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ABSTRACT

This paper considers undiscounted Markov Decision Problems. With no
restriction (on either the periodicity - or chain structure of the problem)
we show that the value iteration method for finding maximal gain policies,
exhibits a geometric rate of convergence, whenever convergence occurs.

In addition, we study the behaviour of the value-iteration operator; we give
bounds for the number of steps needed for contraction, describe the ultimate
behaviour of the convergence factor and give conditions for the existence

of a uniform convergence rate.
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1. INTRODUCTION AND SUMMARY

The value-iteration equations for undiscounted Markov Decision Processes

(MDP's) were first studied by BELLMAN [2] and HOWARD [9]:
(1.1.) v(n+1)i = Qv(n)i, i=1,...N

where the value-iteration operator Q is defined by:

Xk N

(1.2.) Qxi = maxkeK(i) {qi + jZ] P?jv(n)%, i=1,...,N; x e EN.
and with v(0) a given N-vector. K(i) denotes the finite set of alternatives
in state i,q? the one-step expected reward and P?j the transition probabili-
ty to state j when alternative k € K(i) is chosen in state i (i = 1,...,N).
For all n=1,2,... and i ¢ @ = {1,...,N} , V(n)i denotes the maximal total
expected reward for a planning horizon of n epochs obtained when ending up
at state j.

BROWN [ 3] showed that{v(n)-ng*}z=1 is uniformly bounded in n, provided
g * is taken as the maximal gain rate vector. In [18] we proved the

existence of an integer J such that
. *
(1.3.) u(r) = 11mn_)co [v(nJ+r) - (nJ+r)g ]

exists for all v(0) e EN and r = 0,...,J-1. (Previous proofsin[3] and [10]
are both incorrect or incomplete.)
In general {v(n)-ng*}:=] may fail to converge for arbitrary v(0) if

some of the transition probability matrices (tpm's) are periodic i.e. J > 2

o

. . .. *
can occur. Sufficient conditions for the convergence of {v(n)-ng }n-l for

all v(0) € EN, were obtained by BATHER [ 1], LANERY [10], SCHWEITZER [14,15]
and WHITE [22], while the necessary and sufficient condition was recently
obtained in [18]. While the result in [18] settles the issue if one demands

existence of lim {v(n)—ng*}:= for every v(0) € EN, it should be noted

N>

1
that {v(n)—ng*} -1 always converges for v(0) belonging to some non-empty

closed set W ¢ E° (cf. lemma 2.2).



In this paper we return to the issue of the rate of convergence.

Our main result (th.4.2) is the fact that if 1imn+wv(n)—ng* exists, then the
approach to the limit is geometric. Consequently this result shows that the
value—iteration method for locating maximal gain policies (cf. [12],[14] and
22]) exhibits a geometric rate of convergence. This result is of particular
importance to the case N >> | where this value-iteration method is the only
feasible one for finding maximal gain policies.

This generalization of White's result (cf. [22] to the general multi-
chain case is remarkable since the property of geometric convergence holds
in spite of the fact that the operator Q is mever a contraction mapping or
a J-step contraction mapping for any J = 1,2,... (cf. DENARDO [4] and [7])

with respect to any norm on EN. Note e.g. that for all x ¢ EN and scalars c:
(1.4.) Q(x+cl) =Qx +cl, with 1 the N-vector of omes.

In addition, and even more remarkably, the Q-operator, does not need to be
(J-step) contracting (for any J21) with respect to the following pseudo-

norm either (cf. [1]):

(1.5.) "x“d i SN P x e E
with X oy - WX, X and x . = mini X;, the use of which is suggested by
the very property (1.4.) (cf. BATHER [1]).

Indeed although we find a convergence rate (or ultimate average con-—
traction factor per step) which is strictly bounded away from one on W, the
average contraction factor per step may initially be very close to one;
and in general there does not exist an integer n 2 1 such that the n-step
contraction factor is strictly bounded away from 1 (cf. section 7).

One should point out that the geometric convergence result holds for
all v(0) ¢ W, with no restrictions imposed on e.g. - the chain - and period-
icity structure. In addition if v(0) is such that (1.3.) holds with J = 2
the same th.4.2 applied to a related "J-step" decision process shows that
the approach to the limit in (1.2.) will be geometric for each r = 0,...,J-1

as well.



In section 2 we give the notation and preliminaries. In section 3 we
study the evolution of the Q-operator. The geometric convergence result is
obtained in section 4. In section 5 we give some additional properties for
MDP's satisfying condition (H!) to be stated below; in particular, we show
that the number of steps needed for contraction is bounded by a quadratic
function in N. 1In section 6 we characterize the ultimate behaviour of the
Q-operator and of the average contraction factor per step. In section 7,
finally, we derive for MDP's satisfying (H1) the necessary and sufficient -
condition for the existence of a uniform n-step contraction factor (for some
n=1)-i.,e. a n-step contraction factor which is strictly bounded away from
one on W.

We refer to [7] for some necessary and some sufficient conditiomns for

the Q-operator to be contracting with respect to the H—Hd norm.
2. NOTATION AND PRELIMINARIES

A (stationary) randomized policy is a tableau [fik] satisfying fik >0

- _ . q s th . .
and ZkeK(i) fik =1 (fik denotes the probability that the k  alternative 1s

chosen when entering state 1i).

We let SR denote the set of all randomized policies, and SP the subset

of all pure (non-randomized) policies, i.e; for f € SP’ each fik =0 or 1.

For f € SP’ we use the notation f(i) = k, where k denotes the single alter-

native used in state i. Associated with each f ¢ SR’ are the N-component
"reward" vector q(f) and the N x N matrix P(f):

: k .
q(f); = ) £ 95 i=1,...,N
keK (i)
(2.1)
k
P(f).,. = ) £, P.., i=1,...,N; j=1,...,N.
1] keK (i) ik 1]

Note that P(f) is a stochastic matrix, for any f ¢ SR’ and define the

stochastic matrix N(f) as the Cesaro limit of the sequence’{Pn(f)};;1

Define the maximal-gain rate vector g*:

(2.2) g¥ - sup WHqE),,  1i=1,...,N.

feSR

He



DERMAN [5] proved that there exists a pure policy that achieves the N su-

prema in (2.2) simultaneously. In addition Howard's Policy Iteration
N Pk * %

=1 i%5 T B
ieQ, k € K(1) satisfy: :

Algorithm (cf. [9]) showed that the quantities a? =)

(2.3) max a, =0 ,i=1,...,N,
keK (1)

as well as the existence of vectors v satisfying the optimality equation:
(2.4) v? = max {q?—g;+z P?.vf}, i=1,...,N, where
" keL(i) j

L@) = {k e K(i)lali‘ =0}, i=1,...,N.

Accordingly define SPMG and SRMG as the set of pure and randomized maximal-

gain policies i.e.

*

2]
1l

{f € 8o | ¢ N(f)q(f)} and

PMG

S

*
e = 1Eesy |8

n(£)q(f)}

Let R(f) = {j € @ ] H(f)jj >0 } i.e. R(f) is the set of recurrent states

for P(f), and define R* = Up g  R(D).
RMG

In th,3.2, of [17] we proved that

*
(2.5) R" =U R(f).
feSPMG

and that there exists f ¢ SRMG with R(f) = R*. Let V denote the non-empty

solution set to the optimality equation (2.4). Observe that if v ¢ V then

v + cll + czg* € V for all scalars ¢;sCy. For any v e EN, define

3 ie Q,k e K(1)

N
k k * k
= -g. + P..v. - v,
(2.6) b(v)i a3 8; jZ] lJvJ V;

and



and
g = k - - *  w— 1
b(v,f)i = ZkeK(i) fikb(v)i [q(£) g + P(H)v V]i,l € Q,f € SR.

