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ABSTRACT 

The theory of dete:r:ministic sequencing and scheduling has expanded rapidly 

during the past years. In this paper we survey the state of the art with 

respect to optimization and approximation algorithms and interpret these in 

terms of computational complexity theory. Special cases considered are 

single machine scheduling, identical, uniform and unrelated parallel machine 

scheduling, and open shop, flow shop and job shop scheduling. We indicate 

some problems for future research and include a selective bibliography. 
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1. INTRODUCTION 

In this paper we attempt to survey the rapidly expanding area of determinis­

tic scheduling theory. Although the field only dates back to the early fif­

ties, an impressive amount of literature has been created and the remaining 

open problems are currently under heavy attack. An exhaustive discussion of 

all available material would be impossible - we will have to restrict our­

selves to the most significant results, omitting detailed theorems and proofs. 

For further information the reader is referred to the ciassic book by Conway, 

Maxwell and Miller [Conway et al. 1967], the mo~e recent introductory text­

book by Baker [Baker 1974], the advanced expository articles collected by 

Coffman [Coffman 1976] and a few survey papers and theses [Bakshi & Arora 

1969; Lenstra 1977; Liu 1976; Rinnooy Kan 1976]. 

The outline of the paper is as follows. Section 2 introduces the essen­

tial notation and presents a detailed problem classification. Sections 3, 4 

and 5 deal with single machine, parallel machine, and open shop, flow shop 

and job shop problems, respectively. In each section we briefly outline the 

relevant complexity results and optimization and approximation algorithms. 

Section 6 contains some concluding remarks. 

We shall be making extensive use of concepts from the theory of compu­

tational complexity [Karp 1972, 1975]. An introductory survey of this area 

appears elsewhere in this volume [Lenstra & Rinnooy Kan 1978] and hence 

terms like (pseudo)polynomial-time algorithm and (binary and unary) NP­

hardness will be used without further explanation. 
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2. PROBLEM CLASSIFICATION 

2.1. Introduction 

Suppose that n jobs J. (j = 1, ••• ,n) have to be processed on m machines M. 
J 1 

(i = 1, ••• ,m). Throughout, we assume that each machine can process at most 

one job at a time and that each job can be processed on at most one machine 

at a time. Various job, machine and scheduling characteristics are reflected 

by a 3-field problem classification alBIY, to be introduced in this section. 

2 • 2 • Job data 

In the first place, the following data can be specified for each Jj: 

a number of operations m.; 
J 

one or more processing times p. or p .. , that J. has to spend on the 
J 1] J 

various machines on which it requires processing; 

a release dater., on which J. becomes available for processing; 
J J 

a due dated., by which J. should ideally be completed; 
J J 

a weight w., indicating the relative importance of J.; 
J J 

a nondecreasing real cost function f., measuring the cost f.(t) 
J J 

incurred if J. is completed at time t. 
J 

In general, mj, pj, pij' rj, dj and wj are integer variables. 

2.3. Machine environment 

We shall now describe the first field a= a 1a2 specifying the machine 

environment. Let O denote the empty symbol. 

If a 1 E {o,P,Q,R}, each Jj consists of a single operation that can be 

processed on any M.; the processing time of J. on M. is p ..• The four values 
1 J 1 1] 

are characterized as follows: 

al = 0: single machine; P1j = p.; 
J 

al = P: identical parallel machines; pij = p. (i = 1 , •.• , m) ; 
J 

al = Q: uniform parallel machines; pij = qipj for a given speed factor 

qi of Mi (i = 1, ••• ,m); 

a 1 = R: unrelated parallel machines. 

If a = o, we have an open shop, in which each J. consists of a set of oper-
1 J 

ations {o1 ., ••• ,o .}. 0 .. has to be processed on M. during p .. time units, 
J mJ 1] 1 1] 

but the order in which the operations are executed is immaterial. If 
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a 1 E {F,J}, an ordering is imposed on the set of operations corresponding to 

each 

chain 

If a 1 

job. If al = F, 

co 1 ., ... ,o .). 
J ID] 

= J, we have a 

we have a flow shop, in 

0,. has to be processed 
l] 

job shop, in which each 

which each J. consists of a 
J 

on M. during p .. time units. 
l l] 

J, consists of a chain 
J 

(0 1 ., ••• ,o .) . 0 .. has to be processed on a given machine µi·J· during pi·J· 
J IDjJ l] 

time units, withµ, 1 . 1- µ .. for i = 2, ••• ,m .• 
l- 1 ] l] J 

If a 2 is a positive integer, then mis constant and equal to a 2 • If 

a 2 = 0 , then mis assumed to be variable. Obviously, a 1 = 0 if and only if 

a2 = 1. 

2.4. Job characteristics 

The second field Sc {S 1 , ••• ,S 6 } indicates a number of job characteristics, 

which are defined as follows. 

1. Sl E {pmtn, 0 } 

S1 = pmtn Preemption (job splitting) is allowed; the processing 

of any operation may be interrupted and resumed at a 

later time. 

S1 = 0 No preemption is allowed. 

2. s2 E {res,resl,o} 

s2 = 

s2 = 

3. S3 E 

S3 = 

S3 = 

S3 

4. S4 E 

S4 

res 

resl 

0 

The presence of s limited resources¾ (h = 1, •.. ,s) is 

assumed, with the property that each J. requires the use 
J 

of rhj units of¾ at all times during its execution. Of 

course, at no time may more than 100% of any resource be 

in use. 

The presence of only a single resource is assumed. 

No resource constraints are specified. 

{prec,tree,o} 

tree 

0 

{r. 'o} 
J 

r. 
J 

A precedence relation< between the jobs is specified. 

It is derived from a directed acyclic graph G with 

vertex set {1, ••• ,n}. If G contains a directed path 

from j to k, we write Jj < Jk and require that Jj is 

completed before Jk can start. 

G is a rooted tree with either outdegree at most one 

for each vertex or indegree at most one for each vertex. 

No precedence relation is specified. 

Release dates that may differ per job are specified. 
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6. 

84 = 

85 E 

85 = 

0 

{m .siii, o} 
J_ 

m.sm 
J 

We assume that r. = 0. 
J 

A constant upper bound on m. is specified (only if 
J 

al = J). 

85 = 0 No such bound is specified. 

86 E {p .. =1,pSp .. Sp, 0 } 
l.J - l.J 

86 = pij=l Each operation has unit processing time. 

2-3 

86 = p~p .. ~P Constant lower and upper bounds on p .. are specified. 
- l.J l.J 

86 = 0 No such bounds are specified. 

2.5. Optimality criteria 

The third field y E {f ,If.} refers to the optimality criterion chosen. 
max J 

Given a schedule, we can compute for each J.: 
J 

the completion time Cj; 

the lateness L. = c.-d.; 
J J J 

the tardiness T. = max{0,C.-d.}; 
J J J 

the unit penalty u. = if c. s d. then O else 1. 
J J J 

The optimality criteria most commonly chosen involve the minimization of 

where f = max.{f.(C.)} with f.(C.) = c.,L., respectively, or 
max J J J J J J J 

where Lf, = l~ 1 f.(C.) with f.(C.) = c.,T.,U.,w.C.,w.T.,w.U., respectively. 
J J= J J J J J J J J J J J J J 

It should be noted that Iw.C. and Iw.L. differ by a constant Iw.d. and 
J J J J J J 

hence are equivalent. Furthermore, any schedule minimizing L also mini-max 
mizes T and U , but not vice versa. max max 

* The optimal value of y will be denoted by y, the value produced by an 

* (approximation) algorithm A by y(A). If a known upper bound p on y(A)/y is 

* best possible in the sense that examples exist for which y(A)/y equals or 

asymptotically approaches p, this will be denoted by a dagger (t). 

2.6. Examples 

llpreclL : minimize maximum lateness on a single machine subject to max 
general precedence constraints. This problem can be solved in 
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polynomial time (Section 3.2). 

Rlpmtnlic. : minimize total completion time on a variable number of unre­
J 

lated parallel machines, allowing preemption. The complexity of this 

problem is unknown (Section 4.4.3). 

J3lp .. =lie : minimize maximum completion time in a 3-machine job shop 
J.J max 
with unit processing times. This problem is NP-hard (Section 5.4.1). 

2.7. Reducibility among scheduling problems 

Each scheduling problem in the class outlined abQve corresponds to a 8-tuple 
8 

(vi)i=l' where v. is a vertex of graph G., drawn in Figure 2.i (i= 1, ••• ,8). 
1 8 1 8 

For two Problems P' = (v!). 1 and P = (v.). 1 , we write P' ➔ P if either 
l. l.= l. i= 

v! = v. or G. contains a directed path from v! to v., for i = 1, ••• ,8. The 
l. l. l. l. l. 

reader should verify that P' ➔ P implies P' ~ P. The graphs thus define 

elementary reductions among scheduling problems. It follows that 

if P' ➔ P and PEP, then P' E P; 

if P' ➔ P and P' is NP-hard, then Pis NP-hard. 
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Figure 2.1 G1 ; c denotes an integer constant. 

res prec 

0 0 

0 

m· < m J -

2-5 

Figure 2.2 G2 • Figure 2.3 G3 • Figure 2.4 G4 • Figure 2.5 G5 • Figure 2.6 G6 • 

LW•T· 
J J 

}:w,U, 
J J 

0 LW· C· 
J J 

f 
£ s P.j~ p Lmax 

f 
p .. = I 

lj Cmax 

Figure 2.7 G7 • Figure 2.8 G8 • 





3-1 

3. SIN:;LE MACHINE PROBLEMS 

3.1. Introduction 

The single machine case has been the object of extensive research ever since 

the seminal work by Jackson [Jackson 1955] and Smith [Smith 1956]. We will 

give a brief survey of the principal results, classifying them according to 

the optimality criterion chosen. As a general result, we note that if all 

r. = 0 we need only consider schedules without preemption and without machine 
J 

idle time [Conway et al. 1967]. 

