
stichting

mathematisch

centrum
~
MC

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

BW 82/77 OKTOBER

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN

OPTIMIZATION AND APPROXIMATION IN DETERMINISTIC SEQUENCING
AND SCHEDULING: A SURVEY

Preprint

2e boerhaavestraat 49 amsterdam

i 111· -} ;;•::,'
81oi...1UIHitEK MATi-iEMATISCH C~NiKVT'I

- AMSTERDAM -

PILi..n.ted a.:t .the Ma.:thema.Uc.a.l CentJr.e, 49, 2e BoeJr.haa.ve-6.tJLaa.:t, Am.6.teJr.dam.

The Ma.:thema.Uc.a.l CentJr.e, 6ou.nded .the 11-.th 06 FebnWVl.y 1946, ..l6 a non­
pno6U .i.YL6.ti.tu.ti.on cum.i.ng a.:t .the pnomoUon 06 pUll.e ma.:thema..t,i.C!) and w
app.Uc.a.UoYL6. I.t ..l6 .6poYL6oned by .the Ne.thvc.i.a.ndo GoveJr.nmen.t .thnough :the
N e.theJc1.a.nd6 Ong an.i.za.Uo n 6 on :the Advanc.emen.t o 6 PUll.e Re6 eanc.h { Z • W. 0) •

AMS (MOS) subject classification scheme (1970): 90B35, 68A20

OPTIMIZATION AND APPROXIMATION !N DETERMINISTIC SEQUENCING

AND SCHEDULING: A SURVEY

R.L. GRAHAM

Bell Laboratories, Murray Hill, N.J., U.S.A.

E.L. LAWLER

University of California, Berkeley, U.S.A.

J.K. LENSTRA

Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam, The Netherlands

ABSTRACT

The theory of dete:r:ministic sequencing and scheduling has expanded rapidly

during the past years. In this paper we survey the state of the art with

respect to optimization and approximation algorithms and interpret these in

terms of computational complexity theory. Special cases considered are

single machine scheduling, identical, uniform and unrelated parallel machine

scheduling, and open shop, flow shop and job shop scheduling. We indicate

some problems for future research and include a selective bibliography.

KEY WORDS & PHRASES: deterministic scheduling, single machine, parallel

machines, open shop, flow shop, job shop, polynomial-time algorithm, NP­

hardness, worst-case analysis.

NOTE: This paper will be published in the proceedings of "Discrete Optimi­

zation 1977", held in Vancouver, August 8-12, 1977.

CONTENTS

1. INTRODUCTION

2. PROBLEM CLASSIFICATION

2.1. Introduction

2.2. Job data

2.3. Machine environment

2.4. Job characteristics

2.5. Optimality criteria

2.6. Examples

2.7. Reducibility among scheduling problems

3. SINGLE MACHINE PROBLEMS

3.1. Introduction

3.2. Minimizing maximum cost

3.3. Minimizing total cost

3.3.1. 1lsliw.c.
J J

3.3.2. 1lsliwjTj

3.3.3. 1lsliwjuj

4. PARALLEL MACHINE PROBLEMS

4.1. Introduction

4.2. Nonpreemptive scheduling: unit processing times

4.2.1. Qlp.=llit., Qlp.=llf
J J J max

4.2.2. Plprec,p.=llc
J max

4.2.3. Plres,8,p.=llc
J max

4.3. Nonpreemptive scheduling: general processing times

4.3.1. Pl IIw.C.
J J

4.3.2. QI IIcj

4.3.3. RI IIcj

4.3.4. Other cases: enumerative optimization methods

4.3.5. Other cases: approximation algorithms

4.3.5.1. Pl le max
4.3.5.2. QI le max·
4.3.5.3. RI le max
4.3.5.4. Plpreclc max
4.3.5.5. Qlpreclc max

C-1

C-2

4 • 3 • 5 • 6 • P I reis, prec I C
max

4.4. Preemptive scheduling

4.4.1. Pjpmtnl Ic.
J

4.4.2. QjpmtnJic.
J

4.4.3. Rjpmtnl Ic.
J

4.4.4. Pjpmtn,preclc
max

4.4.5. Qjpmtn,precJc
max

4.4.6. RjpmtnJc max
4.4.7. P I pmtn, r . I L

J max
4.4.8. Qjpmtn,r. jL

J max

5. OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS

5.1. Introduction

5.2. Open shop scheduling

5.2.1. Nonpreemptive case

5.2.2. Preemptive case

5.3. Flow shop scheduling

5.3.1. F2Jslc , F3lslc max max
5.3.2. Fi le

ma.x
5.3.3. No wait in process

5.4. Job shop scheduling

5.4.1. J2!slc , J3Jslc max max
5.4.2. Ji le ma.x

6. CONCLUDING REMARKS

ACKNOWLEDGEMENTS

REFERENCES

1-1

1. INTRODUCTION

In this paper we attempt to survey the rapidly expanding area of determinis­

tic scheduling theory. Although the field only dates back to the early fif­

ties, an impressive amount of literature has been created and the remaining

open problems are currently under heavy attack. An exhaustive discussion of

all available material would be impossible - we will have to restrict our­

selves to the most significant results, omitting detailed theorems and proofs.