Note that maxkéL(i)b(v)E = 0 for every i ¢ Q, if and only if v ¢ V. As a

consequence we define for any v e V:

(2.7) L(i,v) = {t e LE) | bW E =max  b)¥ = 0},
Y keL(i) L

In th.3.1. part (e) of [17] we established the following characterization

of SRMG:
(2.8) Fix v € V. Let f € SR; then f ¢ SRMG if and only if:
fik > 0 implies k € L(i,v) for all i € R(f) and k e L(i)
for all i € Q\R(f).
In addition to the pseudo-norm | "d (cef.(1-5)) we will use the norm

. Note that

Il = max,|x.
o 1 1

N
. | ;
(2.9) X .o < 0 < X oy ='lx“m < "X"d’ x e E .
. . N
Finally, define for x € E :
(2.10) % = {min{x. ! x. >0, 1 e Q} if x >0
i i max
0 otherwise
x = {max{x. | x. > 0,i € Q} ifx. <0
i i min
0 otherwise

Lemma 2,1, below enumerates a number of elementary properties of the Q-oper-
ator that will be needed in the remainder. First, let Qn denote the n—-fold

application of the operator:

Q"x = Q(Qn_]x); n=1,2,... and x ¢ EN, with Qox = x



and define for all x € W, L(x)=limn+anx;ng*:
LEMMA 2.1.
< (Qx-Qy) < (x~y) 3X,y € EN
min min max max’"?

(b) HQx—Qde < ﬂx—yﬂd; HQx—QyHm < Hx—yﬂm;x,y e EN
(¢) If x,y € W then for n = 0,1,...:

(a) (x-y) < (Qx-Qy)

A

A

Q"%-Q"y)_. < (Lx)-Ly))_. < (L&)-Ly))__ < @xQ"y)__

and

IA

L) =L 1Q"x-Q"yll 3 ILE-Lxpl < Q"x-Q"yll_.

(d) L(x) Ze a Lipschitz continuous function on W.'

(e) W Zs closed and unbounded.

(£) If x e W, then Q"x e W for all m = 1,2,... and L(Q"x)=L(x) + mg .
(g) Suppose (Qx-Qy) = (x—y)max; state r satisfies

max
(Qx-Qy)r = (Qy-Qy)max and aZternative k € K(r) achieves

. _ k k
(QX)r,l.e.(QX)r =q + ZjPrj xj.
_ k k k o ..
Then (Qy)r =q, + ZjPrjyj as well, and Prs > 0 only 1f state s satisfies

(X—y)s = (X—y)max'
(h) Similary, Zf (QX—Qy)r = (QX‘QY)min

(x—y)min for some r € Q and

k k .
q. * ZjPrjyj then k achieves (Qx)r

k € K(r) achieves (Qy)r,i.e. (Qy)r
k .
as well and PrS > 0 only Zif (x—y)S = (x—y)min.

PROOF: The proof of part (a) is easy and may be found in lemma 2.1 of [1];

part (b) follows from part (a). A repeated application of (a) shows that for
n n n+m * + \* .

all n,m 2 0: (Q x—Q y)min <[(Q x—(n#m)g ) - (Qn my—(n+m)g >]min <

[Q™ - (ntmg™) = (@ My-(mgH ] < @"xQ"y)

Next, the first assertion of part (c) follows by letting m tend to infinity,
whereas the second assertion and part (d) are an immediate consequence of the
‘first omne,

o Ol 4@ . ¢4 . o
Next, consider a. sequence {x }u— with x € W, a = 1,2,... and 11ma+w X =X .

1
Pick ¢ > 0 and x* such that "xo‘—x*"°° < e/3.



Since x € W, there is some no(e) 2 1 su¢h that for all n,m 2> no(e):

"(ana—ng*) _ (mea_mg*)"w < e/3.

Hence, for all n,m 2 no(e):

(@ -ng") - (Q"x"-mg™)I_< 1Q"x"-Q"xI_ +
1@ x%-ng") - Q"% -mg)I_ + Q"% Q" |

* Q
< 2x"-x7l_+ e/3 = ¢,

the last inequality following from part (a). Hence, by Cauchy's convergence

. . . n x * . . .
criterion, lim__Q x - ng exists, which proves that W is closed, whereas W

n->-x©
is unbounded in view of x € W implying x + cl € W for any scalar c, with
L(x+cl ) = L(x) + cl, thus proving part (e).

(£): follows from lim_,_ Q"(Q"x) - mg" = lim

{Q?+mx-(n+m)g*} +-mg* =

L(x)+mg".
The proofs of part (g) and (h) are easy, and may also be found in BATHER [1],
lemma 2.2. O

In addition to the Q-operator defined by (1.2), we introduce:

K N
(2.11) Tx.= max - {qi+ E P
Y keL(i) j=1

k .

.. X.}, ieQ; xe EN.

13 1]

We let T" denote the n-fold application of the T-operator and in analogy to

W and L(x),x € W we define:

W= {x e EN|1im ™% - ng* exists } and for all x € W,
o

I(x)= lim Tnx—ng*.
n->o
Observe that the T operator is the value-iteration operator associated with
a related MDP in which the policy space is restricted to X?;] L(i). As a
consequence it has all of the properties of the Q-operator as exhibited in
the previbus lemma.
The following lemma shows that the Q-operator reduces to the T operator

in at least two ways, and that the latter has a number of additional



properties which induce that
behaviour than {an}:=].
First define:

(2.12) e(n,x)= an - ng*
e(n,x)= T'x - ng*

By definition, limn+m e(n,X)

LEMMA 2.2.

(a) T(x+cg™)=
x + tg* €
eV, T = v+

(b)
(c)

For any v

For any n 2 1 and i

(2.13) e(n+1,x).= max

keK (1)

g(n+1,x).= max
keL(1i)

(2.14)

(d) For each x € EY there exists an integer no(x) such that Qn0+mx
. Also 1f x € W, then Qngx e W with I(Qnox) =

n
T %%) form = 1,2,...

1,..

] P n .o
the sequence {T x}n_ has a more regular

1

L(x) ’

L(x), x e ﬁ, n

\%

xe W, n

v

0 for x ¢ W and 1lim g(n,x) = 0 for x € W:

* ~
Tx + cg for any scalar c. If x € W, then for any scalar c,
W and I(x+cg*) = T(x) + cg*.

ng*.AZso VeWand L(v) =
.N.

v for any v € V.

N
[na§+b(L(x))§-+jzl pgj e(n,® 1, x € W
[b(t(x))?+ § P?j z(n,x)j],x e W.

L(x)+n0g*.
(e) For all x € W:
_e(n+l,x)min > e(n,x)min; n=20,1,...
e(n,x)max; n > nO(x)
<

e(n+1,x)max

max; b(L(x))?

Hence, for all x € W and n

0,1,...:



(2.15) e(n,x)min < e(n+1,x)mi <0 S’e(n+l,x)max < e(n,x)max, and

n

ug(n+1,x)ud < le(n;x)l nz(n+1,x)u°° < le(n,x)l_

d;
(f) For each x € EN there exists a scalar tO(x) such that
Qn(x+tg*)= Tn(x+tg*) for n =0,1,2,... and t = tO(x).
Hence 2f v € V then v + tg* e W<if t large enough Z.e. W is non-empty.
(g) For any x € W,L(x) € V and for any x e W,L(x) € V.
() W= {x e W | Ix-L()l, > 0}.

PROOF .

(a) TImmediate from the definition of L(i).
(b) For v e V, Tv=v + g* follows from (2.4). By induction, we obtain
Tnv= v + ng*.
(c) Part (c) follows straightforward from the definitions (2.3), (2.6) and
(2.12).
(d) The fact that for large n, the Q-operator only uses alternatives in
L(i) was proved in th.4.4 of [3] (cf. also remark 1).
Next, 1imm+w Tm(Qn0x) - mg* = 1]'.mm_)oo {Qm+n0x~(m+n0)g*}+n0g* = L(x)+n0g*.
() Since by (2.7) and (2.13), e(n+l,x); = PEj e(n,x), for k e L(i,L()

we have e(n+1,x)min > e(n,x)min for all x € W. Next by (2.3):
e(n+l,x). < ma . {b(L(x))k + Z Pg. e(n,x).}, i € Q so
2XJ 5 = AKX R(D) i i Tij g

k
< . =
e(n+],x)max < maxi’k b(L(x))i + e(n,x)max, n=0,1,...
Since part (d) shows that for all n > no(x) the maximum in (2.13) is
attained by an alternative in L(i), for all i € Q, we obtain the
sharper bound e(n+l,x)max < e(n,x)max for all n > no(x) in view of
(2.7). Next, the outer inequalities in (2.15) follow immediately from

d

[><]

an
~ © n=0
{e(n,x)max}n_o being monotonically non-decreasing and non-increasing to

the above, whereas the inner ones are due to {e(n,x) }

lim__e(n,x) . =lim g(n,x) =0,
n-e min N> max
(f) Fix v € V. By repeating the proof of part (e) with repect to

z(n,x) =T - ng* - v, for any x ¢ EN, one shows that {Tnx—ng*}:=]



10

is bounded for all x € EN (cf. also BROWN [3] and remark 1).