3.2. Minimizing maximum cost 

The most general result in this section is an O(n2) algorithm to solve 

llpreclf for arbitrary nondecreasing cost functions [Lawler 1973]. At 
max 

each step of the algorithm, let S denote the index set of unscheduled jobs, 

let p(S) = l· Sp., and let S' c S indicate the jobs all whose successors 
]€ J 

have been scheduled. One selects Jk for the last position among {Jjlj € S} 

by requiring that fk(p(S)) ~ fj(p(S)) for all j ES'. 

For 11 IL , this procedure specializes to Jackson's rule: schedule the max 
jobs according to nondecreasing due dates [Jackson 1955]. Introduction of 

release dates turns this problem into a unary NP-hard one [Lenstra et al. 

1977]. 

llprec,r.,p.=llL and llpmtn,prec,r.lL can still be solved in 
J J max J max 

polynomial time: first update release and due dates so that they suitably 

reflect the precedence constraints and then apply Jackson's rule continu­

ally to the set of available jobs [Lageweg et al. 1976]. 

Various elegant enumerative methods exist for solving llprec,r.lL • 
J max 

Baker and Su [Baker & Su 1974] obtain a lower bound by allowing preemption; 

their enumeration scheme simply generates all active schedules, i-e. sched­

ules in which one cannot decrease the starting time of an operation without 

increasing the starting time of another one. McMahon and Florian [McMahon & 

Florian 1975] propose a more ingenious approach; a slight modification of 

their algorithm allows very fast solution of problems with up to 80 jobs 

[Lageweg et al. 1976]. 
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3.3. Minimizing total cost 

The case 11 IIw.C. can be solved in O(n log n) time by Smith's rule: sched­
J J 

ule the jobs according to nonincreasing rations w./p. [Smith 1956]. If all 
J J 

weights are equal, this amounts to the SPT rule of executing the jobs on 

the basis of shortest processing time first, a rule that is often used in 

more complicated situations without much empirical, let alone theoretical, 

support for its superior quality (cf. Section 5.4.2). 

This result has been extended to O(n log n) algorithms that deal with 

tree-like [Horn 1972; Adolphson & Hu 1973; Sidney 1975] and even series­

parallel [Knuth 1973; Lawler 1976C] precedence constraints; see [Adolphson 

1977] for an O(n3 ) algorithm covering a slightly more general case. The 

crucial observation to make here is that, if J. < Jk with w./p. < wk/pk 
J J J 

and if all other jobs either have to precede Jj, succeed Jk, or are incom-

parable with both, then Jj and Jk are adjacent in at least one optimal 

schedule and can effectively be treated as one job with processing time 

pj+pk and weight wj+wk. By successive application of this device, starting 

at the bottom of the precedence tree, one will eventually obtain an optimal 

schedule. Addition of general precedence constraints results in NP-hardness, 

even if all p. = 1 or all w. = 1 [Lawler 1976C; Lenstra & Rinnooy Kan 1977]. 
J J 

If release dates are introduced, llr.lic. is already unary NP-hard 
J J 

[Lenstra et al. 1977]. In the preemptive case, llpmtn,r. IIc. can be solved 
J J 

by an obvious extension of Smith's rule, but, surprisingly, llpmtn,r. IIw.c. 
J J J 

is unary NP-hard [Labetoulle et al. 1977]. 

3.3.2. 1lsliw.T. 
J J 

11 IIw.T. is a unary NP-hard problem [Lawler 1977; Lenstra et al. 1977], for 
J J 

which various enumerative solution methods have been proposed, some of which 

can be extended to cover arbitrary nondecreasing cost functions. Lower bounds 

developed for the problem involve a linear assignment relaxation using an 

underestimate of the cost of assigning J. to position k [Rinnooy Kan et al. 
J 

1975], a fairly similar relaxation to a transportation problem [Gelders & 

Kleindorfer 1974, 1975], and relaxation of the requirement that the machine 

can process at most one job at a time [Fisher 1976]. In the latter approach, 
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one attaches "prices" (i.e., Lagrangean multipliers) to each unit-time 

interval. Multiplier values are sought for which a cheapest schedule does 

not violate the capacity constraint. The resulting algorithm is quite suc­

cessful on problems with up to 50 jobs, although a straightforward but clev­

erly implemented dynamic programming approach [Baker & Schrage 1977] offers 

a surprisingly good alternative. 

If all p. = 1, we have a simple linear assignment problem, the cost of 
J 

assigning J. to position k being given by f. (k). If all w. = 1, the problem 
. J J J 
can be solved by a pseudopolynomial algorithm in O(n4Ip.) time [Lawler 

J 
1977]; the computational complexity of 11 ILTj with respect to a binary 

encoding remains an open question. 

Addition of precedence constraints yields NP-hardness, even for 

llprec,p.=llLT, [Lenstra & Rinnooy Kan 1977]. 
J J 

If we introduce release dates, llr.,p.=llLw,T. can again be solved as 
J J J J 

a linear assignment problem, whereas llr.lIT. is obviously unary NP-hard 
J J 

(cf. Section 2.7). 

3.3.3. 1laliw.U. 
J J 

An algorithm due to Moore [Moore 1968] allows solution of 11 IIu. in 
J 

O(n log n) time: jobs are added to the schedule in order of nondecreasing 

due dates, and if addition of J. results in this job being completed after 
J 

dj, the scheduled job with the largest processing time is marked to be late 

and removed. This procedure can be extended to cover the case in which 

certain specified jobs have to be on time [Sidney 1973]. The problem also 

remains solvable in polynomial time if we add agreeable weights (i.e., 

p. <pk=> w. 
J J 

d. < a_ => r. s; 
J 7c J 

~ wk) [Lawler 1976A] or agreeable release dates (i.e.,. 

rk) [Kise et al. 1977]. 11 IIw.U. is binary NP-hard [Karp 
J J 

1972], but can be solved by dynamic programming in O(nlp,) time [Lawler & 
J 

Moore 1969]. 

Again, llprec,p.=lllu, 
J J 

is NP-hard [Garey & Johnson 1976A], even for 

chain-like precedence constraints [Lenstra -]. 

Of course, llr.liu. is unary NP-hard. The preemptive case 
J J 

llpmtn,r.liu. is an intriguing open problem. 
J J 

Very little work has been done on worst-case analysis of approximation 

algorithms for single machine problems. For 11 IIw.U., Sahni [Sahni 1976] 
J J 
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presents algorithms¾ with O(n3k) running time such that 

where U. = 1-U .• For lltreeliw.u., Ibarra and Kim [Ibarra & Kim 1975] give 
J J k+2J J 

algorithms Bk of order O(kn } with the same worst-case error bound. 
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4. PARALLEL MACHINE PROBLEMS 

4.1. Introduction 

Recall from Section 2.3 the definitions of identical, uniform and unrelated 

machines, denoted by P, Q and R, respectively. 

Nonpreemptive parallel scheduling problems tend to be difficult. This 

can be inferred immediately from the fact that P2l le and P2l IIw.C. are 
max J J 

binary NP-hard [Bruno et al. 1974; Lenstra et al. 1977]. If we are to look 

for polynomial algorithms, it follows that we should either restrict atten­

tion to the special case p. = 1, as we do in Section 4.2, or concern our-
] 

selves with the Ic. criterion, as we do in the first three subsections of 
J 

Section 4.3. The remaining part of Section 4.3 is entirely devoted to enu-

merative optimization methods and approximation algorithms for various NP­

hard problems. 

The situation is much brighter with respect to preemptive parallel 

scheduling. For example, Plpmtnlc has long been known to admit a simple max 
O(n) algorithm [McNaughton 1959]. Many new results for the Ic., C and 

J max 
L criteria have been obtained quite recently. These are summarized in 

max 
Section 4.4. With respect to other criteria, P2lpmtn!Iw.C. turns out to be 

J J 
NP-hard (see Section 4.4.1). Little is known about PlpmtnlIT. and 

J 
PlpmtnlI.uj; these problems remain open. However, we know from Section 3 

that llpmtn!Iw.T. and llpmtn!Iw.U. are already NP-hard. 
J J J J 

4.2. Nonpreemptive scheduling: unit processing times 

A simple transportation network model provides an efficient solution method 

for Qlp.=llLf, and Qlp.=llf • 
J J J max 

Let there be n sources j (j = 1, ••• ,n) and mn sinks (i,k) (i = 1, ••• ,m, 

k = 1, ••• ,n). Set the cost of arc (j, (i,k)) equal to c. 'k = f.(kq.). The 
l.J J l. 

arc flow xijk is to have the interpretation: 

if J. is executed on M. in the k-th position, 
J l. 

otherwise. 

Then the problem is to minimize 
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or max .. k{c .. kx.' .k} 
1,J, 1] 1] 

subject to 

I, k x. 'k = 1 for all j, 
1, 1] 

Ij xijk ~ 1 for all i,k, 

xijk 2:: 0 for all i,j,k. 

The time required to prepare the data for this transportation problem is 

O(mn2 ). A careful analysis reveals that the problem can be solved (in in­

tegers) in O(n3 ) time. Since we may assume that m ~ n, the overall running 

time is O(n3 ). 

It may be noted that some special cases can be solved more efficiently. 

For instance, Plp.=lllu, can be solved in O(n log n) time [Lawler 1976A]. 
J J 

4.2.2. Plprec,p.=llc . 
J max 

Plprec,p.=llc is known to be NP-hard [Ullman 1975; Lenstra & Rinnooy Kan 
J max 

1977]. It is an open question whether this remains true for any constant 

value of m 2:: 3. The problem is in P, however, if the precedence relation is 

of the tree-type or if m = 2. 