For further information the reader is referred to the ciassic book by Conway,

Maxwell and Miller [Conway et al. 1967], the mo~e recent introductory text­

book by Baker [Baker 1974], the advanced expository articles collected by

Coffman [Coffman 1976] and a few survey papers and theses [Bakshi & Arora

1969; Lenstra 1977; Liu 1976; Rinnooy Kan 1976].

The outline of the paper is as follows. Section 2 introduces the essen­

tial notation and presents a detailed problem classification. Sections 3, 4

and 5 deal with single machine, parallel machine, and open shop, flow shop

and job shop problems, respectively. In each section we briefly outline the

relevant complexity results and optimization and approximation algorithms.

Section 6 contains some concluding remarks.

We shall be making extensive use of concepts from the theory of compu­

tational complexity [Karp 1972, 1975]. An introductory survey of this area

appears elsewhere in this volume [Lenstra & Rinnooy Kan 1978] and hence

terms like (pseudo)polynomial-time algorithm and (binary and unary) NP­

hardness will be used without further explanation.

2-1

2. PROBLEM CLASSIFICATION

2.1. Introduction

Suppose that n jobs J. (j = 1, ••• ,n) have to be processed on m machines M.
J 1

(i = 1, ••• ,m). Throughout, we assume that each machine can process at most

one job at a time and that each job can be processed on at most one machine

at a time. Various job, machine and scheduling characteristics are reflected

by a 3-field problem classification alBIY, to be introduced in this section.

2 • 2 • Job data

In the first place, the following data can be specified for each Jj:

a number of operations m.;
J

one or more processing times p. or p .. , that J. has to spend on the
J 1] J

various machines on which it requires processing;

a release dater., on which J. becomes available for processing;
J J

a due dated., by which J. should ideally be completed;
J J

a weight w., indicating the relative importance of J.;
J J

a nondecreasing real cost function f., measuring the cost f.(t)
J J

incurred if J. is completed at time t.
J

In general, mj, pj, pij' rj, dj and wj are integer variables.

2.3. Machine environment

We shall now describe the first field a= a 1a2 specifying the machine

environment. Let O denote the empty symbol.

If a 1 E {o,P,Q,R}, each Jj consists of a single operation that can be

processed on any M.; the processing time of J. on M. is p ..• The four values
1 J 1 1]

are characterized as follows:

al = 0: single machine; P1j = p.;
J

al = P: identical parallel machines; pij = p. (i = 1 , •.• , m) ;
J

al = Q: uniform parallel machines; pij = qipj for a given speed factor

qi of Mi (i = 1, ••• ,m);

a 1 = R: unrelated parallel machines.

If a = o, we have an open shop, in which each J. consists of a set of oper-
1 J

ations {o1 ., ••• ,o .}. 0 .. has to be processed on M. during p .. time units,
J mJ 1] 1 1]

but the order in which the operations are executed is immaterial. If

2-2

a 1 E {F,J}, an ordering is imposed on the set of operations corresponding to

each

chain

If a 1

job. If al = F,

co 1 ., ... ,o .).
J ID]

= J, we have a

we have a flow shop, in

0,. has to be processed
l]

job shop, in which each

which each J. consists of a
J

on M. during p .. time units.
l l]

J, consists of a chain
J

(0 1 ., ••• ,o .) . 0 .. has to be processed on a given machine µi·J· during pi·J·
J IDjJ l]

time units, withµ, 1 . 1- µ .. for i = 2, ••• ,m .•
l- 1] l] J

If a 2 is a positive integer, then mis constant and equal to a 2 • If

a 2 = 0 , then mis assumed to be variable. Obviously, a 1 = 0 if and only if

a2 = 1.

2.4. Job characteristics

The second field Sc {S 1 , ••• ,S 6 } indicates a number of job characteristics,

which are defined as follows.

1. Sl E {pmtn, 0 }

S1 = pmtn Preemption (job splitting) is allowed; the processing

of any operation may be interrupted and resumed at a

later time.

S1 = 0 No preemption is allowed.

2. s2 E {res,resl,o}

s2 =

s2 =

3. S3 E

S3 =

S3 =

S3

4. S4 E

S4

res

resl

0

The presence of s limited resources¾ (h = 1, •.. ,s) is

assumed, with the property that each J. requires the use
J

of rhj units of¾ at all times during its execution. Of

course, at no time may more than 100% of any resource be

in use.

The presence of only a single resource is assumed.

No resource constraints are specified.

{prec,tree,o}

tree

0

{r. 'o}
J

r.
J

A precedence relation< between the jobs is specified.

It is derived from a directed acyclic graph G with

vertex set {1, ••• ,n}. If G contains a directed path

from j to k, we write Jj < Jk and require that Jj is

completed before Jk can start.

G is a rooted tree with either outdegree at most one

for each vertex or indegree at most one for each vertex.

No precedence relation is specified.

Release dates that may differ per job are specified.

5.

6.

84 =

85 E

85 =

0

{m .siii, o}
J_

m.sm
J

We assume that r. = 0.
J

A constant upper bound on m. is specified (only if
J

al = J).

85 = 0 No such bound is specified.

86 E {p .. =1,pSp .. Sp, 0 }
l.J - l.J

86 = pij=l Each operation has unit processing time.

2-3

86 = p~p .. ~P Constant lower and upper bounds on p .. are specified.
- l.J l.J

86 = 0 No such bounds are specified.