Q(Tnx+tg*)i = max {(t+n)a? + (t+n)g; + q? + Z. P%.[Tnx—ng*].},i e 0
keK (1) ] 1] ]
it follows that there exists a scalar to(x) such that for all t = to(x)
only alternatives in L(i) achieve the maximum, for all n = 0,1,....
Hence the first assertion of part (f) trivially holds for n = 0 and
proceeding by complete induction, assume it holds for some integer n.
Then Qn+1(x+tg*) = Q[Tn(x+tg*)] Q[Tnx+tg*] = T[Tnx+tg*] = Tn+](x+tg*)
for all t = to(x). Finally if v € V and t 2 to(v) then Qn(v+tg*) - ng* =

v + tg* - ng* = v + tg* for all n = 0,1... (cf. part (b)) which

proves v + tg* € W for all t = tO(v).

(g) Letting n tend to infinity in (2.14) and recalling lim g(n,x)=0

n-—>o
~ ~ ok

one observesNthat for x e*W, maxkeL(i)b(L(x))i—O, hence L(x) e V.

Since L(x)= L(Qnox) - 08 for any x € W (cf. part (e)) it follows that
L(x) € V for any x € W.

(h) Let x € W, If x ¢ V then "x—T(x)"d

n

0 follows form part (b).

Conversely if “x—f(x)“d = 0 then x = L(x) + cl for some scalar c; so

x € V in view of part (g). 0
3. THE EVOLUTION OF THE Q OPERATOR.,

Convergence of {an—ng*}:=] occurs in three phases. During the first
phase the Q operator still uses alternatives in K(i)-L(i). Lemma 2.2 part
(d) shows that for any x € EN after finitely many steps namely for n > no(xl
alternatives in L(i) achieve the maximum in (2.13) or in other words @
reduces to T, (In fact the proof of this part of the lemma shows that from
a certain point on, only alternatives in L(i) achieve the maxima).

Next, lemma 2.2 part (e) shows that the distance between [an—ng*] and its
limit L[(x) as measured e.g. by the I I is guaranteed to be monotonically
non-increasing after these first no(x) steps. This is why we say ‘that the
first no(x) iterations constitute the first phase of the convergence process
during which the behaviour of either | e(n,x)lld or He(n,x)ﬂoo may be very

irregular,
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Observe that the first phase is non-existing when K(i)=L(i) for all i ¢ @

as is e.g. the case when g* = <g*> 1, i.e. when the maximal gain rate is in-
dependent of the initial state of the system.

While for n = no(x) the Q-operator reduces to the T-operator, for still
larger n and x € W due to 1imnﬁme(n,x)=0 the maximum in (2.13) can only

be achieved by alternatives for which b(L(x))§=0 i.,e, alternatives that
belong to L(i,L(x)) (cf. (2.7)).

Hence for very large n (say for nZn](x)) we get the behaviour:
(3.1) e(n+l,x) = U(L(x)) e(n,x), x e W
where for any v ¢ V the U(v)-operator is defined by:

(3.2) Uyl = max [J.P.y.], = 1,...,N

keL(i,v) 3 373
Observe that the U(v)-operator is a value-iteration operator with zero
rewards. Since the associated maximal gain rate vector is 0 i.e. has
identical components, it has all of the properties of the T-operator.

In addition it distinguishes itself by the following special (positive

homogenity) feature:

-

(3.3) U(v)Lax] = a U(v)x, x € o and for any scalar a 2 0

as well as by:

> > .2 . e

*nax [U(V)X]max [U(V)XJmln *nin

Note that there are only a finite number of distinet U(v)-operators, since
there are only finitely many subset of Xi L(i).

For any v € V, define:

(3.4) ® if b(v)? =0 for all i € 9, k ¢ L(i)
S(v) =
. k . . k
mln{-b(v)i ] ieQ, k € L(1), such that b(v)i < 0},

otherwise
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Note that for all x € W, the reduction to the U(L(x))-operator occurs at
the very last when "e(n,x)"d drops below the §(L(x))-level.

We will say that the second phase of the convergence process starts at
the no(x)+1—th iteration and terminates at the nl(x)—th iteration.
It is followed by the third phase from there on. In the following section
we will show that in the second and third phase le(n,x)l  decreases to zero
at a geometric rate of convergence for all x € W, Whereas the contraction
factor per step initially depends upon the starting point x and may be very
close to unity, the ultimate convergence rate or average contraction factor
per step is determined by the behaviour of the U(v)-operator in the third
phase and will be shown to be uniform i.e. strictly bounded away from one,
on W,

The remainder of this section is devoted to a description of the first
phase as well as to a preliminary characterization of the U(v)-operators in
the third phase.

We first observe that (2,.13) may be rewritten as:

(3.5) e(n+l,x);= max {(b(LQ™)} + J. PX. e(n,x).},i ¢ @
keK (i) 11 J
since na? + b(L(x))? = b(L(x)+ng*)? = b(L(an))? the last equality following

from lemma 2.1 part (f). Define:

(3.6) Y(n,x) =  max b(LQ™))Y;  x e W.
ieQ,keK (i) 1

(o]

The next theorem shows that {y(n,x)} decreases in at least a linear way

n=1
with n, so it reduces in a finite number of steps to 0, after which the
non-increasing of "e(n,x)“d is guaranteed. Hence convergence is lexico-

graphic in the sense that first {w(n,x)}:= 0 and next‘{“e(n,x)"d}:=1 0.

1

THEOREM 3.1. Let x e W,

(a) Yy(n,x)2 0 5 n=20,1,.,. - If K(1) = L(i) for all i, then Y(n,x) = 0 for
all n=0,1... . ‘

(®) yo+l,x) < y(n,x); 2f Y(n+l,x) > 0 then Y(n+l,x) < ¢(n,x) + A where

© , if K(i) = L(i), 1ieQ
(3.7) A= max{a? l a? <0; ie 9,k e K1)}, otherwise
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¥(0,x)

. . .
(c) There extsts an integer no(x) < T

with ¥(n,x)=0 for nZné(x)

Also "e(n+l,x)|ld < e(n,x)“d for n > nb.

PROOF .

(a) ¢(n,x) = maxieg’kEL(i)b(L(an))? = 0 since L(an) € V (cf. lemma 2.2

part (g)) while the equality sign holds if K(i)=L(i) for all i e Q.
®) ¥(n+l,x) = m {<n+1)a§ + b(ux))li‘} <

3% e, keK (1)

n {na‘i‘ + bLE)YY = ¥(n,%)

8K e, keK (i)

Assume Y(n+1,x) > 0. Then Y(n+l,x) = a? + b(L(an))E for some i € Q,

and k ¢ L(i) since b(L(an))E < 0 and a? = 0 for k € L(i). Hence,

a? < A and Y(n+l,x) < Y(n,x) + A.

¥(0,x)
|A|

(¢) The existence of né(x) < follows immediately from part (b).

Next, assume Y(n,x) = 0 and use (2.13) to obtain:

IA

k k k
e(n+1,x)i maxkeK(i){nai + b(L(x))i} + maxkeK(i){ZjPije(n’X)j}

IA

y(n,x) + e(n,x)max = e(n,X)max

v

Hence, e(n+l,x < e(n,x whereas e(n+1,x) . e(n,x) . was
» el ’ )max (n, )max’ ( ’ )ml (n, )ml

n
né(x), we

n
shown in lemma 2.2 part (e). Since Y(n,x) = 0 for n

v

conclude that "e(n,x)"d is non-increasing for n 2 né. O

Part (c) of the previous theorem shows that both no(x) and né(x) are

. . B oo
bounds on the number of iterations before {“e(n,x)"d}n starts to be mono-

tonically non-increasing. The following example will shéw that:

(a) the behaviour of ﬂe(n,x)"d(or Ue(n,x)“w) may be very irregular during
the first phase: in this particular example, He(n,x)ﬂd first decreases,
then increases during a number of steps that is of the order of N

(b) both nO(x) and nb(x) as defined in lemma 2.2. and th.3.1, may be very
large and are not uniformly bounded in x ¢ W

(c) the convergence of'{w(n,x)}:=1 to 0 is exactly linear, i.e.
Vv(n+l,x) = Y(n,x) + A for all n < né(x)

(d) both cases no(x) > né(x) and no(x) < né(x) may occur.
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EXAMPLE 1:

i k- P P P. P. P. eess P

i1 Ti2 Pi3 Pis Pis iv Pine1r 4

11| 1
21 1 1
2|2 I 0
31 I 2(N-4)
4 1 2(8-5) | g~ =
(1,1,0,...,0)
N-3
N-2 I 2
N-1 3 3
N 0o | 1
(B},,, =1 for 3 <isN-2;q=2(Ni-1) for 31N~ 2.