Pltree,p.=llc can be solved in O(n) time by Hu's algorithm [Hu 1961; 
J max 

Hsu 1966; Sethi 1976A]. The level of a job is defined as the number of jobs 

in the unique path to the root of the precedence tree. At the beginning of 

each time unit, as many available jobs as possible are scheduled on them 

machines, where highest priority is granted to the jobs with the largest 

levels. Thus, Hu's algorithm is a nonpreemptive list scheduling algorithm, 

whereby at each step the available job with the highest ranking on a prior­

ity list is assigned to the first machine that becomes available. It can 

also be viewed as a critical path scheduling algorithm: the next job chosen 

is the one which heads the longest current chain of unexecuted jobs. 

If the precedence constraints are in the form of an intree (each job 

has at most one successor), then Hu's algorithm can be adapted to minimize 

L ; in the case of an outtree (each job has at most one predecessor), the 
max 

L problem turns out to be NP-hard [Brucker e.t al. 1977]. max 2 
P2lprec,p.=llc can be solved in O(n) time [Coffman & Graham 1972]. 

J max 
Previous polynomial-time algorithms for this problem are given in [Fujii 
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et al. 1969, 1971; Muraoka 1971]. 

In the approach due to Fujii et al., an undirected graph is constructed 

with vertices: corresponding to jobs and edges {j,k} whenever Jj and Jk can 

be executed simultaneously, i.e., Jj f- Jk and Jk f- Jj. An optimal schedule 

is then derived from a maximum cardinality matching in the graph. Such a 

matching can be found in O(n3 ) time [Lawler 1976B]. 

The Coffman-Graham approach leads to a list algorithm. First the jobs 

are labelled in the following way. Suppose labels 1, ..• ,k have been applied 

and Sis the subset of unlabelled jobs all of whose successors have been 

labelled. Then a job in Sis given the label k+l if the labels of its imme­

diate successors are lexicographically minimal with respect to all jobs in 

S. The priority list is given by ordering the jobs according to decreasing 

labels. It is possible to execute this algorithm in time almost linear in 

n+a, where a is the number of arcs in the transitive reduction of the pre­

cedence graph (all arcs implied by transitivity removed) [Sethi 1976B]. 

h h t . f h . . ( 2.8) Note, owever, tat cons ruction o sue a representation requires On 

time [Aho et al. 1972]. 

Garey and Johnson present polynomial algorithms for P2lprec,p.=llc 
J max 

where, in addition, each job becomes available at its release date and has 

to meet a given deadline. In this approach, one obtains an optimal schedule 

by processing· the jobs in order of increasing modified deadlines. This modi­

fication requires O(n2 ) time if all r. = 0 [Garey & Johnson 1976A] and O(n3 ) 
J 

time in the general case [Garey & Johnson 1977]. 

We note that Plprec,pj=llicj is NP-hard [Lenstra & Rinnooy Kan 1977]. 

Hu's algorithm does not yield an optimal Ic. schedule in the case of intrees, 
J 

but in the case of outtrees critical path scheduling minimizes both C 
max 

and 

Ic. [Rosenfeld-]. The Coffman-Graham algorithm also minimizes Ic. [Garey-]. 
J J 

As far as approximation algorithms for Plprec,p.=llc are concerned, the 
J max 

NP-hardness proof given in [Lenstra & Rinnooy Kan 1977] implies that, un-

less P = NP, the best possible worst-case bound for a polynomial-time algo­

rithm would be j· The performance of both Hu's algorithm and the Coffman­

Graham algorithm has been analyzed. 

When critical path (CP) scheduling is used, Chen and Liu [Chen 1975; 

Chen & Liu 1975] and Kunde [Kunde 1976] show that 

C (CP)/C * 
max max 1 

m-1 

form= 2, 

for m ~ 3. 
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In [Kaufman 1972] an example is constructed for which no CP schedule is op­

timal. 

Lam and Sethi [Lam & Sethi 1977] use the Coffman-Graham (CG) algorithm 

to generate lists and show that 

* C (CG)/C 
max max 

(m ~ 2). (t) 

If SS denotes the algorithm which schedules as the next job the one having 

the greatest number of successors then it can be shown [Ibarra & Kim 1976] 

that 

* 4 C (SS)/C $ -3 form= 2. 
max max (t) 

Examples show that this bound does not hold form~ 3. 

Finally, we mention some results for the more general case in which 

p. e {1,k}. Fork= 
J 

2, both P2jprec,1$p,$2lc and P2jprec,1$p,$21Lc. are 
J max J J 

NP-hard [Ullman 1975; Lenstra & Rinnooy Kan 1977]. For P2lprec,p.e{1,k}lc , 
J max 

Goyal [Goyal 1977B] proposes a generalized version of the Coffman-Graham 

algorithm (GCG) and shows that 

C (GCG)/c* $ {~3 max max 
2 

4.2.3. Pjres,8,p.=llc 
J max 

fork= 2, 

for k ~ 3. 
(t) 

We now take up the variation in which resource constraints enter the model. 

P2jres,p.=1jc can be formulated and solved as a maximum cardinality 
J max 

matching problem in an obvious way. However, P2jres1,tree,p.=1jc and 
J max 

P3jres1,p.=llc are unary NP-hard [Garey & Johnson 1975]. 
J max 

For the case Pjres,prec,p.=1,~nlc , the following results for list sched-
J max 

uling (LS) using an arbitrary priority list are known [Garey et al. 1976A]: 

* 1 * 1 C (LS)/C $ - sC + -2 s + 1 
max max 2 max 

and examples exist with 



4-5 

For the CP scheduling algorithm, the bound improves considerably: 

* 17 C (CP)/C ~ -10 s + 1 (s ~ 0). 
max max 

(t) 

Let IMR denote the algorithm which schedules jobs according to decreasing 

maximum resource requirement. Then 

* 17 C (DMR)/C ~ -10 s + 1. max max 

In the other direction, examples are given in [Garey et al. 1976A] for any 

£ > 0 with 

* foo 1 C (DMR)/C > l - £ = max max i=l a. 1.69 ••• - £ 
i 

where a 1 = 1 and a. 1 = a. (a.+1) for i ~ 1. 
i+ i i 

An even better bound applies to the case of independent jobs, i.e., 

Plres,p.=1,m~nlc : 
J max 

C (LS)~ (s + 2-)c* + 7 
max 10 max 2 (s ~ 1), 

* where the coefficient of C is best possible. max 
The case Plresl,p.=1,m~nlc has been the subject of intensive study 

J max 
(under the name of bin packing) during the past few years. The problem can 

be viewed as one of placing a number of items with weights r 1j into a mini­

mum number of bins of capacity 1. It is also known as the one-dimensional 

cutting stock problem. It is for this scheduling model that some of the 

deepest results have been obtained. Rather than giving a complete survey of 

what is known for this model, we shall instead give a sample of typical 

results and refer the reader to the literature for details [Johnson 1973, 

1974; Johnson et al. 1974; Graham 1976; Garey & Johnson 1976B]. 

Given a list L of items, the first-fit (FF) algorithm packs the items 

successively in the order in which they occur in L, always placing each 

item into the first bin into it will validly fit (i.e., so that the sum of 

the weights in the bin does not exceed its capacity 1). The number of bins 

required by the packing is just the time required to execute the jobs using 

Las a priority list. If instead of choosing the first bin into which an 

item will fit, we always choose the bin for which the unused capacity is 

minimized, then the resulting procedure is called the best-fit (BF) algo­

rithm. Finally, when Lis first ordered by decreasing weights and then 

first-fit or best-fit packed, the resulting algorithm is called first-fit 
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decreasing (FFD) or best-fit decreasing '(BFD), respectively. 

The basic results which apply to these algorithms are the following 

[Johnson et al. 1974; Garey et al. 1976B]: 

C (FF) S f.!2. c* 1· 
max 10 max' 

r17 * 1 cmax(BF) s 1o cmax; 

11 * C (FFD) S - C + 4; 
max 9 max 

C (BFD) S .!.!_ c* + 4. 
max 9 max 

The only known proofs of the last two inequalities are extremely lengthy. 
17 11 

Examples can be given which show that the coefficients 1o and 9 are best 

possible. 

If constraints are made on the resource requirements, 

for all j, then the following results hold: 

if ;:: 1 
then C (BFD) s C (FFD) · r - 6 max max ' 

if ;:: 1 
then C (BFD) C (FFD) ; r = - 5 max max 

1 * L~-lJ-1; if r s 
2 

then C (FF)/C S 1 + max max 

i.e., r s r 
lj 

8 1 71 * if r E (29'2] then C (FFD) s -c + C for some constant c. 
60 max max 

s r 

For these and a number of similar results, the reader is referred to [Graham 

1976]. 

Krause [Krause 1973] (see also [Krause et al. 1975, 1977]) considers 

the case Pjresl,p.=llc • He proves that 
J max 

* 27 24 
(C (LS)-2)/C < -10 - 10m' max max 

(C (DMR)-1)/c* S 2 2 (m;:: 2), 
max max m 

and he gives examples for which 

* C (LS)/C 
max max 

27 ;:: 
10 

37 
lorn· 

Krause also proves several bounds for the preemptive case Plpmtn,resllc , 
max 

one of which is 

(DM )/ * < 3 - 3 cmax R cmax m (m ;:: 2) • 
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Goyal [Goyal 1977A] studies the case Plresl,prec,p.=llc with the 
J max 

restriction that each resource requirement is either zero or 100%. Thus, 

two jobs both requiring the use of the resource can never be executed simul­

taneously. This problem is already NP-hard form= 2 [Coffman 1976]. Goyal 

proves that 

* 2 C (LS)/C ~ 3 
max max m' 

* C (CG) /C 
max max 

for m = 2, 

where in the latter case a priority list is formed according to the CG 

labelling algorithm described earlier. 