2.5. Optimality criteria

The third field y E {f ,If.} refers to the optimality criterion chosen.
max J

Given a schedule, we can compute for each J.:
J

the completion time Cj;

the lateness L. = c.-d.;
J J J

the tardiness T. = max{0,C.-d.};
J J J

the unit penalty u. = if c. s d. then O else 1.
J J J

The optimality criteria most commonly chosen involve the minimization of

where f = max.{f.(C.)} with f.(C.) = c.,L., respectively, or
max J J J J J J J

where Lf, = l~ 1 f.(C.) with f.(C.) = c.,T.,U.,w.C.,w.T.,w.U., respectively.
J J= J J J J J J J J J J J J J

It should be noted that Iw.C. and Iw.L. differ by a constant Iw.d. and
J J J J J J

hence are equivalent. Furthermore, any schedule minimizing L also mini-max
mizes T and U , but not vice versa. max max

* The optimal value of y will be denoted by y, the value produced by an

* (approximation) algorithm A by y(A). If a known upper bound p on y(A)/y is

* best possible in the sense that examples exist for which y(A)/y equals or

asymptotically approaches p, this will be denoted by a dagger (t).

2.6. Examples

llpreclL : minimize maximum lateness on a single machine subject to max
general precedence constraints. This problem can be solved in

2-4

polynomial time (Section 3.2).

Rlpmtnlic. : minimize total completion time on a variable number of unre­
J

lated parallel machines, allowing preemption. The complexity of this

problem is unknown (Section 4.4.3).

J3lp .. =lie : minimize maximum completion time in a 3-machine job shop
J.J max
with unit processing times. This problem is NP-hard (Section 5.4.1).

2.7. Reducibility among scheduling problems

Each scheduling problem in the class outlined abQve corresponds to a 8-tuple
8

(vi)i=l' where v. is a vertex of graph G., drawn in Figure 2.i (i= 1, ••• ,8).
1 8 1 8

For two Problems P' = (v!). 1 and P = (v.). 1 , we write P' ➔ P if either
l. l.= l. i=

v! = v. or G. contains a directed path from v! to v., for i = 1, ••• ,8. The
l. l. l. l. l.

reader should verify that P' ➔ P implies P' ~ P. The graphs thus define

elementary reductions among scheduling problems. It follows that

if P' ➔ P and PEP, then P' E P;

if P' ➔ P and P' is NP-hard, then Pis NP-hard.

R

Figure 2.1 G1 ; c denotes an integer constant.

res prec

0 0

0

m· < m J -

2-5

Figure 2.2 G2 • Figure 2.3 G3 • Figure 2.4 G4 • Figure 2.5 G5 • Figure 2.6 G6 •

LW•T·
J J

}:w,U,
J J

0 LW· C·
J J

f
£ s P.j~ p Lmax

f
p .. = I

lj Cmax

Figure 2.7 G7 • Figure 2.8 G8 •

3-1

3. SIN:;LE MACHINE PROBLEMS

3.1. Introduction

The single machine case has been the object of extensive research ever since

the seminal work by Jackson [Jackson 1955] and Smith [Smith 1956]. We will

give a brief survey of the principal results, classifying them according to

the optimality criterion chosen. As a general result, we note that if all

r. = 0 we need only consider schedules without preemption and without machine
J

idle time [Conway et al. 1967].

3.2. Minimizing maximum cost

The most general result in this section is an O(n2) algorithm to solve

llpreclf for arbitrary nondecreasing cost functions [Lawler 1973]. At
max

each step of the algorithm, let S denote the index set of unscheduled jobs,

let p(S) = l· Sp., and let S' c S indicate the jobs all whose successors
]€ J

have been scheduled. One selects Jk for the last position among {Jjlj € S}

by requiring that fk(p(S)) ~ fj(p(S)) for all j ES'.

For 11 IL , this procedure specializes to Jackson's rule: schedule the max
jobs according to nondecreasing due dates [Jackson 1955]. Introduction of

release dates turns this problem into a unary NP-hard one [Lenstra et al.

1977].

llprec,r.,p.=llL and llpmtn,prec,r.lL can still be solved in
J J max J max

polynomial time: first update release and due dates so that they suitably

reflect the precedence constraints and then apply Jackson's rule continu­

ally to the set of available jobs [Lageweg et al. 1976].

Various elegant enumerative methods exist for solving llprec,r.lL •
J max

Baker and Su [Baker & Su 1974] obtain a lower bound by allowing preemption;

their enumeration scheme simply generates all active schedules, i-e. sched­

ules in which one cannot decrease the starting time of an operation without

increasing the starting time of another one. McMahon and Florian [McMahon &

Florian 1975] propose a more ingenious approach; a slight modification of

their algorithm allows very fast solution of problems with up to 80 jobs

[Lageweg et al. 1976].

3-2

3.3. Minimizing total cost

The case 11 IIw.C. can be solved in O(n log n) time by Smith's rule: sched­
J J

ule the jobs according to nonincreasing rations w./p. [Smith 1956]. If all
J J

weights are equal, this amounts to the SPT rule of executing the jobs on

the basis of shortest processing time first, a rule that is often used in

more complicated situations without much empirical, let alone theoretical,

support for its superior quality (cf. Section 5.4.2).