Take x = [0,1,0,A,A,...,A+Z,A].

Since L(2) = {1}, for n large we have (an)2 - ng; = 0, hence !_(x)l =
L(x)2 = 0, Moreover L(x)i = 25;; 2(N-r-1)+A = (N-1) (N-i-1)+A for i = 3.
Let £ = 0:

"e(O,x)"d=e(o,x)maX - e(o,x)min = 1+(N-4) (N-3)+A
"e(],x)"d=e(l,x)z—e(l,x)3=0—2(N—4)+(N—4)(N—3)

Using "e(n,x)"d—"e(n—l,x)"d={e(n,x)2—e(n-1,x)z}—{e(n,x)B—e(n—l,x)3}:
(2(N-4)+A-1)-2(N=3)=A+1,for n=2
"e(n,x)"d-"e(n—l,x)"d= (2(N-n-2)-1)-2(N-n-3)=1,2<n<N-3

-1 for N-3<n<A+(N-3) (N-4)

and

"e(n,x)"d =0 for n > A + (N-3)(N-4).

A=a§=—l;b(L(x));=O for all i;b(L(x))g = A+(N=4) (N=3)-1
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hence

A+ (N-4) (N-3)-(n+1) for n<A+(N-4) (N-3)
for n>A+(N-4) (N-3)

P (n,x)=

and conclude that ¢y(n+1,x) = y(n,x) - A for n < né(x).

Finally note that since the quantities b(L(x))? and ¢y(n,x) are indepen-

dent of K,no(x) > n](x) occurs when £ >> 0 and no(x) < né(x) when £ << 0.

REMARK 1. Fix v- e V. Let e(n,x) = an - ng* - v for any x € EN, and
k
¥ien,kek(i) "M B +
with e(n,x) and ¢ (n,x) replaced by e(n,x) and Y (n,x), shows that:

(a) {Qn-ng*}:=1 is bounded in n, for all x € BN

T{n,x) = m {na +b(v*)§}. An examination of the proof of th.3.l

Next it follows from (a) and (2.15) with e(n,x) and L(x) replaced by
e(n,x) and v", that

(b) for n large enough, the Q-operator uses only alternatives in L(i).
These results were already obtained in BROWN [3], who employed limiting

results from the discounted case.

Lemma 3.2 below gives some preliminary properties of the U(v)-operator (as

appearing in the third phase) and concludes this section:

LEMMA 3.2.
(a) Fix v e V. If "y—v"d < 8(v) then
n * _ N n n
Ty = (ng +v) = Ty-Tv =U(v) (y=-v): n=0,1,2,...
(b) Take x € W with HX—I(X)Hd < §(L(x)). Then for any ) € [0,1], the
vector x(A) = (1-0)L(x) + rx satisfies x(A\) € Wand T(x(\) = [(x).
(¢) If v eV and the vector p satisfiis "p“d i 1 and 1i§n+w U(V)np =0
then for 0 < A < 8(v), v+ A pe Wand L(v+ip) = L(v) = v.

PROOF. We first observe that, by lemma 2.2 (b), ™ = ng* + v, and ™ € v,
for all n 2 1.
k

- k - *\yo_
() Ty, - Tv, = max 1 1) {q:.L + zj Pij v (vi+gi)} =m

By eT (1)

], ot
Let k(i) achieve this maximum. Then applying lemma 2.1, part (a) to T:

{b(v)? +

(yj—vj)}
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(y_v)min = (Ty_Tv)min = b(v)?(l) +)szg;l)(yj—vj) : b(v)?(l) * (y_v)max,

?(i) =0
for i = 1,...,N (cf. (3.4)). This proves part (a) for n = 1.

for all i € Q. Hence 0 < —b(v)i < Hy-vﬂd < §(v), or b(v)
Next, observe that by ™ = v+ ng*,b(v)? = b(Tnv)g for all i and
k € L(i). Hence, for all n,8(v) = G(Tnv) and the U(v)-operator and the
U(Tnv)—operator coincide. Now assume that the assertion holds for one
value of n. This implies using lemma 2.i part (b):

"Tny-’l’nv"d < "y-—v"d < 8(v) = 8(T™), and invoking the induction
assumption: TV 1y - Ty = 1(1t%) - T(T™) = U(W) (Ty-T™) =
U(v)n+l(y—v), which proves the equality for n+l.

(b)  Since nx(x)-T(x)ud = MIX-"L'(x)ud < 8(L(x)) for A e [0,1], it follows
from part (a) with v = I(x) that Tnx(A) - ng* - T(x) = U(v)n(x(k) -
Tx)= U@ O (x-L(x))) = W) (x-L(x)), the last equality following
from (3.5). Since, U(v)n(x—r(x»==TnX - ng* - T(x), part (b) follows
by letting n tend to infinity.

(c) Since for 0 < A < &(v), "(V+Ap)—v“d < 8(v), it follows from part (a)
and (3.5) that Tn(v+kp)— (ng*+v) = AU(v)np. The assertion follows

again, by letting n tend to infinity.
4, GEOMETRIC CONVERGENCE IN PHASE 2 AND PHASE 3.

Thanks to lemma 2.2, part (d), the behaviour of {v(n)—ng*}:zl for
v(0) € W in phase 2 and phase 3 can be studied by considering the conver-

gence of (T - ng}:_ for x ¢ W. Since for x ¢ V, x = ™ - ng* = I(x)

1
for all n = 1,2,... we can in general restrict ourselves to (cf. lemma 2.2
part (h)):

W= W\V = {xeW]| uZ<o,x)ud = llx-I<x)nd > 0}

Since Hg(n,x)"d is monotonically non-increasing (cf. lemma 2.2 part (e))
we will consider for n = 1,2,... the n-step contraction factor fn(x),

defined by:
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d for x € ﬁ

3

I'e(n,x)| g ! T%%-ng *-T () 4 I -7 (x) I

4.1 fn(x) = = — —
te(Q,x) "d Il x-1 (%) ||':1 l x—L(x)"d

0 for x e V

the last equality following from parts (b) and (g) of lemma 2.2.
Observe using lemma 2.2 part (e) that o < fn+1(x) < fn(x) < 1 for all
n=1,2,... and that for fixed n, fn(x) is a continuous function on W

(cf. lemma 2.1 part (d)). We now prove our main result:

THEOREM 4.1. There exists an integer M 21 such that fM(x) < 1, for every
x € W.

PROOF. Define:

* * | ~ ~
VJA—-{X e W l e(o,x)max > 0 and e(o,x)min <0}
*
B

* ~ ~
Wo={xeW | e(o,x)max = 0 and e(o,x)min <0}

Note, using (2.15) that W* = WZ U W; . Define for x € W*, Sn(x) =

{i!g(n,x)i = g(o,x)max}. It follows from lemma 2.1 part (g) that:

(4.2) Sn+1(x) = {il there exists an alternative k € L(i,I(X)), such that

P§j= 1}
JeSn(x)

For any v € V define the set of pure policies SP(v) = X?_IL(i,v).
(1 .

Note that there exists a finite sequence {v ,...,V(R)} such that

. €9)
UVEV SP(v)= U£=ISP(V ).

Let'{Q(k); k = 1,...,2N—1} be the finite collection of non-empty

subsets of @, and define the following partition of W;.