4.3. Nonpreemptive scheduling: general processing times 

4.3.1. Pl IIw.c. 
J J 

(t) 

The following generalization of the SPT rule for 11 IIc. (see Section 3.3.1) 
J 

solves Pl IIc. in O(n log n) time [Conway et al. 1967]. Assume n = km (dummy 
J 

jobs with zero processing times can be added if not) and suppose 

p 1 ~ ~ p • Assign the m jobs J ( . 1 ) 1 ,J ( . 1 ) 2 , ••• ,J. to m different 
n J- m+ J - m+ J m . 

machines (j = 1, ••• ,k) and execute the k jobs assigned to each machine in 

SPT order. 

Bruno, Coffman and Sethi [Bruno et al. 1974] consider the algorithm 

RPT: first apply list scheduling on the basis of largest processing time 

first (LPT), then reverse the order of jobs on each machine, and finally 

left justify the schedule. RPT has the same behavior as LPT with respect 

to the C criterion (see Section 4.3.5.1); however, it only yields 
max 

Ic. (RPT) /LC~ ~ m. 
J J 

( t) 

With respect to Pl IIw.C., similar heuristics are described and tested empiri­
J J 

cally by Baker and Merten [Baker & Merten 1973]. 

Eastman, Even and Isaacs [Eastman et al. 1964] show that after renum­

bering the jobs according to nonincreasing ratios w./p. 
J J 

I 1 ln ~ ~ <In. lj 1 In w.C.(LS) - -2 ' 1 w.p. 1 k 1 w.pk - -2 . 1 w.p.). 
J J J= J J m J= = J J= J J 

(t) 

It follows from this inequality that 
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In [Elmaghraby & Park 1974; Barnes & Brennan 1977] branch-and-bound a~go­

rithms based on this lower bound are developed. 

Sahni [Sahni 1976] constructs algorithms 1\ (in the same spirit as his 

approach for 11 IIw.U. mentioned in Section 3.3.3) with O(n(n2k)m-l) running 
J J 

time for which 

Form 2 = 2, the running time of A2 can be improved to O(n k). 

4.3.2. QI IIc. 
J 

The algorithm for solving Pl IIc. given in the previous section can be 
J 

generalized to the case of uniform machines [Conway et al. 1967]. If J. is 
J 

the k-th last job executed on M., a cost contribution kp .. = kq.p. is in-
1 1] 1 J 

curred. Ic. is a weighted sum of the p. and is minimized by matching then 
J J 

smallest weights kq. in nondecreasing order with the p. in nonincreasing 
1 . J 

order. The procedure can be implemented to run in O(n log n) time [Horowitz 

& Sahni 1976]. 

4.3.3. RI IIc. 
J 

RI IIc. can be formulated and solved as an mxn transportation problem [Horn 
J 

1973; Bruno et al. 1974). Let 

= {01 xijk 

if J. is the k-th last job executed on M., 
J l. 

otherwise. 

Then the problem is to minimize 

subject to 

I:=1 l~=l xijk = 1 for all j, 

I;=l xijk :;;; 1 for all i,k, 

xijk 2: 0 for all i,j,k. 
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This problem, like the similar one in Section 4.2.1, can be solved in O(n3 ) 

time. 

4.3.4. Other cases: enumerative optimization methods 

As we noted in Section 4.1, P21 le and P21 IIw.e. are NP-hard. Hence it 
max J J 

seems fruitless to attempt to find polynomial-time optimization algorithms 

for criteria other than Ie .. Moreover, P2ltreelie. is known to be NP-hard, 
J J 

both for intrees and outtrees [Sethi 1978]. It follows that it is also not 

possible to extend the above algorithms to probl_ems with precedence con­

straints. The only remaining possibility for optimization methods seems to 

be implicit enumeration. 

RI le can be solved by a branch-and-bound procedure described in 
max 

[Stern 1976]. The enumerative approach for identical machines in [Bratley 

et al. 1975] allows inclusion of release dates and deadlines as well. 

A general dynamic programming technique [Rothkopf 1966; Lawler & Moore 

1969] is applicable to parallel machine problems with thee , L , IwJ.eJ. max max 
and Iw.u. optimality criteria, and even 

J J 
to problems with the Iw.T. crite­

J J 
rion in the special case of a common due date. 

Let us define F. (t1 , ... ,t) as the minimum cost of a schedule without 
J m 

idle time for J 1 , .•. ,Jj subject to the constraint that the last job on Mi 

is completed at time t., for i = 1, •.. ,m. Then, in the case off crite-
1 max 

ria, 

F.(t1 , ... ,t) = minl<"< {max{f.(t.),F. 1 (t1 , ... ,t.-p .. , ... ,t )}}, 
J m -1-m J 1 J- 1 1] m 

and in the case of It. criteria, 
J 

F.(t1,··-,t) = minl<"< {f.(t.) + F. 1(t1,··•,t.-p .. , ... ,t )}. J m -1-m J 1 J- 1 1J m 

In both cases, the initial conditions are 

if t. = 0 for i = 1, .•• ,m, 
1 

otherwise. 

Appropriate implementation of these equations yields O(mnem-l) computations 

for a variety of problems, where e is an upper bound on the completion time 

of any job in an optimal schedule. Among these 

Q 11 L and Q 11 L w . e . . P 11 I w . U . can be solved in 
max · J J J J 

problems are P I r . I e , 
J max 

O(mn(max.{d.})m) time. 
J J 
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Still other dynamic programming approaches can be used to solve Pl !If. 
J 

and Pl !If in O(m min{3n,n2nC}) time, but these are probably of little 
max 

practical importance. 

4.3.5. Other cases: approximation algorithms 

4.3.5.1. Pl le max 

By far the most studied scheduling model from the viewpoint of approximation 

algorithms is Pl le • We refer to [Garey et al~ 1977] for an easily read­max 
able introduction into the techniques involved in many of the "performance 

guarantees" mentioned below. 

Perhaps the earliest and simplest result on the worst-case performance 

of list scheduling is given in [Graham 1966]: 

* C (LS)/C max max 
$ 2 - ! 

m 
(t) 

If the jobs are selected in LPT order, then the bound can be considerably 

improved, as is shown in [Graham 1969]: 

* C (LPT)/C max max 
4 1 

:s; 3 - 3m· (t) 

A somewhat better algorithm, called multifit (MF) and based on a completely 

different principle, is given in [Coffman et al. 1977]. The idea behind MF 

is to find (by binary search) the smallest "capacity" a set of m "bins" can 

have and still accommodate all jobs when the jobs are taken in order of non­

increasing p. and each job is placed into the first bin into which it will 
J 

fit. The set of jobs in the i-th bin will be processed by M .• If k packing 
l. 

attempts are made, the algorithm (denoted by MFk) runs in time O(n log n + 

knm) and satisfies 

We note that if the jobs are not ordered by decreasing p. then all that can 
J 

be guaranteed by this method is 

* 2 C (MF)/C $ 2 - -max max m+1· (t) 

The following algorithm Zk was introduced in [Graham 1969]: schedule the k 

largest jobs optimally, then list schedule the remaining jobs arbitrarily. 
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It is shown in [Graham 1969] that 

c (Zk)/c* s 1 + (1 - m!)/(1 + [m~]> max max 

and that when m divides k, this is best possible. Thus, we can make the bound 

as close to 1 as desired by taking k sufficiently large. Unfortunately, the 

best bound on the running time is O(nkm). 

A very interesting algorithm for Pl le is given by Sahni [Sahni 1976]. 
max 

He presents algorithms Ak with O(n(n2k)m-l) running time which satisfy 

* C (Ak)/C max max 
1 

s 1 + k. 

Form 

cases 

= 2, al9orithm A2 can be improved to run in time O(n2k). As in the 

of 11 IIw.U. (Section 3.3.3) and Pl IIw.C. (Section 4.3.1), the algo-
J J J J 

rithms Ak are based on a clever combination of dynamic programming and 

"rounding" and are beyond the scope of the present discussion. 

Several bounds are available which take into account the processing 

times of the jobs. In [Graham 1969] it is shown that 

* C (LS) /C 
max max 

s 1 + ( m-1 ) max . { p . } / l . p .. 
J J J J 

For the case of LPT, Ibarra and Kim [Ibarra & Kim 1977] prove that 

C (LPT)/c* s 1 + 2 (m-l) for n ~ 2(m-1)max.{p.}/min.{p.}. 
max max n J J J J 

The following local interchange (LI) algorithm gives a slight improvement 

over the original 2 - ! bound: assign jobs to machines arbitrarily, then 
m 

move individual jobs and interchange pairs of jobs as long as C can be 
max 

decreased by any such change. It then follows [Graham-] that 

* C (LI)/C 
max max 

s 2 - - 2-m+l. (t) 

In [Bruno et al. 1974] the Conway-Maxwell-Miller (CMM) algorithm for solving 

Pl IIc. (see Section 4.3.1) is considered. Let c* (CMM) be the minimum com-
J max 

pletion time among all schedules that can be generated by CMM. Then 

* C (CMM)/C (LPT) 
max max 

* * C (CMM)/C 
max max 

s 2 - ! 
m' 

1 s 2 - -. 
m 

( t) 

( t) 

An interestinq variation on the C criterion arises in the work of Chandra 
max 

and Wong [Chandra & Wong 1975]. They consider the case Pl ILB~, where B. 
l l 
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denotes the completion time of the job executed last on M., and establish 
i 

the surprisingly good behavior of LPT: 

They also construct examples for which 

Finally, we mention the following result [Garey et al. -]. For any LPT sched-

ule, let t denote the latest possible time at which a machine can become 
max 

idle and let t . denote the earliest time a machine can be idle. Then 
min 

I < 4m-2 
t t . - 3 1 max min m-

and this bound is best possible. 