This result has been extended to O(n log n) algorithms that deal with

tree-like [Horn 1972; Adolphson & Hu 1973; Sidney 1975] and even series­

parallel [Knuth 1973; Lawler 1976C] precedence constraints; see [Adolphson

1977] for an O(n3) algorithm covering a slightly more general case. The

crucial observation to make here is that, if J. < Jk with w./p. < wk/pk
J J J

and if all other jobs either have to precede Jj, succeed Jk, or are incom-

parable with both, then Jj and Jk are adjacent in at least one optimal

schedule and can effectively be treated as one job with processing time

pj+pk and weight wj+wk. By successive application of this device, starting

at the bottom of the precedence tree, one will eventually obtain an optimal

schedule. Addition of general precedence constraints results in NP-hardness,

even if all p. = 1 or all w. = 1 [Lawler 1976C; Lenstra & Rinnooy Kan 1977].
J J

If release dates are introduced, llr.lic. is already unary NP-hard
J J

[Lenstra et al. 1977]. In the preemptive case, llpmtn,r. IIc. can be solved
J J

by an obvious extension of Smith's rule, but, surprisingly, llpmtn,r. IIw.c.
J J J

is unary NP-hard [Labetoulle et al. 1977].

3.3.2. 1lsliw.T.
J J

11 IIw.T. is a unary NP-hard problem [Lawler 1977; Lenstra et al. 1977], for
J J

which various enumerative solution methods have been proposed, some of which

can be extended to cover arbitrary nondecreasing cost functions. Lower bounds

developed for the problem involve a linear assignment relaxation using an

underestimate of the cost of assigning J. to position k [Rinnooy Kan et al.
J

1975], a fairly similar relaxation to a transportation problem [Gelders &

Kleindorfer 1974, 1975], and relaxation of the requirement that the machine

can process at most one job at a time [Fisher 1976]. In the latter approach,

3-3

one attaches "prices" (i.e., Lagrangean multipliers) to each unit-time

interval. Multiplier values are sought for which a cheapest schedule does

not violate the capacity constraint. The resulting algorithm is quite suc­

cessful on problems with up to 50 jobs, although a straightforward but clev­

erly implemented dynamic programming approach [Baker & Schrage 1977] offers

a surprisingly good alternative.

If all p. = 1, we have a simple linear assignment problem, the cost of
J

assigning J. to position k being given by f. (k). If all w. = 1, the problem
. J J J
can be solved by a pseudopolynomial algorithm in O(n4Ip.) time [Lawler

J
1977]; the computational complexity of 11 ILTj with respect to a binary

encoding remains an open question.

Addition of precedence constraints yields NP-hardness, even for

llprec,p.=llLT, [Lenstra & Rinnooy Kan 1977].
J J

If we introduce release dates, llr.,p.=llLw,T. can again be solved as
J J J J

a linear assignment problem, whereas llr.lIT. is obviously unary NP-hard
J J

(cf. Section 2.7).

3.3.3. 1laliw.U.
J J

An algorithm due to Moore [Moore 1968] allows solution of 11 IIu. in
J

O(n log n) time: jobs are added to the schedule in order of nondecreasing

due dates, and if addition of J. results in this job being completed after
J

dj, the scheduled job with the largest processing time is marked to be late

and removed. This procedure can be extended to cover the case in which

certain specified jobs have to be on time [Sidney 1973]. The problem also

remains solvable in polynomial time if we add agreeable weights (i.e.,

p. <pk=> w.
J J

d. < a_ => r. s;
J 7c J

~ wk) [Lawler 1976A] or agreeable release dates (i.e.,.

rk) [Kise et al. 1977]. 11 IIw.U. is binary NP-hard [Karp
J J

1972], but can be solved by dynamic programming in O(nlp,) time [Lawler &
J

Moore 1969].

Again, llprec,p.=lllu,
J J

is NP-hard [Garey & Johnson 1976A], even for

chain-like precedence constraints [Lenstra -].

Of course, llr.liu. is unary NP-hard. The preemptive case
J J

llpmtn,r.liu. is an intriguing open problem.
J J

Very little work has been done on worst-case analysis of approximation

algorithms for single machine problems. For 11 IIw.U., Sahni [Sahni 1976]
J J

3-4

presents algorithms¾ with O(n3k) running time such that

where U. = 1-U .• For lltreeliw.u., Ibarra and Kim [Ibarra & Kim 1975] give
J J k+2J J

algorithms Bk of order O(kn } with the same worst-case error bound.

4-1

4. PARALLEL MACHINE PROBLEMS

4.1. Introduction

Recall from Section 2.3 the definitions of identical, uniform and unrelated

machines, denoted by P, Q and R, respectively.

Nonpreemptive parallel scheduling problems tend to be difficult. This

can be inferred immediately from the fact that P2l le and P2l IIw.C. are
max J J

binary NP-hard [Bruno et al. 1974; Lenstra et al. 1977]. If we are to look

for polynomial algorithms, it follows that we should either restrict atten­

tion to the special case p. = 1, as we do in Section 4.2, or concern our-
]

selves with the Ic. criterion, as we do in the first three subsections of
J

Section 4.3. The remaining part of Section 4.3 is entirely devoted to enu-

merative optimization methods and approximation algorithms for various NP­

hard problems.