= {x ¢ w; | sp(l(x)) = spv®y,s 0 = 2™ L=1,...,R; m =
N
1,...,2 -1,

* .
W
£,m

Finally let I(x) = inf {n | “g(n,x)"d < HE(O,X)"d}, which is finite, for

* . . ~
x € W, since 11mn_)eo e(n,x) = 0.
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In part I) below we show SqueWK I(x) < 2N—1 and in part II)

“sup W I(x) <~ for fixed ] <£ <Rand | <m < N - 1, which together
xe £,m
imply the theorem:
. . ~ _ * (
I) Since llmn+w e (n,x)max = 0, for each x ¢ WA let Io(x) be the smallest
integer such that Sn(x) is empty for n 2 Io(x).
Now, "g(IO(x),x)"d < "g(O,x)“d. In addition, in the sequence
{8 (%),...,S } no two members can be equal since using (4.2)
0 IO(X)—I
this would imply that Sn(x) is non-empty for all n 2 1.
Hence Io(x) < ZN - 1 since there are only A distinct non-empty
subsets of Q.
I1) Fix xo € Wz - Due to (3.1) and (3.2) there exists an integer Nl such
. ;
that e(n+1,x )i [P(fn)...P(fn +])e(nl,x )]i for i 1,...,N;
n 2 n,+1 where £ ,...,f € SP(V(K)). Define I, as follows:
1 n n1+l 1
min{n=n +1 l 0 é'g(n xo) > z(n XO)_} if S (XO) # Q.
I = 1 ’7 “min 1’ nj
1
n]+1 otherwise
Then in both cases I] is finite, since n, is finite and
lim g(n,xo) . =0, In addition, we shall prove for both cases:
n>w min
(4'3) szSn (XO) [P(fIl)ou'P(nl)]ij > 0, for a].]. 1 € Q'
1
(4.3) trivially holds if Sn(xo) = @, and for the other case we have
1
g(I]’XO)min < g(nl,xo): if (4.3) does not hold. This contradicts the
definition of Il' Next fix for r = 1,...,n]+1, fr € SP(V(K)) such
‘that
(4.4) ] [P(f_)...P(f,)].. > 0, for all i € Q,
jes, x0y=p@ T 1

the existence of which follows from Sn (xo) # ¢ in view of E(O,X)max=
1

0 in combination with lemma 2.1 part (g).

Now observe that for all x ¢ W, we have b(T(x),f ) =0 for
n

£,m
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n=1,...,I, since fn € SP(V(K)) = SP(I(X)). Hence, using (3.1), (3.2)

1
and (4.4) e(I,,x) 2 Zjeﬂ_SO(X) [RCEL ). B(EDD 0 e(0,0) 5 > e(0,%) s -

This implies that for all x ¢ Wz o I(x) < I- 0
b

. n___ x\
In order to prove the geometric convergence of {T x-ng }n=1’ we

define:

(4.5) h (x)= sup fm(Tnx), XxeW and m = 0,1,...
o n=0,1,...

which has the following easily verified properties:

(4.6) hm(x) = hm(x+c]g*+c21), for all scalars C1sCys X € ﬁ; m=0,1,...
0 < hm+](x) < hm(x) <1, xeW;ym=0,l,...

r ~
hm(T x) < hm(x), x € Wy myr = 0,1,...

THEOREM 4.2, (Geometric convergence result).

(a) h_(x) <1 forallm>Mand x e Ww.

(b) “g(nM+r,x)||°° < | g(nM+r,x)"d < [hM(x)]n"Z(O,x)"d for n =0,1,2,...;
r=20,1,.,..;M-1 and x € W,

Hence the convergence of {Tnx—ng*}w] 18 geometric for all X € W.
n’:

PROOF
(a) Suppose to the contrary that hM(x) = | for some x € W. It then follows
from (4.1) and lemma 2,2 part (b), that x € Wf and that there exists a

iy Ny n. o 1™ ; iy -
subsequence {x }j=1 {T"1x njg }j=l such that 11mj - fM(x ) -
(x) =

1
Using lemma 2,1 part (f), it easily follows that x) e Wwith T
T(x) and "xJ—I(x)qd > 0 for all j = 1,2,,..

Put x3 = T(x) + &), Since for j large enough, "xJ—T(x)“d < S(T(x)), we
have using lemma 3,2 part (a), for all n > 1:
™ (x3) = T(x) + ng* + UL (x))™ (), and lim u(T(x)) ) =0 for j

sufficiently large. Hence,
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(4.7)

(b)

. ‘"TM(XJ)fMg*—I(x)Hd
1= lim, £ (x)) = lim, ST — -
J IxI=T (x) .

RSN

lim.
J—}OO

N
I ud

For any v € V, define Y(v)={y ¢ EN ] “y"d = 1 and 1imn+wU(v)ny=0},and

sup To(w)®yl . if Y(v) # 0
Fn(v) _ yeY (v) d
0 otherwise

Observing with the help of (3.3) that gj/ﬂgj"d,s Yy(I(x), j=1,2,...
and recalling that Pn(v) <1l,n=1,2,... and v € V (cf. lemma 2.1
part (b)), we conclude that FM(L(x)) =1,

Observe by lemma 2.1 part (e) that Y(v) is closed for any v ¢ V.
In addition Y(v) is bounded since for any y € Y(v),ymax 202 Yoin
as a result of lemma 2.2 part (e) being applied to the U(v)-operator,
and hence Iyl < "y“d =1 for any y € Y(v) (cf.(2.9)).
We conclude that in (4.7) the supremum is taken of a continuous func-
tion (cf. lemma 2.1 part (d)) over a compact set, and this implies
the existence of a vector yO e Y(L(x)) with “U(T(X))Myoﬂd = 1.
Invoking lemma 3.2 part (c) we find that z(x) + Ayo € Wf for
0 < < 6(T(x)) with T(T(x) + Ayo) = T(x). Next using lemma 3.2 part

(a) and (3.3):

@™oy, = 1,

£, L y?) = 3 1T Ty -1 TGN, = +

thus contradicting th. 4.1.

Fix x € ﬁ,n =0,1,... and 1 < r < M:
The first inequality follows from part (c) of lemma 2.2 and (2.9).
If “;(nM+r,x)"d = 0, we trivially have:
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(4.8) I8 DMer, 00 <y () HZ(nM}r,x)ud

Next assume "g(nM+r,x)"d > 0. Then

I'e (nM+M+T, %) I
d fM(TnMx) < hM(TnMx) < hM(X)’

HZ(hM+r,x)ﬂd

the last inequality following from (4.6).
This proves the second inequality in part (b) for all x € ﬁ,n =0,1,...

and r = 1,...,M. [

Th.4.2 in combination with lemma 2.2 part (d) establish the geometric
convergence result for all x € W. If x ¢ W, then certain subsequences of

the type:

nJ+r

(4.9) {Q x - (nJ+r)g*}:=1;J =2,3,...and r = 0,...,J~1
will converge. We refer to th. 5.8 of [18] for a characterization of the
integers J 2 1 for which convergence occurs. Fix J = 2,3,... and note that:

(cf. section 4 in [18]):

I 5 ~ ~E
(4.10) Q" x, max, i) {qi + zj Pijxj} where
R(i) = (¢£ .., | £,...,87 « 55}
~E ] 1, .2 1 J-1, ,.J
;= q(f )t P(f )q(f )i +.o..+ P(£)...P(f° )q(f )i’
ieq, £=(£,...,£) ¢ R(D)
ng =Py ... P(fJ)ij; 1 <i,j5<Nand £= (£,...,8) ¢ R({).

Let a = QJ, and define a related "J-step'-MDP, denoted by a tilde, with

Q as its state space, E(i) as the finite set of alternatives in state

g
i ~

bility to state j, when alternative £ ¢ K(i) is chosen when entering state 1i.

ieQ, a as the one-step expexted reward and Fij as the transition proba-

Recalling from th. 4.1 part (a) in [18] that E* = Jg* we obtain in

nJ+r

view of {Q x—(nJ+r)g*}:=1 = {an[er]—nE*}:=] - rg* and by applying the
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above analysis to the J-step MDP, the following generalization of the geo-—

metric convergence result.

COROLLARY 4.3. Fix J = 1,2,... and r = 0,...,J-1.

If 1imh+® QnJ+rx - (nJ+r)g” exists, then the approach to the limit exhibits

a geometric rate of convergence. [

* . .
REMARK 2,: Assume g = <g*> 1 so Q =T and consider White's iterative scheme

for solving MDP's (cf. [22]). Define:

vy, = v, - v, 3= 1,...,N;
and verify that

y(@+1) = Qv(n) - [Qv(n)J1

~

Then 1f v(0) € W = W:

(a) 1imn+my(n)i = L(V(O))i - L(V(O))N
®) [Qy() - y@1 = lv@) - v@I _+ g"n > e (cf. ODONI [12], th.1).
(@ [y@) - y@1 . =Tlv@) - v@] , + g n—>w (c£. ODONI 12 , th.1).