4.3.5.2. QI le max 

In the literature on approximation algorithms for scheduling problems, it is 

usually assumed that unforced idleness (UI) of machines is not allowed, i.e., 

a machine cannot be idle when jobs are available. In the case of identical 

machines, UI need not occur in an optimal schedule if there are no prece­

dence constraints or if all pj = 1. Allowing UI may yield better solutions, 

however,inthe cases which are to be discussed in Sections 4.3.5.2-6. The 

optimal value of C under the restriction of no UI will be denoted by 
max 

* * C , the optimum if UI is allowed by C (UI). 
max max 

Liu and Liu [Liu & Liu 1974A, 1974B, 1974C] study numerous questions 

dealing with uniform machines. We outline some of their results. 

For the case that q 1 = ..• = 4m_ 1 = 1, 4m = q ~ 1, they prove 

* C (LPT)/C (UI) 
max max 

:,; q+2 {
2(m-1+q) 

m-l+q 
2 

for q:,; 2, 

for q > 2. 

For the general case, they define the algorithm~ as follows: schedule the 

k longest jobs first, resulting in a completion time of Ck(J\), and schedule 

the remaining tasks for a total completion time of C (A.). If C (Ak) > max --k max 

:,; 1 + 1 
Q 

1 
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where all q. ~ 1 and 
1. 1 

Q = max{min .{r k+l 1.r qj l - r qj r }, k+l }-
J \ r l q. q. \ 

li qi J J liqi 

This is best possible when the qi. are integers and 'i'.q. divides k. L.1. 1. 

Gonzalez, Ibarra and Sahni [Gonzalez et al. 1977] consider the follow-

ing generalization LPT' of LPT: assign each job, in order of nonincreasing 

processing time, to the machine on which it will be completed soonest. Thus, 

unforced idleness may occur in the schedule. 

For the case that q 1 = 

* e (LPT') /e 
max max 

~ {1+~ 
2 1 
3 2m 

For the general case, they show 

* e (LPT') /e 
max max 

s 2 - - 2-m+1 · 

= ~-l = 1, ~ ~ 1, they show that 

form 2, 
(t) 

for m > 2. 

* 3 Also, examples are given for which e (LPT')/e approaches as m tends 
max max 2 

to infinity. 

4.3.5.3. RI le max 

Very little is known about approximation algorithms for this model. Ibarra 

and Kim [Ibarra & Kim 1977] consider six algorithms, typical of which is to 

schedule J. on the machine that executes it fastest, i.e., on an M. with 
J 1. 

minimum p. . . For all six algorithms A they prove . l.J 

* e (A)/C Sm 
max max 

with equality possible for four of the six. For the other two, they conjec­

ture 

* e (A) /C 
max max 

? 
s 2. 

For the special case R21 le , they give a complicated algorithm G (however, 
max 

with O(n log n) running time) such that 

* e (G) /C 
max max 

1+/s s 2 • (t) 

In a variation on RI le ' max 
we assume that each J. has a processing time p. 

J J 
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and a fixed memory requirement 'I J . I and that each 
J 

M. has a memory capacity 
l. 

IM. I. We require that IM. I 2:: IJ. I in order for M. 
l. l. J l. 

to be able to execute Jj, 

i.e., 

= {pooj pij 

if IM. I 2:: I J. I , 
l. J 

otherwise. 

Kafura and Shen [Kafura & Shen 1977] show 

They also note that when mis a power of 2, the bound can be achieved. 

Suppose a list is formed in order of decreasing IJ. I; this algorithm 
J 

is denoted by LMF (largest memory first). It can be shown [Kafura & Shen 

1977] that 

A refinement of LMF is LMTF where ties in IJ. I are broken by decreasing 
J 

order of p .• In this case, 
J 

C (LMTF)/c* ~ {~
2 max max 1 

m-1 

form= 2, 

form 2:: 3. 

(t) 

(t) 

Kafura and Shen also give a complicated (but polynomial-time) algorithm 2D 

for which 

Other results for this model may be found in [Kafura & Shen 1976]. 

4.3.5.4. Pjpreclc max 

In the presence of precedence constraints it is somewhat unexpected 
1 [Graham 1966] that the 2 bound still holds, i.e., 
m 

(t) 

Now, consider executing the set of jobs twice: the first time using proces­

sing times p., precedence constraints, m machines and an arbitrary priority 
J 

list, the second time using processing times pj ~ pj, weakened precedence 
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[Graham 1966] 

m-1 
C' (LS)/C (LS) S 1 + -m• · max · max 
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(t) 

Even when critical path (CP) scheduling is used, examples exist [Graham-] 

for which 

* C (CP) /C max · max 
1 = 2 - -. 
m 

It is known [Graham-] that unforced idleness (UI) has the following behav­

ior: 

C (LS)/c* (UI) S 2 - ! 
max · max m 

(t) 

* Let C (pmtn) denote the optimal value of C if preemption is allowed. 
max max 

As in the cas,e of UI, it is known [ Graham - ] that 

* C (LS)/C (pmtn) 
max · max 

:;; 2 - !. 
m 

Liu [Liu 1972] shows that 

* * C (UI)/C (pmtn) S 
max · max 

2 - _2_ 
m+l. 

(t) 

(t) 

Relatively little is known in the way of approximation algorithms for the 

more special case Pltreelc . It is conjectured in [Denning & Scott Graham 
max 

1973] that 

If true this would be best possible as examples show. For the special case 

that the precedence constraints form an intree, Kaufman [Kaufman 1974] 

shows that 

C ( CP ) S C * (pmtn) + max . { p . } - f ! max . { p . } 1. 
max . max J J m J J 

4 • 3 • 5 • 5 • Q I pr,ec I C 
max 

Liu and Liu [Liu & Liu 1974B] also consider the presence of precedence con­

straints in the case of uniform machines. They show that, when unforced 

idleness or preemption is allowed, 
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* C (LS)/C (UI) 
max max 

(t) 

(t) 

1 
When all q. = 1 this reduces to the earlier 2 - bounds for these questions 

i m 
on identical machines. 

Suppose that the jobs are executed twice: the first time using m ma­

chines of speeds q 1 , ••• ,4m, the second time using m' machines of speeds 

I I T.h q 1 , ..• ,~,. en 

C' (LS)/C (LS) S max.{q.}/min.{q'.} + L,q~/L,q'. - max.{q.}/L,q~. (t) 
max max i i i i ii ii i i ii 

Note 

of 1 

that when 
m-1 

all q. = 1, this reduces to the previously mentioned bound 
i 

+ -,-. 
m 

We mention here two rather special results of Baer [Baer 1974]. He con-

structs an algorithm B based on the CG labelling algorithm which has the 

following behavior. For Q2ltreelc with q 2/q1 = 3, max 

* C (B) S C + 1; 
max max 

for Q2lpreclc with q 2/q1 = 2, max 

* 6 C (B)/C S -max max 5· 

4.3.5.6. Plres,preclc max 

The most general bound for Plres,preclc is given in [Garey & Graham 1975]. 
max 

It states 

(t) 

and, in fact, examples withs= 1 are given which achieve this bound. Thus, 

the addition of even a single resource in the presence of precedence con­

straints can have a drastic effect on the worst-case behavior of an arbi­

trary priority list. 

For Plreslc , it is shown in [Garey & Graham 1975] that form~ 2 
max 

C (LS)/c* s . {m+l s + 2 - 2s+l}. max max min -2-, m 

With the restriction that m ~ n, s ~ 1, this can be improved to 

* C (LS)/C S s + 1. 
max max 

(t) 

(t) 
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The techniques used to prove this inequal'ity involve an interesting appli­

cation of Ramsey theory, a branch of combinatorics. 

4.4. Preemptive scheduling 

4.4.1. Plpmtnlic. 
J 

A theorem of McNaughton [McNaughton 1959] states that for Plpmtn!Iw.C. there 
J J 

is no schedule with a finite number of preemptions which yields a smaller 

criterion value than an optimal nonpreemptive scqedule. The finiteness 

restriction can be removed by appropriate application of results from open 

shop theory. It therefore follows that the procedure of Section 4.3.1 can 

be applied to solve Pjpmtn!Icj. It also follows that P2jpmtnliwjcj is NP­

hard, since P2j IIw.C. is known to be NP-hard. 
J J 

McNaughton's theorem does not apply to uniform machines, as can be demon­

strated by a simple counterexample. There is, however, a polynomial algo­

rithm for Qlpmtnlic .. 
J 

One can show that there exists an optimal preemptive schedule in which 

cj ~ Ck if pj < pk [Lawler & Labetoulle 1977]. Accordingly, first place the 

jobs in SPT order. Then obtain an optimal schedule by preemptively schedul­

ing each successive job in the available time on them machines so as to 

minimize its completion time [Gonzalez 1977]. This procedure can be imple­

mented in O(n log n + mn) time and yields an optimal schedule with no more 

than (m-1) (n-~) preemptions. It has been extended to cover the case in which 

Ic. is minimized subject to a common deadline for all jobs [Gonzalez 1977]. 
J 

4.4.3. Rlpmtnlic. 
J 

Very little is known about Rjpmtnlic .. We conjecture that the problem is 
J 

NP-hard. However, this remains one of the more vexing questions in the area 

of preemptive scheduling. 
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4.4.4. Plpmtn,preclc 
max 

An obvious lower bound on the value of an optimal Plpmtnlc schedule is 
max 

given by 

A schedule meeting this bound can be constructed in O(n) time [McNaughton 

1959]: just fill the machines successively, scheduling the jobs in any order 

and splittinq a job whenever the above time bound is met. The number of 

preemptions occurring in this schedule is at most m-1. It is possible to 

design a class of problems for which this number is minimal, but the general 

problem of minimizing the number of preemptions is easily seen to be NP-hard. 