The situation is much brighter with respect to preemptive parallel

scheduling. For example, Plpmtnlc has long been known to admit a simple max
O(n) algorithm [McNaughton 1959]. Many new results for the Ic., C and

J max
L criteria have been obtained quite recently. These are summarized in

max
Section 4.4. With respect to other criteria, P2lpmtn!Iw.C. turns out to be

J J
NP-hard (see Section 4.4.1). Little is known about PlpmtnlIT. and

J
PlpmtnlI.uj; these problems remain open. However, we know from Section 3

that llpmtn!Iw.T. and llpmtn!Iw.U. are already NP-hard.
J J J J

4.2. Nonpreemptive scheduling: unit processing times

A simple transportation network model provides an efficient solution method

for Qlp.=llLf, and Qlp.=llf •
J J J max

Let there be n sources j (j = 1, ••• ,n) and mn sinks (i,k) (i = 1, ••• ,m,

k = 1, ••• ,n). Set the cost of arc (j, (i,k)) equal to c. 'k = f.(kq.). The
l.J J l.

arc flow xijk is to have the interpretation:

if J. is executed on M. in the k-th position,
J l.

otherwise.

Then the problem is to minimize

4-2

or max .. k{c .. kx.' .k}
1,J, 1] 1]

subject to

I, k x. 'k = 1 for all j,
1, 1]

Ij xijk ~ 1 for all i,k,

xijk 2:: 0 for all i,j,k.

The time required to prepare the data for this transportation problem is

O(mn2). A careful analysis reveals that the problem can be solved (in in­

tegers) in O(n3) time. Since we may assume that m ~ n, the overall running

time is O(n3).

It may be noted that some special cases can be solved more efficiently.

For instance, Plp.=lllu, can be solved in O(n log n) time [Lawler 1976A].
J J

4.2.2. Plprec,p.=llc .
J max

Plprec,p.=llc is known to be NP-hard [Ullman 1975; Lenstra & Rinnooy Kan
J max

1977]. It is an open question whether this remains true for any constant

value of m 2:: 3. The problem is in P, however, if the precedence relation is

of the tree-type or if m = 2.

Pltree,p.=llc can be solved in O(n) time by Hu's algorithm [Hu 1961;
J max

Hsu 1966; Sethi 1976A]. The level of a job is defined as the number of jobs

in the unique path to the root of the precedence tree. At the beginning of

each time unit, as many available jobs as possible are scheduled on them

machines, where highest priority is granted to the jobs with the largest

levels. Thus, Hu's algorithm is a nonpreemptive list scheduling algorithm,

whereby at each step the available job with the highest ranking on a prior­

ity list is assigned to the first machine that becomes available. It can

also be viewed as a critical path scheduling algorithm: the next job chosen

is the one which heads the longest current chain of unexecuted jobs.

If the precedence constraints are in the form of an intree (each job

has at most one successor), then Hu's algorithm can be adapted to minimize

L ; in the case of an outtree (each job has at most one predecessor), the
max

L problem turns out to be NP-hard [Brucker e.t al. 1977]. max 2
P2lprec,p.=llc can be solved in O(n) time [Coffman & Graham 1972].

J max
Previous polynomial-time algorithms for this problem are given in [Fujii

4-3

et al. 1969, 1971; Muraoka 1971].

In the approach due to Fujii et al., an undirected graph is constructed

with vertices: corresponding to jobs and edges {j,k} whenever Jj and Jk can

be executed simultaneously, i.e., Jj f- Jk and Jk f- Jj. An optimal schedule

is then derived from a maximum cardinality matching in the graph. Such a

matching can be found in O(n3) time [Lawler 1976B].

The Coffman-Graham approach leads to a list algorithm. First the jobs

are labelled in the following way. Suppose labels 1, ..• ,k have been applied

and Sis the subset of unlabelled jobs all of whose successors have been

labelled. Then a job in Sis given the label k+l if the labels of its imme­

diate successors are lexicographically minimal with respect to all jobs in

S. The priority list is given by ordering the jobs according to decreasing

labels. It is possible to execute this algorithm in time almost linear in

n+a, where a is the number of arcs in the transitive reduction of the pre­

cedence graph (all arcs implied by transitivity removed) [Sethi 1976B].

h h t . f h . . (2.8) Note, owever, tat cons ruction o sue a representation requires On

time [Aho et al. 1972].

Garey and Johnson present polynomial algorithms for P2lprec,p.=llc
J max

where, in addition, each job becomes available at its release date and has

to meet a given deadline. In this approach, one obtains an optimal schedule

by processing· the jobs in order of increasing modified deadlines. This modi­

fication requires O(n2) time if all r. = 0 [Garey & Johnson 1976A] and O(n3)
J

time in the general case [Garey & Johnson 1977].

We note that Plprec,pj=llicj is NP-hard [Lenstra & Rinnooy Kan 1977].

Hu's algorithm does not yield an optimal Ic. schedule in the case of intrees,
J

but in the case of outtrees critical path scheduling minimizes both C
max

and

Ic. [Rosenfeld-]. The Coffman-Graham algorithm also minimizes Ic. [Garey-].
J J

As far as approximation algorithms for Plprec,p.=llc are concerned, the
J max

NP-hardness proof given in [Lenstra & Rinnooy Kan 1977] implies that, un-

less P = NP, the best possible worst-case bound for a polynomial-time algo­

rithm would be j· The performance of both Hu's algorithm and the Coffman­

Graham algorithm has been analyzed.

When critical path (CP) scheduling is used, Chen and Liu [Chen 1975;

Chen & Liu 1975] and Kunde [Kunde 1976] show that

C (CP)/C *
max max 1

m-1

form= 2,

for m ~ 3.

4-4

In [Kaufman 1972] an example is constructed for which no CP schedule is op­

timal.

