sufficiently large that 
n m n n * ~ ~ II T x-ng -·L(x) II d < o (L(x)). 

0, 1 , • . • • 
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(b) 

I 

Then' e1.ther Tn - ng* ~L() = x in which case f (x) = 0 for all m > n m -
and part (a) trivially holds, or otherwise we have, using lemma 3.1 
part (a) and (3.4): 
f ( n *) ~ m n * ~ . m T x-ng = U(L(x)) Y, where y = (T x-ng - L(x)) /II Tnx-ng* -l(x) II • 
H • ~ d ence, in the latter case f (x) $ r (L(x))f (x) or 

1/n+m n+m ml/ n ' 
limsup f (x) $ lim r (l(x)) m+n lim f (x)I/n+m = r*crc )) m-+oo n+m D}4<lO m ~ n x • 
Fixv. e: V. If Y(v) is empty then sup ~ f (x) 1 /n ~ r (v) 1 /n= r*( ) = o 

xe:W n n v 
holds trivially. 

Otherwise considering th. 6.1 part (b), take ye: Y(v) such that r (v) = 

IIU(v)nylld. Let x0= v + ).y with O <). < o(v). Then using lemma 3.2nparts 

(a) and (c) as well as (3.3), we have xO e: W, l(xO) = v and: 

fn(x0) = IIU(v)n().y)llafhylld = IIU(v)nylld/llylld = rn(v), or fn(xO)I/n = 

r (v)I/n from which the first inequality of part (b) follows 
n 

Tha second inequality is due to th. 6.1 part (e). D 

We conclude this section by observing that the upperbound 

(6. 3) 

for the ultimate convergence rate reduces in the special case where 

SPMG is a singleton, to the subdominant eigenvalue of the tpm of the 

maximal gain policy; and in this case the subdominant eigenvalue is 

known to provide a sharp upperbound for the convergence rate (cf. e.g. 

[ I I]) • 

7. THEN-STEP CONTRACTION FACTOR 

* Theorem 6.2 showed that max Vr (v) is at the same time an upperbound for 
VE 

the ultimate convergenee rate and a lower bound for the maximal average 

n-step contraction factor for all integers n = 1,2, •.•• 

The following example shows that whereas the ultimate convergence rate is 

strictly bounded away from one, this does not need to be the case for the 

average n-step contraction factor (whatever the choice of n = 1,2, •.• ). 

In other words we may have, for all n = 1,2, •.• : 



EXAMPLE 3: 

l. k 

SUJ?. f (x) = I. 
XE:W n 

k k k 
q. pil pi2 1. 

* 0 0 g = (O ,0) hence K(i) = L(i) for i = I , 2 
2 0 0 V = 0..1 I A arbitrary}. Take x = [O, Y]. 
2 2 -ii 0 

Observe that this MDP satisfies condition (HI) (cf. section 5); hence, 
~ N using lemma 5.1 part (d), we have W = E : 

Tnx = [0,max(O,Y-n)J 

II n * _, _, 
fn(x) = T x-ng -L(x)ll/llx-L(x)lld = 

ma.x (O,Y-n) 

y 

Letting Y tend to infinity one observes that sup w~ £ (x) = 1 for all 
XE n 

n= 1,2, •••• 

The following theorem gives under condition (HJ) the necessary and 

sufficient condition for the existence of a uniform (n-step) contraction 

factor (for some n ~ I) i.e. the existence of an integer M2, such that 

(7. 1) su:e. f (x) < I for n ~ M2 •· 
xEW n 

First define: 

(7. 2) 
,_ 
R = {i E Q I l. E R(f), 

and note that R * 2 R. We next introduce the condition: 

(HZ): There exists a randomized policy f E SR which has Ras its single 

subchain. 

31 
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THEOREM 7.1. Suppose condition (HI) holds. 

(a) The existence of a uniform n-step contraction factor some n ~ 

implies (H2). 

( ) ·th < 2 (b) (H2) => 7. 1 w1., M2 - N + 2. 

PROOF: Fix v EV. Due to lemma 5.1, parts (b) and (d) we have W 
N for all x EE, L(x) = v + cl for some scalar c. This implies 

N 
= E and 

w* = {x llx-vll d > 0} 

(a) Assume to the contrary that (H2) does not hold. State i is said to 

reach state j, if there exists a policy f ESP' and some integer r ~ 0, 

(7.3) 

r * such that P(f) .. > O. Let f be any randomized policy which has 
l.J 

fik > 0 for all i E n, k E K(i). We claim 

.... 
there exists a pair of states j 1, j 2 ER such that J 2 does not 

reach j 1• 

For assuming the contrary, would imply that all states in R connnunicate 

with each other under P(f*), i.e. either 

(1) RS Q\R(f*), or 

(2) 

(3) 

Risa strict subset of R(f*), or 
* .... P(f) has Ras a single subchain, 

with each of these three possiblities leading to a contradiction in 
.... 

view of the definition of R, and our assumption that (H2) does not hold. 

Fix a policy f 1 E Sp with j 1 E R(f 1) and let C be the subchain of 

P(f 1), which contains j 1 • Obviously j 2 does not reach any one of the 

states in C. Next choose x E EN such that x. =A>> 1 for i EC and x. = 
l. l. 

0(1) otherwise where 0(1) denotes any bounded term in A. Fix n ~ 1. 