It follows from th. 4.2 that the convergence in (a), (b) and (c) is geometric
since | y(@Mrr), - L(v(0); - L(V(O))N] < le@M+r,v(0)!, <
[th(O)]“ le(0,v(ONI .

5. THE SIZE OF M

In this section we restrict ourselves to MDP's that satisfy the

condition:

(H1): there exists a £° ¢ s that is aperiodic and has R* as its single

RMG
subchain.

In [17] we proved that (H1) is satisfied e.g. if all the tpm's of the
pure maximal gain policies are unichained, whereas the greatest common
divisor of their periods equals 1.

Fix v € V; we first observe that the policy f*, defined by:

(5.1) | £ 20 = kel | bWE =0}, iecq
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is one of the policies with the properties mentioned in (H1),
Using (2.8) one first observes that f* hence R(f ) < R” .
Due to (H1) all states of R* communicate w1th each other under P(f ) and
since for all i ¢ R ,fik > 0 implies by (2.8) k € L(i) and b(y)i = 0, hence
f;k_> 0 they communicate with each other under P(f*). Hence P(f*) is
aperiodic and has R" as its single subchain.

Lemma 5.1 below gives some implications with respect to the chain-

and periodicity structure that result from (HI).

LEMMA 5.1. Suppose Cl1 holds. Then:

(a) g* = <g*§i, i.e. K(1) = L(i) for all i € Q, and Qx = Tx for all x € EN.
(b) v € V Zs unique up to a multiple of 1.
(c) For all i € Q, and k ¢ K(i),,b(v)? is independent of v € V.

(d W=W=E.
. * k k e . *
(e) If veV, ieR and b(v)i = 0 then Pij >0only 1f j € R .
(f) For any bounded subset B c B SUp__p fM(x) < 1 (where M is defined as in
th.4.1).

PROOF. Parts (a) and (b) follow from th. 3.2 parts (c) and (e) and remark
2 in [17]. Part (c) follows from (2.6) and part (b); part (d) is proven in
[18] To show part (e), suppose there exists (i,j,k) with i € R* , j ¢ R*

k
b(v) =0 for v eV and P°, > 0. Then £, > 0 and P(£%).. 2 £¥ PX. > 0
1] N N 1k ij ik 1]
contradicting the fact that R(f") =
(f): Assume to the contrary that for some bounded ‘subset
B c EN, Sup_ _p fM(x) . Considering the definition of fn(x)(n 2 1)
we assume w1thout loss of generality that BcW . Then there exists a

sequence {x? }J 1’ with x7 ¢ B such that 11mJ_mxJ = c e W (say) and

. h] =
1im. fM(x ) 1.

_]-)ee

The case ¢ € W' leads to the contradiction 1 = 1imj+w fM(XJ) = fM(c) <1
in view of th. 4.1 and the contlnulty of fM( ) on W*

The remaining case has ¢ € V. Put x —L(x ) + EJ. Following the proof of

th. 4.2 part (a) we obtain for j sufficiently large:

Tn(xj)=v+ng*+U(v)ngj and so limn_)Oo U(v)n[gj] = L(xj)—v



24

Since it follows from part (b) that L(ij - v is a multiple of 1 we

obtain:

£, (o 1T M LD ey
I =L (),

where

= (§J+v—L(xJ))/"£J"d € Y(v). The remainder of the proof is completely
analoguous to that of th. 4.2 part (a). [

We next derive (for MDP's satisfying (H1)) an upperbound for M the
number of steps needed for contraction:

First define:
(5.1) y = min{n = N | P(f*)?j >0, foralli=1,...,8, je©R'}

Clearly vy < w, since 11m P(f ) >0 for all i =1,...,N and j € R*.
Note that P(f )lJ >0 for all i e Q, j e R* and m > Y, since for m 2> Yy
P(f*)zg = N P(f )m Y, P(f )Y > 0 for all i € Q,] € R*.

THEOREM 5.2. If (H1) holds then M < N2 - 2N + 2, (where M is defined as
the smallest integer satisfying the condition of th.4.1.).

PROOF. We will first show that y < N2 - 2N + 2, Assume that R* R(f*) contains
N+%k =1 states. Then it follows from th. 2.8 of [17] that P(f ) > 0 for

> (N-k) —2(N—k) + 2 and 1i,j € R In addition for any i € Q—R there
exists a path {t =i, Epoeeest } such that P(f" )t£ Pl > 0 for K =0,...,
m-1 and t € R* , where without loss of generallty t],...,tm are all taken
to be dlStlnCt Hence m < k and ZK R* P(f )l > 0 for all i € Q.
This implies that P(f" ) > Jper* P(£5)" zP(f )!, >0 forall i e, j e R"
and n 2> N2 - 2N + 2 (verlfy that k + (N—k)2 - Z(N k) + 2 < N2 - 2N + 2 in
view of the quadratic form (3-2N) k + k2 being nonpositive for k = 0,...,N-1).

Next we fix x € W*. Let L(x) = v* and define:

X(m)={ieQ)] (me—va*)i= (x—v*)max}; m=0,1,2,...
. mo_om ok ok .
Y(m)—{leQI (T %x-T v )i— (x-v )min}’ m=0,1,2,...
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We will prove that M < y and hence M < N2 - 2N + 2, by showing that the
assumption M > y implies (a) Y(0) 2 R* and (b) X(0) n R # ¢, hence

X(0) n Y(0) # @ contradicting x € W*, i.e. lx=v™l _, > 0. Assume now Y < M.

Then X(m) # ¢ # Y(m) for 0 <m < vy. Fixm <y, agd ie Y(m); Observe using
part (h) of lemma 2.1, that for any k € L(i,v*) P?j > 0 only if j € Y(m-1).
Using the definition of f*, we conclude that P(f*)ij > 0 only if j € Y(m-1).
Proceeding by induction, and invoking the definition of y we obtain for

iev(): R c{j| P(f*)ij > 0} < Y(0).

N
The nested sequence X(N): X(N) UX(N-1);...; Ui=0
strict growth since there are only N states, hence there exists am < N - 1

such that X(m) < § = Uﬁ=m+]X(£). Accordingly define a policy h in the

X(i) cannot exhibit

following way:

(a) for i-e Q-S, define h(i) = k for some k € L(i,v*)

(b) for i € S, choose an index £(m+1 < £ < N) such that i € X(£), and define
h(i) = k for any k € L(i,v*) such that P?. > 0 only if j ¢ X(£-1), the
existence of such an alternative k being guaranteed by part (g) of

lemma 2.1, and the fact that L(i,Tzv*) = L(i,v*).

It clearly follows from (2.6) that h € S ; 1n addition S contains a

subchain of P(h) since it follows from X(m) CPE? that S is closed under
P(h). Hence, S n R # @, or there exists an index r, such that X(r) n R* # ¢
Accerdingly fix 1 € X(r) n R”. Then, again applying part (g) of lemma 2.1
we obtain the existence of an alternative k e L(i,v*) such that P?. >0
only for j e X(r-1). !

In addition, since i € R” and k ¢ L(i,v*) it follows from lemma 5.1
part (e) that P?j > 0 only for j € R*. Hence X(r) n R* # @ implies
X(r-1) n R* # @ and proceeding by induction we obtain X(0) n R” # 0.
This together with Y(0) > R* implies X(0) n Y(0) # @, i.e. "x—L(x)"d= 0
thus contradicting x € WO

The following example shows that M = O(Nz) may occur,
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Example 2:
ik q? P?l P?z P?3 ST e Py
1 1 1
2110 0 0 1 K(i) = {1}for i 2z N - 2;
' K(N—2)={1,2};P;i+1=1 for
i<N- 2;qi = 0 for
-2 |1 1|0 1 all i,k; hence g* =0
-2 210 1 and K(i) = L(i) for
-1 1 0 i : all i € Q.
N 1 0 1

Let fk(k=],2) denote the pure policy that chooses alternative k in
state N-2. Observe that (H1) holds since P(f]) and P(fz) are unichained with
P(f.) aperiodic. Consider x, with x, = 0 for i # N-1 and Xg_1:= 1.