Lam and Sethi [Lam & Sethi 1977] use the Coffman-Graham (CG) algorithm

to generate lists and show that

* C (CG)/C
max max

(m ~ 2). (t)

If SS denotes the algorithm which schedules as the next job the one having

the greatest number of successors then it can be shown [Ibarra & Kim 1976]

that

* 4 C (SS)/C $ -3 form= 2.
max max (t)

Examples show that this bound does not hold form~ 3.

Finally, we mention some results for the more general case in which

p. e {1,k}. Fork=
J

2, both P2jprec,1$p,$2lc and P2jprec,1$p,$21Lc. are
J max J J

NP-hard [Ullman 1975; Lenstra & Rinnooy Kan 1977]. For P2lprec,p.e{1,k}lc ,
J max

Goyal [Goyal 1977B] proposes a generalized version of the Coffman-Graham

algorithm (GCG) and shows that

C (GCG)/c* $ {~3 max max
2

4.2.3. Pjres,8,p.=llc
J max

fork= 2,

for k ~ 3.
(t)

We now take up the variation in which resource constraints enter the model.

P2jres,p.=1jc can be formulated and solved as a maximum cardinality
J max

matching problem in an obvious way. However, P2jres1,tree,p.=1jc and
J max

P3jres1,p.=llc are unary NP-hard [Garey & Johnson 1975].
J max

For the case Pjres,prec,p.=1,~nlc , the following results for list sched-
J max

uling (LS) using an arbitrary priority list are known [Garey et al. 1976A]:

* 1 * 1 C (LS)/C $ - sC + -2 s + 1
max max 2 max

and examples exist with

4-5

For the CP scheduling algorithm, the bound improves considerably:

* 17 C (CP)/C ~ -10 s + 1 (s ~ 0).
max max

(t)

Let IMR denote the algorithm which schedules jobs according to decreasing

maximum resource requirement. Then

* 17 C (DMR)/C ~ -10 s + 1. max max

In the other direction, examples are given in [Garey et al. 1976A] for any

£ > 0 with

* foo 1 C (DMR)/C > l - £ = max max i=l a. 1.69 ••• - £
i

where a 1 = 1 and a. 1 = a. (a.+1) for i ~ 1.
i+ i i

An even better bound applies to the case of independent jobs, i.e.,

Plres,p.=1,m~nlc :
J max

C (LS)~ (s + 2-)c* + 7
max 10 max 2 (s ~ 1),

* where the coefficient of C is best possible. max
The case Plresl,p.=1,m~nlc has been the subject of intensive study

J max
(under the name of bin packing) during the past few years. The problem can

be viewed as one of placing a number of items with weights r 1j into a mini­

mum number of bins of capacity 1. It is also known as the one-dimensional

cutting stock problem. It is for this scheduling model that some of the

deepest results have been obtained. Rather than giving a complete survey of

what is known for this model, we shall instead give a sample of typical

results and refer the reader to the literature for details [Johnson 1973,

1974; Johnson et al. 1974; Graham 1976; Garey & Johnson 1976B].

Given a list L of items, the first-fit (FF) algorithm packs the items

successively in the order in which they occur in L, always placing each

item into the first bin into it will validly fit (i.e., so that the sum of

the weights in the bin does not exceed its capacity 1). The number of bins

required by the packing is just the time required to execute the jobs using

Las a priority list. If instead of choosing the first bin into which an

item will fit, we always choose the bin for which the unused capacity is

minimized, then the resulting procedure is called the best-fit (BF) algo­

rithm. Finally, when Lis first ordered by decreasing weights and then

first-fit or best-fit packed, the resulting algorithm is called first-fit

4-6

decreasing (FFD) or best-fit decreasing '(BFD), respectively.

The basic results which apply to these algorithms are the following

[Johnson et al. 1974; Garey et al. 1976B]:

C (FF) S f.!2. c* 1·
max 10 max'

r17 * 1 cmax(BF) s 1o cmax;

11 * C (FFD) S - C + 4;
max 9 max

C (BFD) S .!.!_ c* + 4.
max 9 max

The only known proofs of the last two inequalities are extremely lengthy.
17 11

Examples can be given which show that the coefficients 1o and 9 are best

possible.

If constraints are made on the resource requirements,

for all j, then the following results hold:

if ;:: 1
then C (BFD) s C (FFD) · r - 6 max max '

if ;:: 1
then C (BFD) C (FFD) ; r = - 5 max max

1 * L~-lJ-1; if r s
2

then C (FF)/C S 1 + max max

i.e., r s r
lj

8 1 71 * if r E (29'2] then C (FFD) s -c + C for some constant c.
60 max max

s r

For these and a number of similar results, the reader is referred to [Graham

1976].

Krause [Krause 1973] (see also [Krause et al. 1975, 1977]) considers

the case Pjresl,p.=llc • He proves that
J max

* 27 24
(C (LS)-2)/C < -10 - 10m' max max

(C (DMR)-1)/c* S 2 2 (m;:: 2),
max max m

and he gives examples for which

* C (LS)/C
max max

27 ;::
10

37
lorn·

Krause also proves several bounds for the preemptive case Plpmtn,resllc ,
max

one of which is

(DM)/ * < 3 - 3 cmax R cmax m (m ;:: 2) •

4-7

Goyal [Goyal 1977A] studies the case Plresl,prec,p.=llc with the
J max

restriction that each resource requirement is either zero or 100%. Thus,

two jobs both requiring the use of the resource can never be executed simul­

taneously. This problem is already NP-hard form= 2 [Coffman 1976]. Goyal

proves that

* 2 C (LS)/C ~ 3
max max m'

* C (CG) /C
max max

for m = 2,

where in the latter case a priority list is formed according to the CG

labelling algorithm described earlier.