Since 

and since C is a subchain of P(f 1), we have 

for i E C 
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Since j 2 cannot reach C, we have (Tnx)j = 0(1). Finally observing 
n n n 2 * that T v = 0(I), we have IIT x-T vii d = Jt + 0(I) whereas Ux-v II d = 

A+ 0(1) as well. Conclude that for all n = 1,2, ••• 

SU£ f (x) ~ lim 
xEW n )t"7<X> 

IITnx-Tnvlld 

llx-vU d 

= lim Jt +O ( I) = 

A "7<lD Jt +0 (I ) 

thus contradicting the prerequisite. 
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() {xa}00 exi"sts wi"th xa ~ w* b Assume to the contrary that a sequence a=l ~ 

(7 .4) 

(7 .5) 

(7 .6) 

and 

lim f (xa) = 
m 

2 for some m ~ N +2. 
a"7<X> 

a llna nll/ a II Due to part (b) of lennna 5.1 we have fn(x) = T x -T v d llx -v d" 

Hence for each a= 1,2, ••• f (xa) is unchanged by adding a multiple 
n 

of 1 to each xa. For the sake of notational simplicity we do this in 

such a way that: 

a a x - v ~ 0 and (x -v) . = O. min 

• a}oo We next restrict ourselves to a subsequence of {x a=l such that the 

same m-step policy ~=(f 1, ••• ,fm) with f 1, ••• ,fm ESP' achieves Tn(xa) 

for all xa in the subsequence and all n ~ m, i.e. 

~ a = q + p X 
n n 

for all x0 in the subsequence and n ~ m, 

q = q(f )+P(f )q(f 1) 
n n n n-

~ p 
n = P(fn) ••• P(f 1) 

Observe that the existence of this subsequence is guaranteed by the 

fact that there 

Using lennna 5. 1 

hence it follows 

Next define: 

is only a finite number 

part (f), (7.4) implies 

from (7.5) that lim 
U"7<X> 

of m-step policies. 

that {x0 }:=l is unbounded; 

llx0 -vll = lim (xa-v) = 00 

d a-+<x> max 
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(7. 7) 

(7.8) 

(7.9) 

a a a X -v X -v y = = 
llx0 -vll d 

a (x -v) max 

Observe 0 $ y~ $ I for all i € 
l a . aoo 

Q and ly lld =I.Since {y- }a=I, is i 
bounded we henceforth restrict ourselves to a further subsequence 

(say). It then follows from (7.4) that: which has 1 · a ima-+<x> y * = y 

a ~ ~ a n a = lim f (x) = lim llq + P x -T vlld/(x -v) n n n max a-+<x> a-+<><> 
~ a ~ a [P (x -v) -[P (x -v)] . +0(1) 

n max n min 
= lim ----------------

a~ (x0 -v) 
max 

=[Py*] - [P y*J . for all n $ m. 
n max n min 

-* Since O $ y -s; I for all i E Q this implies that 

[P y*J = I; [P y*J = 0 
n max n min for all n $ m. 

Recalling (7.6) we obtain: 

= 

Tn(xa) = ~q + ~p xa { (h) ( ) ( ) = max(h h) q +Ph q h -I+ ••• + n n J, ••• , n n n n 

Dividing this equality by (x0 -v*) , and letting a tend to infinity, max 
we obtain: 

~ * * [Py].= max(h h )[P(h ) ••• P(h 1)y ]., n i 1, ••• , n n i 
for all i E r.i, 

We shall prove that 

(7. 10) ~ * * Py . = [P(f ) ..• P(f 1)y ]. = 0 
n i n i 

for all i ER* and 

n = 0,1, ••. ,2N. 



' 
Assume to the contrary that there exists 

* fP(f ) ••• P(f 1)y ]. = 0 for some n $ 2N. 

. * a state Jo€ R such that 
. * * 

n JO 
is the single subchain of P(f*) and recall from th.5.2 that 

* N2-2N+2 
P(f )ti > 0 for all t € Q, and i c R*. Then csing (7.9): 

Fix f € SRMG such that R 

* [P(f ) ••• P(f 1)y ]. > 0 
n Jo 

for all i € Q contradicting (7.8). 

Define S = {i I Py~= y* = 1}. It follows from (7.8) that S is n ni max n 
non-empty for n $ m. Using the same arguments as were used in the 
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proof of th.5.2 with respect to the sets X(n), we obtain that there 

is a k $ N - 1 such that S(k) .s S = U~=k+l S(l) with S being a closed 

subset, i.e. containing a subchain of some policy. In other words, 
.... 
R intersects S(r) for some r(k$r$N) . 

.... 
Finally, let f be a policy that has Ras its single subchain. Fix 
. * .... .... 
1 c R ,S R; since all states in R communicate with each other under 

P(f) there exists an integer t $ 
~ * \ Hence [Pt+ y ]. ~ L· S() r i J€ r 

(7.10) since t + r $ 2N. 

- t P(f) .. 
1J 

□ 

.... t 
N such that l· S() P(f) .. > O. J€ r iJ 
[Py*]. > O, thus contradicting 

r J 

We conclude this section by observing that under (HI), a number of 

equivalent formulations for (H2) can be obtained, e.g.: 

(7.11) 

or 

(7.12) 

No policy f € Sp has a subchain within Q\R* which cannot be 

reached from R*, i.e. if Sis a subchain of some policy fo, 

with S ~ Q\R* then there exists a policy h such that 

l n . S P(h) .. > 0 for some n $ N. 
J€ 1J 

.... 
Risa communicating system (cf. BATHER [1]). 
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We refer to [6] for the proofs of these equivalences and for a more detail

ed investigation of the underlying structure. Note that the combination 

of (HI) and (H2) is trivially satisfied in the unichain case .. 

Observe finally that in example 3, R = {1,2} and that no policy has 

Ras its single subchain. 
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