In the case of precedence constraints, Pipmtn,prec,p.=1Jc turns out 
J max 

to be NP-hard [Ullman 1976], but Plpmtn,treelc and P2lpmtn,preclc can 
max max 

be solved by a polynomial-time algorithm due to Muntz and Coffman [Muntz & 

Coffman 1969,, 1970]. This is as follows. 

Define Jl. (t) to be the level of a J. wholly or partly unexecuted at 
J J 

time t. Suppose that at time t m' machines are available and that n' jobs 

are currentlv maximizing £. (t). If m' < n', we assign m' /n' machines to 
~ J 

each of then' jobs, which implies that each of these jobs will be executed 

at speed m'/n'. If m' ?: n', we assign one machine to each job, consider the 

jobs at the next highest level, and repeat. The machines are reassigned 

whenever a job is completed or threatens to be processed at a higher speed 

than another one at a currently higher level. Between each pair of succes­

sive reassignment points, jobs are finally rescheduled by means of 

McNaughton's algorithm for PlpmtnJc . The algorithm requires O(n2 ) time 
max 

[Gonzalez & Johnson 1977]. 

Recently, Gonzalez and Johnson [Gonzalez & Johnson 1977] have developed 

a totally different algorithm that solves Plpmtn,treelc by starting at 
max 

the roots rather than the leaves of the tree and determines priority by con-

sidering the total remaining processing time in subtrees rather than by 

looking at critical paths. The algorithm runs in O(n log m) time and intro­

duces at most n-2 preemptions into the resulting optimal schedule. 

Lam and Sethi [Lam & Sethi 1977], much in the same spirit as their 

work mentioned in Section 4.2.2, analyze the performance of the Muntz­

Coffman (MC) algorithm for Plpmtn,preclc . They show 
max 

* $2--2 C (MC)/C 
max max m 

(m ?: 2) • ( t) 
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Horvath, 

rithm to 

sults in 

Lam and Sethi [Horvath et al. 1977] adapt the Muntz-Coffman algo-

solve Qlpmtnlc and 02lpmtn,preclc in O(mn2 ) time. This re-
max - max 2 

an optimal schedule with no more than (m-l)n preemptions. 

A complicated, but computationally efficient, algorithm due to Gonzalez 

and Sahni [Gonzalez & Sahni 1978] solves Qlpmtnlc in O(n) time, if the 
max 

jobs are given in order of nonincreasing p. and the machines in order of 
J 

nondecreasing q .. This procedure yields an optimal schedule with no more 
1. 

than 2(m-1) preemptions, which can be shown to be a tight bound. 

The optimal value of C is given by 
max 

where p 1 ~ ..• ~ pn and q 1 s ... s ~- This result generalizes the one given 

in Section 4.4.4. 

The Gonzalez-Johnson algorithm for Plpmtn,treelc mentioned in the 
max 

previous section can be adapted to the case Q2lpmtn,treelc . max 
In [Horvath et al. 1977] it is shown that for Qjpmtn,precjc , criti­

max 
cal path scheduling has the bound 

* C (CP) /C 
max max 

and examples are given for which the bound (~)½ is approached arbitrarily 
8 

closely. 

4.4.6. Rjpmtnlc 
max 

Many preemptive scheduling problems involving independent jobs on unrelated 

machines can be formulated as linear programming problems [Lawler & 

Labetoulle 1977]. For instance, solving Rjpmtnlc is equivalent to mini-
max 

mizing 

C 
max 

subject to 

\1'.1 1 x .. /p .. =1 (j=l, ... ,n), 
l1.= l.J l.J 

X,. s C 
l.J max 

(j = 1, ... ,n), 
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x .. 2': 0 
1.J 

C 
max 

( i = 1, ... ,m) , 

(i = 1, ••. ,m, j = 1, •.. ,n). 

In this formulation x .. represents the total time spent by J. on M .. Given 
1.J J 1. 

a solution to the linear program, a feasible schedule can be constructed in 

polynomial time by applying the algorithm for olpmtnlc , discussed in 
max 

Section 5.2.2. 

This procedure can be modified to yield an optimal schedule with no 

more than about J m2 preemptions. It remains an open question as to whether 

O(m2 ) preemptions are necessary for an optimal preemptive schedule. 

There is some evidence that it may be possible to solve the linear 

program in polynomial time. It is known that, for fixed m, the problem can 

be solved in O(n2 (m-l)) time; the special case R2lpmtnlc can be solved 
max 

in O(n) time [Sahni et al. 1977]. 

We note that a similar linear programming formulation can be given for 

the minimization of L [Lawler & Labetoulle 1977]. 
max 

4.4.7. Plpmtn,r.jL 
J max 

PjpmtnjL and Pjpmtn,r.lc can be solved by a procedure due to Horn 
max 2 J max 

[Horn 1974]. The O(n) running time has been reduced to O(mn) [Gonzalez & 

Johnson 1977]. 

More generally, the existence of a feasible preemptive schedule with 

given release dates and deadlines can be tested by means of a network flow 

model in O(n3 ) time [Horn 1974]. A binary search can then be conducted on 

the optimal value of L , with each trial value of L inducing deadlines 
max max 

which are checked for feasibility by means of the network computation. It 

can be shown that this yields an O(n3 min{n2 ,log n + log max.{p.}}) algo­
J J 

rithm [Labetoulle et al. 1977]. 

4.4.8. Qlpmtn,r. IL 
J max 

In the case of uniform machines, the existence of a feasible preemptive 

schedule with given release dates and a common deadline can be tested in 

O(n log n + mn) time; the algorithm generates O(mn) preemptions in the 

worst case [Sahni & Cho 1977]. More generally, Qjpmtn,r.lc _ and, by sym-
2 2 J mctX 

metry, QlpmtnlL are solvable in O(m n+n) time; the number of preemptions 
max 
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generated is O(n2) [Labetoulle et al. 1977]. 

The feasibility test mentioned in the previous section has been adapted 

to the case of two uniform machines [Bruno & Gonzalez 1976] and extended to 

a polynomial-time algorithm for Q2lpmtn,r.lL [Labetoulle et al. 1977]. 
J max 

It appears n~t unlikely that the Gonzalez-Johnson algorithm for 

Plpmtn,treelc and the above mentioned algorithm for Qlpmtn,r.lc allow max J max 
a common generalization that will make Qlpmtn,treelc solvable in polyno-max 
mial time. 
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5. OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS 

5.1. Introduction 

We now pass on to problems in which each job requires execution on more than 

one machine. Recall from Section 2.3 that in an open shop (denoted by 0) the 

order in which a job passes through the machines is immaterial, whereas in a 

flow shop (F) each job has the same machine ordering (M1 , ••• ,Mm) and in a 

job shop (J) possibly different machine orderings are specified for the jobs. 

we survey these problem classes in Sections 5.2,, 5.3 and 5.4, respectively. 

An obvious extension of this type of problem involves machines which 

can process more than one job at the same time. The resulting resource con­

strained project scheduling problems are extremely hard to solve. We refer 

to surveys by Davis [Davis 1966, 1973] that contain an extensive bibliography. 

We shall be dealing exclusively with the C criterion. Other optimal-max 
ity criteria lead usually to NP-hard problems, even form= 2 [Garey et al. 

1976B; Lenstra et al. 1977]; a notable exception is 021 IIcj, which is open. 

Only a few enumerative algorithms for problems involving criteria other than 

C have been developed, e.g., for F2j IIc. [Ignall & Schrage 1965], 
m~ J 

Fj IIw.C. [Townsend 1977A], Fj jL [Townsend 1977B], and Jj IIw.T. [Fisher 
J J max J J 

1973]. 

5.2. Open shop scheduling 

5.2.1. Nonpreemptive case 

The case 02j jc admits of an O(n) algorithm [Gonzalez & Sahni 1976]. A 
max 

simplified exposition is given below. 

For convenience, let aj = plj' bj = p2j. Let A= {Jjjaj ~ bj}, B = 
{J.ja. < b.}. Now choose Jr and JJ/, to be any two distinct jobs (whether in 

J J J 
A or B) such that 

a ~ maxJ {b.}, 
r ,EA J 

J 

bJ/, ~ maxJ.EB{aj}. 
J 

Let A'= A-{Jr,JJ/,}, B' = B-{Jr,JJ/,}. We assert that it is possible to form 

feasible schedules for B'u{JJ/,} and for A'u{Jr} as indicated in Figure 5.1, 

the jobs in A' and B' being ordered arbitrarily. In each of these separate 
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schedules, there is no idle time on either machine, from the start of the 

first job on that machine to the completion of the last job on that machine. 

T2-br being symmetric). We then combine the two schedules as shown in Figure 

5.2, pushing the jobs in B'u{Jt} on M2 to the right. Again, there is no idle 

time on either machine, from the start of the first job to the completion of 

the last job. 

We finally propose to move the processing of Jr on M2 to the first po­

sition on that machine. There are two cases to consider. 

( 1) a ~ T,1-b. The resulting schedule is as in Figure 5.3. The length of r ,_ r 

the schedule is max{T 1 ,T2 }. 