4.3. Nonpreemptive scheduling: general processing times

4.3.1. Pl IIw.c.
J J

(t)

The following generalization of the SPT rule for 11 IIc. (see Section 3.3.1)
J

solves Pl IIc. in O(n log n) time [Conway et al. 1967]. Assume n = km (dummy
J

jobs with zero processing times can be added if not) and suppose

p 1 ~ ~ p • Assign the m jobs J (. 1) 1 ,J (. 1) 2 , ••• ,J. to m different
n J- m+ J - m+ J m .

machines (j = 1, ••• ,k) and execute the k jobs assigned to each machine in

SPT order.

Bruno, Coffman and Sethi [Bruno et al. 1974] consider the algorithm

RPT: first apply list scheduling on the basis of largest processing time

first (LPT), then reverse the order of jobs on each machine, and finally

left justify the schedule. RPT has the same behavior as LPT with respect

to the C criterion (see Section 4.3.5.1); however, it only yields
max

Ic. (RPT) /LC~ ~ m.
J J

(t)

With respect to Pl IIw.C., similar heuristics are described and tested empiri­
J J

cally by Baker and Merten [Baker & Merten 1973].

Eastman, Even and Isaacs [Eastman et al. 1964] show that after renum­

bering the jobs according to nonincreasing ratios w./p.
J J

I 1 ln ~ ~ <In. lj 1 In w.C.(LS) - -2 ' 1 w.p. 1 k 1 w.pk - -2 . 1 w.p.).
J J J= J J m J= = J J= J J

(t)

It follows from this inequality that

4-8

In [Elmaghraby & Park 1974; Barnes & Brennan 1977] branch-and-bound a~go­

rithms based on this lower bound are developed.

Sahni [Sahni 1976] constructs algorithms 1\ (in the same spirit as his

approach for 11 IIw.U. mentioned in Section 3.3.3) with O(n(n2k)m-l) running
J J

time for which

Form 2 = 2, the running time of A2 can be improved to O(n k).

4.3.2. QI IIc.
J

The algorithm for solving Pl IIc. given in the previous section can be
J

generalized to the case of uniform machines [Conway et al. 1967]. If J. is
J

the k-th last job executed on M., a cost contribution kp .. = kq.p. is in-
1 1] 1 J

curred. Ic. is a weighted sum of the p. and is minimized by matching then
J J

smallest weights kq. in nondecreasing order with the p. in nonincreasing
1 . J

order. The procedure can be implemented to run in O(n log n) time [Horowitz

& Sahni 1976].

4.3.3. RI IIc.
J

RI IIc. can be formulated and solved as an mxn transportation problem [Horn
J

1973; Bruno et al. 1974). Let

= {01 xijk

if J. is the k-th last job executed on M.,
J l.

otherwise.

Then the problem is to minimize

subject to

I:=1 l~=l xijk = 1 for all j,

I;=l xijk :;;; 1 for all i,k,

xijk 2: 0 for all i,j,k.

4-9

This problem, like the similar one in Section 4.2.1, can be solved in O(n3)

time.

4.3.4. Other cases: enumerative optimization methods

As we noted in Section 4.1, P21 le and P21 IIw.e. are NP-hard. Hence it
max J J

seems fruitless to attempt to find polynomial-time optimization algorithms

for criteria other than Ie .. Moreover, P2ltreelie. is known to be NP-hard,
J J

both for intrees and outtrees [Sethi 1978]. It follows that it is also not

possible to extend the above algorithms to probl_ems with precedence con­

straints. The only remaining possibility for optimization methods seems to

be implicit enumeration.

RI le can be solved by a branch-and-bound procedure described in
max

[Stern 1976]. The enumerative approach for identical machines in [Bratley

et al. 1975] allows inclusion of release dates and deadlines as well.

A general dynamic programming technique [Rothkopf 1966; Lawler & Moore

1969] is applicable to parallel machine problems with thee , L , IwJ.eJ. max max
and Iw.u. optimality criteria, and even

J J
to problems with the Iw.T. crite­

J J
rion in the special case of a common due date.

Let us define F. (t1 , ... ,t) as the minimum cost of a schedule without
J m

idle time for J 1 , .•. ,Jj subject to the constraint that the last job on Mi

is completed at time t., for i = 1, •.. ,m. Then, in the case off crite-
1 max

ria,

F.(t1 , ... ,t) = minl<"< {max{f.(t.),F. 1 (t1 , ... ,t.-p .. , ... ,t)}},
J m -1-m J 1 J- 1 1] m

and in the case of It. criteria,
J

F.(t1,··-,t) = minl<"< {f.(t.) + F. 1(t1,··•,t.-p .. , ... ,t)}. J m -1-m J 1 J- 1 1J m

In both cases, the initial conditions are

if t. = 0 for i = 1, .•• ,m,
1

otherwise.