! J(N-1) (3%1) (8-1) N-1 1
Clearly [T x]N = [P(fz)" P(fl) x]N

Observe that whatever decisions are taken when entering state N-2, the

=1, for J = 1,2,....

only states j that can be reached from state 1, after J(N-1) steps are
j=1,...,J+1 (JsN-1). Hence [T(N_3)(N_l)x]] =0,

Note, using lemma 5.1, parts (b) and (c) that x ¢ W" with L(x) =l
(N—l)(N—3)x_L(X)"d - [T(N'])(N'3)x]N -

=1 = Hx—l_(x)"d, and M > (N-3) (N-1).

for some scalar A. Hence, IT
[T(N_l)(N_B)XJI

REMARK 3. The upperbound N2 - 2N + 2 for the number of iterations needed
for contraction is enormously high, compared with the empirical fact
that in most cases M = 1 or 2. For example SU [20] and TIJMS [21] have
solved up to 1000-state problems with good convergence after 10 - 100 value
iterations. In addition if P(f*) has at least one positive diagonal entry,
it may be shown that the uﬁperbound for M becomes lZnear in N.
Since it was shown in [8] that in this case y < 2N - r - 1, where r = 1 is
the number of positive diagonal entries of P(f*) the result M = 0(2N)
again follows from the proof of th.5.2.
In SCHWEITZER [6] a data-transformation was introduced which turns every
MDP into an equivalent one in which all of the diagonal elements of the

o

o . . *
tpm's are positive thus ensuring convergence of {an - ng }n-l’ for all

X € EN. By the above analysis it follows that thanks to this transforma-
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tion, M the number of steps needed fof cohtractibn,is in addition bounded
by N-1. Finally in case SP consists of a single unichained and aperiodic
policy, we have M < i{N(N-1) as a result of the following argument:

We know (cf. th.4.4 on pp. 89 of [19]) that any aperiodic and 'unichained
policy £, has P(f)" scrambling for all n > iN(N-1), i.e.

z. min[P(f)? .;P(f)? .J=a> 0 for all n = IN(N-1).
2 J ' l]J 12J _
One next verifies (cf. th.5 in [7]) that "e(n,x)“d < (l—a)"e(O,x)“d

for all x ¢ E" and n > IN(N-1).

‘min. .
ipni

6. THE THIRD PHASE; THE ULTIMATE CONVERGENCE RATE
In this section we analyze the ultimate convergence rate or average

contraction factor per step which is defined as the limit as n tends to

infinity of:

| [nz(n,x)ud "g(““”‘)"d. o |l’€(1,x)ud] l/n’
. 1 1—= - -
(6.1)v £ (x) /n _ le(n-1,01 ; lTe(m-2,01, lle(o;x)lld
if "e(n—],x)Hd>0
0 otherwise

1
Note that fn(x)n may be interpreted as the (geometric) mean n-step contrac-
tion factor. In section 3 we observed that for n 2 n](x) (cf. (3.1)) i.e.
in the third phase, the sequence ié(n,x)}:=] satisfies the recursion’

equation:
(6.2) e(n+l,x) = U(L(x))e(n,x), x'e W3 n = nl(x)

Thus, in order to characterize the ultimate convergence rate, the following
two theorems give some properties of the U-operator and of the quantities

I' (V);velV:
n

6.1) r(w) =4 VYW d
n 0
where
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Y(v) = eEN | Uyl =1;1im_ U™ =01
y YT n->o y J

First, define for all v e V, W = {y e o [ 1imn»mU(V)ny exists}, and

T :
for all y e W let U(v) v = 11mn+mU(v) V.

U(v)?
THEOREM 6.1.
(a) (Cf.th.4.1). There exists an integer M, < N such that for all v e V

1
3 II - v “ > 0:

uU(V)Mly_u(v)“ynd < Iy-umyl

Fix v € V.
(b) If Y(v) # @ then F (v) = ey (v) lu(v) y"d, n=1,2,
(c) Tu(v) 1yll < (1-p )Hyﬂd, for aZZ y € EN such that U(v)" y = 0, where
(6.2) l—p] = max TM (v) <1

veV 1

(d) F (v) < F (v). P (v) for all myn = 0,1,2,
(e) Define T (v) = 11m Fn(v)]/n. Then T~ (v) < (l—p ) /M 1< 1 and Fn(v) >

n—>ce

r*(v) for all n = 0,1,...

PROOF .

(a) Fix ve Vand y € WU( ) and recall from lemma 2.2 part (e) that
(y-U(v) y)mi <0 < (y-Uv) y) . Define for n = 1,2,...

s_ = Ui | U@ G-UW Y =G-u™ ) 3
and
T =i | UM UMY =G Y T
Observe using the arguments in part I) of the proof of th.4.1 that
Sn must be empty for n 2 2N if (y—U(v)my)max > 0. However, for theN
U-operator the same arguments show that Tn must be empty for n > 2
if (y=U(v) Y)min € 0, as well, »
(b) In the proof of th.4.1. part (b) we showed that the supremum in (4.6)
is always achieved by some yo € Y(v).
(c) It follows from part (a) and (b) that F (v) < 1 for any v ¢ V,

Since there are only a finite number of dlstlnct U(v)-operators, we



29

veV
part (e).

(d) For y € Y(v) with "U(v)nyﬂd=0, we have:

have max FMI(V) < 1, which proves’(6.2) and hence the remainder of

0= HU(v)n+mde < T _(MT_(v)

while for y € Y(v), with "U(v)nylld >0

e ™™yl = } U™ { U ” @™l < T WT_(0)
e )“ I f
Hence Pn+m(v) = maxer(v)"U( )n +m d < Tm(V)Fn(V)

(e) The existence of F*(v) 1im P (v)]/n and the relation
P*(v) F (v) 1/n for all n —nl 32,... follows from part (d) and a well-
known theorem of KINGMAN (cf. e.g. [19], appendix A, th. A4).
It follows from (6.2) that T

M
n .. .
< - °
T “l(v) < (1 pl) . This implies:

(v) < 1-p,, and hence using part (d),that

1/nMy

@™ < M,

*

I'(v) = lim oo nM
Th., 6.2. below proves that for any x ¢ W* the ultimate average
contraction factor per step is at worst F*(L(x)),"so,that for all x ¢ W*,

the ultimate convergence rate is strictly bounded away from one.
In addition, part (b) shows that for any fZxed n, there are x ¢ w" for
which the average n-step contraction factor is at least equal to
l/n
max T (v)

THEOREM 6.2.
(a) limsup f (x) 1/n < 1 (T(x)) for any x € W,
(b) sup__ f (X)I/ 2 max . I‘n(v)]/n 2 max_ o F*(v), for all n = 0,1,...

PROOF,

(a) Fix X ¢ W and observe that by (4.1):
f +m(x) = fm(Tnx—ng*) fn(x). Fix n sufficiently large that
ITx-ng"~L(G)1 ;< 6(L().
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. n ~ v ‘

Then, either T - ng* = L(x) in which case fm(x) =0 for all m 2 n
and part (a) trivially holds, or otherwise we have, using lemma 3.1
part (a) and (3.4):

n ko m
fm(T x-ng ) = U(L(x)) y, where y = (T™ x—ng - L(X))/"T x—ng —L(X)" .
Hence, in the latter case f (x) < T (L(x))f (x), or
( )l/n+m < 13 1/m+n n *
x im  r (Tx) lin | £ (x) - *Tw).
b) Fi ; . 1/n 1
(b) FixveV. If Y(v) is empty then supXew fn(x) > Fn(v) /n= F*(v) =0

1imsupm+mf 1/n+m

holds trivially.
Otherwise considering th. 6.1 part (b), take y ¢ Y(v) such that T (v) =
0
lu(v) y” - Let x'= v + Ay with 0 < X < §(v). Then using lemma 3.2 parts

(a) and (c) as well as (3.3), we have xo € ﬁ I(xo) = v and:

£ (k ) = @O/l = U@ NIyl =T (v, or £_(x Oyl/n _
T (v) I/n from which the flrst 1nequa11ty of part (b) follows
The second inequality is due to th. 6.1 part (e). [J
We conclude this section by observing that the upperbound
(6.3) max T (v) ™M= max max {1V ()Ml L/ | Iyl = 1,u) %y = 0}
My d d
veV veV

for the ultimate convergence rate reduces in the special case where
SPMG is a singleton, to the subdominant eigenvalue of the tpm of the
maximal gain policy; and in this case the subdominant eigenvalue is

known to provide a sharp upperbound for the convergence rate (cf. e.g.

C1il.