(2) a > T,1-b . The resulting schedule is as in Figure 5.4. The length of 
r ,_ r 

the schedule is max{T1 , a +b } . 
r r 

B' 

s' 

Figure 5.1 

B' A' 

B' 

Figure 5.2 

s' 
s' 

Figure 5.3 

A' 
A' 

:~,___Ji ____ --.s~•-....__J_r_A_'_-+1-~~l--s-'_J_r~I--A-,-.....-1 

Figure 5.4 
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For any feasible schedule we obviously h~ve that 

C ~ max{T1,T2 ,max.{a.+b.}}. 
max J J J 

Since, in all cases, we have met this lower bound, it follows that the sched­

ules constructed are optimal. 

There is a little hope of finding polynomial-time algorithms for non­

preemptive open shop problems more complicated than 021 le • The case 
max 

031 le is binary NP-hard [Gonzalez & Sahni 1976] and 02lr.lc , 
max J max 

o2ltreelc and ol le are unary NP-hard [Lenstra -]. 
max max 

5.2.2. Preemptive case 

The result on 021 le presented in the previous section shows that there 
max 

is no advantage to preemption form= 2, and hence o2lpmtnlc can be 
max 

solved in O(n) time. More generally, olpmtnlc is solvable in polynomial 
max 

time as well [Gonzalez & Sahni 1976]. We already had occasion to refer to 

this result in Section 4.4.6. An outline of the algorithm, adapted from 

[Lawler & Labetoulle 1977], follows below. 

Let P = (p .. ) be the matrix of processing times and 
l.J 

C = max{max.{L:. p .. },max.{L, p. ,}}. 
J l. l.J l. J l.J 

Call row i (column j) of P tight if lj pij = C (Li pij = C), slack other­

wise. 

* We clearly have C ~ C. It is possible to construct a feasible sched-
max 

ule for which C max = C. Hence this schedule will be optimal. 

Suppose we can find a subset S of strictly positive elements of P, with 

exactly one element of Sin each tight row and in each tight column, and at 

most one element of Sin each slack row and in each slack column. We shall 

call such a subset a decrementing set, and use it to construct a partial 

schedule of length o, for some o > 0. The constraints on the choice of o 
are as follows. 

(1) If pij E s and either row i or column j is tight, then Q s; p ... 
l.J 

(2) If p .. E s and row i (column j) is slack, then o s; p .. + C - Ik pik l.J l.J 
co s; p .. + C - Ik pkj). l.J 

( 3) If row i (column j) contains no element in s (and is therefore neces-

sarily slack), then o s; C - lk pik (o s; C - lk Pkj). 

For a given decrementing set S, let o be the maximum subject to (1), (2), (3). 
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Then the partial schedule constructed is, such that for each p .. E: S, M. proc-
lJ 1 

esses J. for min{p .. ,o} units of time. 
J l.J 

We then obtain the matrix P' from P be replacing each p .. E: S by 
l.J 

max{0,p .. -o}, and repeat the procedure until after a finite number of times 
l.J 

P' = (0). Joining together the partial schedules obtained for successive 

decrementing sets then yields an optimal preemptive schedule for P. 

By suitably embedding Pin a doubly stochastic matrix and appealing to 

the Birkhoff·-Von Neumann theorem, it can be shown that a decrementing set 

can be found by solving a linear assignment problem; see [Lawler & Labetoulle 

1977] for details. 

Other network formulations of the problem are possible. An analysis of 

various possible computations reveals that olpmtnjc can be solved in 
max 

O(r + min{m4 ,n4 ,r2 }) time, where r is the number of nonzero elements in P 

[Gonzalez 1976]. 

5.3. Flow shop scheduling 

5.3.1. F21Blc , F31Blc max max 

A fundamental algorithm for solving F21 le is due to Johnson [Johnson 
max 

1954]. He shows that there exists an optimal schedule in which J. precedes 
J 

Jk if min{p 1 j,p2k} s min{p2 j,plk}. It follows that the problem can be solved 

in O(n log n) time: arrange first the jobs with plj s p 2 j in order of non­

decreasing plj and subsequently the remaining jobs in order of nonincreasing 

P2j" 

Some special cases involve start lags .Q,lj and stop lags £ 2 j for Jj, 

that represent minimum time intervals between starting times on M1 and M2 

and between completion times on M1 and M2 , respectively [Mitten 1958; 

Johnson 1958; Nabeshima 1963; Szwarc 1968]. Defining£.= min{£ 1 .-p1 .,£2 .-p2 .} 
J J J J J 

and applying Johnson's algorithm to processing times (p 1 .+£,,p2 .+£.) will 
J J J J 

produce an optimal permutation schedule, i.e., one with identical processing 

orders on all machines [Rinnooy Kan 1976]. If we drop the latter restriction, 

the problem :is unary NP-hard [Lenstra -]. 

Similarly, some F3I le problems can be solved by applying Johnson's 
max 

algorithm to processing times (p 1 j+p2 j,p2 j+p3 j), e.g., if there exists a 

8 E: [0,1] such that Bp 1 j+(1-8)p3 j ~ p 2k for all (j,k) [Johnson 1954; Burns 

& Rooker 1976] or if M2 can process any number of jobs at the same time 

[Conway et al. 1967]. 



The general F31 le max 
applies to F2lr. le and 

J max 
1977]. 

problem, however, is unary 

F2Jtreejc [Garey et al. 
max 
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NP-hard, and the same 

1976B; Lenstra et al. 

It should be noted that an interpretation of precedence constraints 

which differs from our definition is possible. If Jj <' Jk only means that 

Oij should precede Oik for i = 1,2, then F2ltree' lemax can be solved in 

O(n log n) time [Sidney 1977]. In fact, Sidney's algorithm applies even to 

series-parallel precedence constraints. The arguments used to establish this 

result are very similar to those referred to in Section 3.3.1 and apply to 

a larger class of scheduling problems [Monma & Sidney 1977]. It is an open 

question whether F2lprec' le is NP-hard. max 
Gonzalez and Sahni [Gonzalez & Sahni 1977] consider the case of pre-

emptive flow shop scheduling. They show that preemptions on M1 and Mm can 

be removed without increasing e . Hence, Johnson's algorithm solves 
max 

F2lpmtnle as well. F3lpmtnle turns out to be unary NP-hard. 
max max 

5.3.2. Fl le max 

As a general result, we note that there exists an optimal flow shop schedule 

with the same, processing order on M1 and M2 and the same processing order 

on M 1 and Ml [Conway et al. 1967]. It is, however, not difficult to con-
m- m 

struct a 4-machine example in which a job "passes" another one between M2 

and M3 in the optimal schedule. Nevertheless, it has become tradition in the 

literature to assume identical processing orders on all machines, so that in 

effect only the best permutation schedule has to be determined. 

Except for some rather simple worst-case results for heuristics, ob­

tained by Gonzalez and Sahni [Gonzalez & Sahni 1977], that are to be men­

tioned in Section 5.4.2, all research in this area has focused on enumera­

tive methods. 

The usual enumeration scheme is to assign jobs to the ,Q,-th position in 

the schedule at the t-th level of the search tree. Thus, at a node at that 

level a partial schedule (Jcr(l), ... ,Jcr(,Q,)) has been formed and the jobs with 

index set S =, {1, ... ,n} - {cr(1), ... ,cr(£)} are candidates for the (£+1)-st 

position. One then needs to find a lower bound on the value of all possible 

completions of the partial schedule. It turns out that almost all lower 

bounds developed so far are generated by the following bounding scheme 

[Lageweg et al. 1977A]. 

Let us relax the capacity constraint that each machine can process at 
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most one job at a time, for all machines'but at most two, say, M u and M 
V 

(1 ~ u ~ v ~ m). We then obtain a problem of scheduling {J.jj Es} on 
J 

five 

machines N ,M ,N ,M ,N in that order, 
•u u UV V v• 

which is specified as follows. 

Let e ( o, i) denote the completion time of J ( n ) 6n M. . N , Nuv and N 
a)(, i •u v• 

have 

'infinite capacity; the processing times on these machines are defined by 

\v-1 
= lh=u+l phj' 

M and M have capacity 1 and processing times p . 
U V UJ 

and p ., respectively. 
VJ 

Note that we can interpret N as yielding release • u dates q . on M and N 
0 UJ --u v• 

as setting due dates -4v.j on Mv' 

mized. 

with respect to which L is to be mini-max 

Any of the machines N ,N ,N can be removed from this problem by •u uv v• 
underestimating its contribution to the lower bound to be the minimum pro-

cessing time on that machine. Valid lower bounds are obtained by adding 

these contributions to the optimal solution value of the remaining problem. 

For the case that u = v, removing N and N from the problem produces •u u• 
the machine-based bound used in [Ignall & Schrage 1965; McMahon 1971]: 

max1< < {min. s{q .} + '. s puJ· + min. s{q .}}. -U-m ]€ 0 UJ lJ€ ]€ U"J 

Removing only N results in a lj IL problem on M, which can be solved · •u max u 
by Jackson's rule (Section 3.2) and provides a slightly stronger bound. 

If u ~ v, removal of N , N and N yields an F2j je problem, to 
•u uv v• max 

be solved by Johnson's algorithm (Section 5.3.1).Aspointedoutinthatsec-

tion, solution in polynomial time remains possible if N is taken fully 
UV 

into account; the resulting bound dominates the job-based bound proposed in 

[McMahon 1971] and is the best one currently available. 

All other variations on this theme (e.g., taking u = v and considering 

the resulting llr.lL problem) would involve the solution of NP-hard 
J max 

problems. The development of fast algorithms or strong lower bounds for 

these problems thus emerges as a possibly fruitful research area. 

The computational performance of branch-and-bound algorithms for 

Fl le might be improved by the use of elimination criteria. Particular max 
attention has been paid to conditions under which all completions of 

(Jo(l)'"""'Jcr(Jl)'Jj) can be eliminated because a schedule at least as good 
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exists among the completions of (Jo(l),.;.,J0 (t)'Jk,Jj). If all information 

obtainable from the processing times of the other jobs is disregarded, the 

strongest condition under which this is allowed is as follows. Defining 

6. = C(okj,i) - C(oj,i), we can exclude J. for the t-th position if 
l. J 

max{6. 1 ,6.} ~ p.. (i = 2, ••• ,m) 
1.- l. l.J 

[McMahon 1969; Szwarc 1971, 1973]. Inclusion of these and similar dominance 

rules can be very helpful from a computational point of view, depending on 

the lower bound used [Lageweg et al. 1977A]. It may be worthwhile to con­

sider further extensions that, for instance, invblve the processing times 

of the unscheduled jobs [Gupta & Reddi 1977; Szwarc 1977]. 

5.3.3. No wait in process 

In a variation on the flow shop problem, each job, once started, has to be 

processed without interruption until it is completed. This no wait constraint 

may arise out of certain job characteristics (e.g., the "hot ingot" problem 

in which metal has to be processed at continuously high t~mperature) or out 

of the unavailability of intermediate storage in between machines. 

The resulting Fino waitlc problem can be formulated as a traveling max 
salesman problem with cities 0,1, ••• ,n and intercity distances 

(j,k = 0,1, ••• ,n), 

where piCI = 0 (i = 1, .•. ,m) [Piehler 1960; Reddi & Ramamoorthy 1972; Wismer 

1972]. We refer to [Van Deman & Baker 1974] for a branch-and-bound approach 

to Fino "raitlicj and to [Lenstra & Rinnooy Kan 1975] for a minor extension 

to job shop systems. 

Both Fino 

1977]. For the 

waitlc and Fino waitlic. are unary NP-hard [Lenstra et al. 
max J 

case F2lno waitlc , the traveling salesman problem assumes max 
a special structure, and the results from [Gilmore & Gomory 1964] can be 

applied to yield an O(n2 ) algorithm [Reddi & Ramamoorthy 1972]. In spite of 

challenging prizes awarded for their solution [Lenstra et al. 1977], 

F2lno waitlic. and F3lno waitlc are still open. 
J max 

The no wait constraint may lengthen the optimal flow shop schedule 

considerably. It is not difficult to see that 

* * C (no wait)/C < m form~ 2, max max 
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and examples show that this bound can be approached arbitrarily closely 

[Lenstra -] • 

5.4. Job shop scheduling 

5.4.1. J2islc , J3lslc max max 

A simple extension of Johnson's algorithm for F21 le allows solution of 
max 

J2lm.~2lc in O(n log n) time [Jackson 1956]. Let J. be the set of jobs 
J max 1 

with operations on Mi only (i = 1,2) and Jhi the.set of jobs that go from 

~ to Mi (hi= 12,21). Order the latter two sets by means of Johnson's al­

gorithm and the former two sets arbitrarily. One then obtains an optimal 

schedule by executing the jobs on M1 in the order (J12 ,J1 ,J21 ) and on M2 in 

the order (]21 ,J2 ,J12 ). 

This, however, is probably as far as we can get. Unary NP-hardness of 

J21 le results as soon as we allow one job to have more than two opera-
max 

tions [Garey et al. 1976A; Lenstra et al. 1977]. In fact, J211~p .. ~2lc 
J.J max 

and J3lp .. =lie are already NP-hard [Lenstra & Rinnooy Kan 1978]. 
J.J max 

5.4.2. JI Jc max 

The general job shop problem is extremely hard to solve optimally. An indi­

cation of this is given by the fact that a 10-job 10-machine problem, formu­

lated in 1963 [Muth & Thompson 1963], still has not been solved. 

A convenient problem representation is provided by the disjunctive 

graph model, introduced by Roy and Sussmann [Roy & Sussmann 1964]. Assume 
._j-1 . 

with u = L.k=l ~ + 1 and add two each operation 0 .. being renumbered as 0 
J.J u 

fictitious initial and final operations o 0 and 

disjunctive graph is then defined as follows. 

O* with Po= p* = 0. The 

There is a vertex u with 

weight p corresponding to each operation O. The directed conjective arcs 
u u 

link the consecutive operations of each job, and link o 0 to all first opera-

tions and all last operations too*. A pair of directed disjunctive arcs 

connects every two operations that have to be executed on the same machine. 

A feasible schedule corresponds to the selection of one disjunctive arc 

of every such pair, granting precedence of one operation over the other on 

their common machine, in such a way that the resulting directed graph is 

acyclic. The value of the schedule is given by the weight of the maximum 

weight path from Oto*· We refer to Figures 5.5 and 5.6 for examples. 
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Figure 5.5 Job shop problem, represented as a disjunctive graph. 

0 

Figure 5.6 Job shop problem, represented as an acyclic directed graph. 

At a typical stage of any enumerative algorithm, a certain subset D 

of disjunctive arcs will have been selected. We consider the directed graph 

obtained by removing all other disjunctive arcs. Let the maximum weights of 

paths from Oto u and from u to *, excluding p, be denoted by r and q, u u u 
respectively. In particular, r* is an obvious lower bound on the value of 

any feasible schedule obtainable from the current graph [Charlton & Death 

1970]. We can get a far better bound in a manner very similar to the devel­

opment of flow shop bounds in Section 5.3.2 [Lageweg et al. 1977B]. 

Let us relax the capacity constraints for all machines except M .• We 
i 

then obtain a problem of scheduling the operations O on M. with release u i 

dates r, processing times p, due dates -q and precedence constraints u u u 
defined by the directed graph, so as to minimize maximum lateness. As pointed 
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out in Section 3.2, this llprec,r. IL problem is NP-hard, but there exist 
J max 

fast enumerative methods for its solution on each M .. Again, all lower 
l. 

bounds proposed in the literature appear as special cases of the above one 

by underestimating the contribution of r, q or both, by ignoring the 
u u 

precedence constraints, or by restricting the set of machines over which 

maximization is to take place. 

The currently best job shop algorithm [McMahon & Florian 1975] involves 

the 1!r.lL bound combined with the enumeration of active schedules. 
J max 

Starting from o0 , we consider at each stage the subset S of operations all 

of whose predecessors have been scheduled and calculate their earliest pos­

sible completion times r +p. It can be shown [Giffler & Thompson 1960] 
u u 

that it is sufficient to consider only a machine on which the minimum value 

of r +p is achieved and to branch by successively scheduling next on that u u 
machine all O for which r < min0 ES{r +p }. In this scheme, several dis-

v V U U U 

junctive arcs are added to D at each stage. An alternative approach whereby 

at each stag·e one disjunctive arc of some crucial pair is selected leads to 

a computationally inferior approach [Lageweg et al. 1977B]. 

The applicability of Lagrangean techniques to obtain stronger lower 

bounds is the subject of ongoing research. Either the precedence constraints 

fixing the machine orders for the jobs or the capacity constraints of the 

machines can be multiplied by a Lagrangean variable and added to the objec­

tive function. For fixed values of the multi pliers, the resulting problems 

can be solved in (pseudo)polynomial time. Computational experiments will 

have to reveal if this approach, combined with subgradient optimization or 

another suitable technique, will lead to any substantially better job shop 

algorithm. 

As far as approximation algorithms are concerned, a considerable effort has 

been invested in the empirical testing of various priority rules [Gere 1966; 

Conway el': al. 1967; Day & Hotten.stein 1970; Panwalkar & Iskander 1977]. No 

rule appears to be consistently better than any other and in practical situ­

ations one would be well advised to exploit any special structure that the 

problem at hand has to offer. 

Not much has been done in the way of worst-case analysis of approxima­

tion algorithms for flow shop and job shop problems. Gonzalez and Sahni 

[Gonzalez & Sahni 1977] show that for any active flow shop or job shop 

schedule (AS) 
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* C (AS)/C Sm. 
max max 

This bound is tight even for LPT schedules, in which the jobs are ordered 

according to nonincreasing sums of processing times. They give an O(mnlogn) 

algorithri H :for F 11 C based on Johnson's algorithm for F2 J JC with max max 

* fml C (H)/C S -2 . 
max max 

With SPT defined similarly as LPT, it is also shown that for FJ !Ic. and 
J 

Ic. (AS)/Ic~ s n, 
J J 

(t) 

fcj(SPTJ/Ic; s m. ( t) 

It thus appears that, in general, the obvious algorithms can deviate quite 

substantially from the optimum for this class of problems. 





6-1 

6. CONCLUDING REMARKS 

If one thing emerges from the preceding survey, it is the amazing success 

of complexity theory as a means of differentiating between easy and hard 

problems. Within the very detailed problem classification developed espe­

cially for this purpose, surprisingly few open problems remain. For an 

extensive class of scheduling problems, a computer program has been devel­

oped that classifies these problems according to their computational com­

plexity [Lageweg et al. 1978]. It employs elementary reductions such as 

those defined in Section 2.7 in order to deduce,the consequences of the 

development of a new polynomial-time algorithm or a new NP-hardness proof. 

As far as polynomial-time algorithms are concerned, the most impres­

sive recent advances have occurred in the area of parallel machine schedul­

ing and are due to researchers with a computer science background, recogniz­

able as such by their use of terms like tasks and processors rather than 

jobs and machines. Single machine, flow shop and job shop scheduling has 

been traditionally the domain of operations researchers. Here, an analyti­

cal approach to the performance of approximation algorithms is badly needed, 

although for any practical problem it probably will remain true that a 

successful heuristic will have to exploit whatever special structure and 

properties the problem at hand may have. 

Thus, the area of deterministic scheduling theory appears as one of 

the more fruitful interfaces between computer science and operations re­

search. Much progress has been made and more can be expected in the near 

future. 

Note. The last three authors are currently engaged in writing a book on 

scheduling problems and would very much appreciate being informed about 

new algorithmic and complexity results in this area. 
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