7. THE N-STEP CONTRACTION FACTOR

Theorem 6.2 showed that maxveVP*(v) is at the same time an upperbound for
the ultimate convergence rate and a lower bound for the maximal average
n-step contraction factor for all integers n = 1,2,... .

The following example shows that whereas the ultimate convergence rate is
strictly bounded away from one, this does not need to be the case for the
average n-step contraction factor (whatever the choice of n = 1,2,... ).

In other words we may have, for all n = 1,2,...:
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xeW
EXAMPLE 3:
k k k
vk e Py By

o
GQ
|

= (0,0) hence K(i) = L(i) for i = 1,2
'{Al | A arbitrary}. Take x = [o,vl.

N
o
<
Il

Observe that this MDP satisfies condition (H1) (cf. section 5); hence,

using lemma 5.1 part (d), we have W= EN:

™x = [0,max(0,Y-n)]

fﬁ(x) = uT“x-ng*-I(x)ud/ux-I(x)nd = “Tnx"d/“xﬂd =

max (0,Y-n)
Y
Letting Y tend to infinity one observes that sup_ fn(x) = 1 for all
n=1,2,... .
The following theorem gives under condition (H1) the necessary and
sufficient condition for the existence of a uniform (n-step) contraction

factor (for some n 2 1) .i.e. the existence of an integer MZ’ such that

(7.1) sup fn(x) <1 fornz=M™

xeW z

First define:
(7.2) R = {ieq i e R(E), for some f ¢ SP}

hy * . e .
and note that R 2 R . We next introduce the condition:

(H2) : There exists a randomized policy f € SR which has R as its single

subchain.
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THEOREM 7.1. Suppose condition (H1) holds.
(a) The existence of a uniform n-step contraction factor some m 2 1
implies (H2).

() () = (7.1) with M, < N2 + 2.

PROOF: Fix v € V, Due to lemma 5.1, parts (b) and (d) we have W = EN and

for all x ¢ EN, L(x) =v + cl for some scalar c. This implies

*

W = {x l "x—v"d > 0}

(a) Assume to the contrary that (H2) does not hold. State i is said to
reach state j, if there exists a policy f ¢ SP’ and some integer r > 0,
such that P(f)]i:j > 0. Let £* be any randomized policy which has
fzk >0 for all 1 € @,k e K(i). We claim

(7.3) there exists a pair of states jl’ j2 ¢ R such that j2 does not

reach jl'
For assuming the contrary, would imply that all states in R communicate
with each other under P(f*), i.e. either

(1) RecoRED, or

(2) ﬁ is a strict subset of R(f*), or

(3) P(f*) has R as a single subchain,
with each of these three possiblities leading to a contradiction in
view of the definition of ﬁ, and our assumption that (H2) does not hold.
Fix a policy f] € SP with j] € R(fl) and let C be the subchain of
P(f]), which contains j]. Obviously j2 does not reach any one of the
states in C. Next choose x ¢ E° such that X, =X >> 1 for i € C and X, =
0(1) otherwise where 0(1) denotes any bounded term in A. Fix n = 1.
Since

n

=1 roee oL
™%, > [P(ED ], + [)7) [R(E) a1,

and since C is a subchain of P(f]), we have

Tnx:.L =X+ 0(1), for i € C



(b)

(7.4)

(7.5)

(7.6)

33

Since j2 cannot reach C, we have (Tnx) ) = 0(1). Finally observing
that T = 0(1), we have "Tnx—Tnv“d = A + 0(1) whereas "x—v*“d =

A + 0(1) as well. Conclude that for all n = 1,2,...

[ e |
sup £ (x) 2 lim —— & = 5 20D _

thus contradicting the prerequisite.

C o0 . . *
Assume to the contrary that a sequence {x }a-l exists with x> ¢ W

and
. o 2
lim £ (x) =1 for some m = N +2.
Q> m
Due to part (b) of lemma 5.1 we have fn(xa) = HTnxa—Tand/qu—de.

Hence for each o = 1,2,... fn(xa) is unchanged by adding a multiple
of 1 to each x*. For the sake of notational simplicity we do this in
such a way that:

o

x - v =20 and (xa—v) . =0.
min

. o, e
We next restrict ourselves to a subsequence of {x }a—l such that the

same m-step policy £=(fl,...,fm) with f]”"’fm € SP’ achieves Tn(xu)

a . .
for all x in the subsequence and all n < m, 1i.e.

™ = En + Enxa for all x* in the subsequence and n < m,
q, = a(f D+P(f Ja(f__ ) +...+ P(f )...P(f,))q(f))
P =

n P(fn)"'P(fl)

Observe that the existence of this subsequence is guaranteed by the
fact that there is only a finite number of m-step policies.

Using lemma 5.1 part (f), (7.4) implies that {xa}:=1 is unbounded;
hence it follows from (7.5) that 1imm_m° Iyl = 1ima_m(xa—v)m = o

d ax
Next define:
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a x0-v x¥-v
(7.7) y = =

o o
I -v"d (x _v)max

Observe 0 < yz < 1 for all i € Q and “ya“d = 1. Since'{yq}:=] is
?
bounded we henceforth restrict ourselves to a further subsequence

which has 1]'.1110‘_)°° ya = y* (say). It then follows from (7.4) that:

. Oy e g™ ~ a_.n o_ _
1 = lim fn(x ) = lim "qn + an T v"d/(x v)max
aro >0

~ ~ o
[P (x"-v) max—[Pn(x —v)]min+0(l)

= lim 3
o (x —v)max

=[Py"] _ -[Py"]. foralln <
n’ “max n’ “min T°F &+ 0 =M

Since 0 < y* < 1 for all i € Q this implies that

= 1; [P y*] .. =0 for all n < m.
n m

~ *
(7.8) [Pny ] o in

ax

Recalling (7.6) we obtain:

n, o ~ ~
T = =
(x7) q, + an max(hl’...’hn) {q(hn)+P(hn)q(hn_])+,,,+

P(h )...P(h,)q(h )+P(h )...P(h )x"}

Dividing this equality by (xa—v*)max, and letting o tend to infinity,

we obtain:

(7.9) [pP“ny*]i = max( [P(hn)...P(hl)y*]i, for all i ¢ Q,

h .,h )

1’ n

Il £n <m,
We shall prove that

5% *o . *
(7.10) Pny ; [P(fn)"'P(fl)y ]i 0 for all 1 ¢ R and
n=20,1,...,2N.
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Assume to the contrary that there ex1sts a state JO ¢ R” such that

rp(f )...P(f )y ] = 0 for some n < 2N. Fix £ « SRMG such that R*

is the s1ng1e subchaln of P(f ) and recall from th.5.2 that

N +
P(f ) —2N+2 >0 for all t € Q, and 1 € R”. Then using (7.9):

~ * *.m-n *
[P "1, = [RGEDTTR(E)...P(£)y" ], 2

*,m+n

*
PN RGP DYT], >0

0 0

for all i € Q contradicting (7.8).
*

Define Sn= (i | ﬁny; =Y ax - 1}. It follows from (7.8) that Sn is
non-empty for n < m. Using the same arguments as were used in the
proof of th.5.2 with respect to the sets X(n), we obtain that there
is a k £ N - 1 such that S(k) ¢ S = UZ et ] S() with S being a closed
subset, i.e. containing a subchain of some policy. In other words,
ﬁ intersects S(r) for some r(k<r<N).

Finally, let f be a policy that has R as its single subchain. Fix
ieR" c ﬁ; since all states in R communicate with each other under
P(f) there exists an integer t < N such that E S (1) (E)Ej > 0.
Hence [§t+ry*]i > EjeS(r) P(f) i [P Y ] > 0, thus contradicting

(7.10) since t + r < 2N, 0

We conclude this section by observing that under (H1), a number of

equivalent formulations for (H2) can be obtained, e.g.:

(7.11) No policy f € S_ has a subchain within O\R™ which cannot be

or

P
reached from R*, i.e. if S is a subchain of some policy fo,

with S ¢ Q\R™ then there exists a policy h such that
E. P(h)t.l. > 0 for some n < N,
jeSs 1j

(7.12) R is a communicating system (cf. BATHER [1]).



36

We refer to [6] for the proofs of these equivalences and for a more detail-
ed investigation of the underlying structure. Note that the combination
of (H1) and (H2) is trivially satisfied in the unichain case.

Observe finally that in example 3, R = {1,2} and that no policy has

~

R as its single subchain.
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