Appropriate implementation of these equations yields O(mnem-l) computations

for a variety of problems, where e is an upper bound on the completion time

of any job in an optimal schedule. Among these

Q 11 L and Q 11 L w . e . . P 11 I w . U . can be solved in
max · J J J J

problems are P I r . I e ,
J max

O(mn(max.{d.})m) time.
J J

4-10

Still other dynamic programming approaches can be used to solve Pl !If.
J

and Pl !If in O(m min{3n,n2nC}) time, but these are probably of little
max

practical importance.

4.3.5. Other cases: approximation algorithms

4.3.5.1. Pl le max

By far the most studied scheduling model from the viewpoint of approximation

algorithms is Pl le • We refer to [Garey et al~ 1977] for an easily read­max
able introduction into the techniques involved in many of the "performance

guarantees" mentioned below.

Perhaps the earliest and simplest result on the worst-case performance

of list scheduling is given in [Graham 1966]:

* C (LS)/C max max
$ 2 - !

m
(t)

If the jobs are selected in LPT order, then the bound can be considerably

improved, as is shown in [Graham 1969]:

* C (LPT)/C max max
4 1

:s; 3 - 3m· (t)

A somewhat better algorithm, called multifit (MF) and based on a completely

different principle, is given in [Coffman et al. 1977]. The idea behind MF

is to find (by binary search) the smallest "capacity" a set of m "bins" can

have and still accommodate all jobs when the jobs are taken in order of non­

increasing p. and each job is placed into the first bin into which it will
J

fit. The set of jobs in the i-th bin will be processed by M .• If k packing
l.

attempts are made, the algorithm (denoted by MFk) runs in time O(n log n +

knm) and satisfies

We note that if the jobs are not ordered by decreasing p. then all that can
J

be guaranteed by this method is

* 2 C (MF)/C $ 2 - -max max m+1· (t)

The following algorithm Zk was introduced in [Graham 1969]: schedule the k

largest jobs optimally, then list schedule the remaining jobs arbitrarily.

4-11

It is shown in [Graham 1969] that

c (Zk)/c* s 1 + (1 - m!)/(1 + [m~]> max max

and that when m divides k, this is best possible. Thus, we can make the bound

as close to 1 as desired by taking k sufficiently large. Unfortunately, the

best bound on the running time is O(nkm).

A very interesting algorithm for Pl le is given by Sahni [Sahni 1976].
max

He presents algorithms Ak with O(n(n2k)m-l) running time which satisfy

* C (Ak)/C max max
1

s 1 + k.

Form

cases

= 2, al9orithm A2 can be improved to run in time O(n2k). As in the

of 11 IIw.U. (Section 3.3.3) and Pl IIw.C. (Section 4.3.1), the algo-
J J J J

rithms Ak are based on a clever combination of dynamic programming and

"rounding" and are beyond the scope of the present discussion.

Several bounds are available which take into account the processing

times of the jobs. In [Graham 1969] it is shown that

* C (LS) /C
max max

s 1 + (m-1) max . { p . } / l . p ..
J J J J

For the case of LPT, Ibarra and Kim [Ibarra & Kim 1977] prove that

C (LPT)/c* s 1 + 2 (m-l) for n ~ 2(m-1)max.{p.}/min.{p.}.
max max n J J J J

The following local interchange (LI) algorithm gives a slight improvement

over the original 2 - ! bound: assign jobs to machines arbitrarily, then
m

move individual jobs and interchange pairs of jobs as long as C can be
max

decreased by any such change. It then follows [Graham-] that

* C (LI)/C
max max

s 2 - - 2-m+l. (t)

In [Bruno et al. 1974] the Conway-Maxwell-Miller (CMM) algorithm for solving

Pl IIc. (see Section 4.3.1) is considered. Let c* (CMM) be the minimum com-
J max

pletion time among all schedules that can be generated by CMM. Then

* C (CMM)/C (LPT)
max max

* * C (CMM)/C
max max

s 2 - !
m'

1 s 2 - -.
m

(t)

(t)

An interestinq variation on the C criterion arises in the work of Chandra
max

and Wong [Chandra & Wong 1975]. They consider the case Pl ILB~, where B.
l l

4-12

denotes the completion time of the job executed last on M., and establish
i

the surprisingly good behavior of LPT:

They also construct examples for which

Finally, we mention the following result [Garey et al. -]. For any LPT sched-

ule, let t denote the latest possible time at which a machine can become
max

idle and let t . denote the earliest time a machine can be idle. Then
min

I < 4m-2
t t . - 3 1 max min m-

and this bound is best possible.

4.3.5.2. QI le max

In the literature on approximation algorithms for scheduling problems, it is

usually assumed that unforced idleness (UI) of machines is not allowed, i.e.,

a machine cannot be idle when jobs are available. In the case of identical

machines, UI need not occur in an optimal schedule if there are no prece­

dence constraints or if all pj = 1. Allowing UI may yield better solutions,

however,inthe cases which are to be discussed in Sections 4.3.5.2-6. The

optimal value of C under the restriction of no UI will be denoted by
max

* * C , the optimum if UI is allowed by C (UI).
max max

Liu and Liu [Liu & Liu 1974A, 1974B, 1974C] study numerous questions

dealing with uniform machines. We outline some of their results.

For the case that q 1 = ..• = 4m_ 1 = 1, 4m = q ~ 1, they prove

* C (LPT)/C (UI)
max max

:,; q+2 {
2(m-1+q)

m-l+q
2

for q:,; 2,

for q > 2.

For the general case, they define the algorithm~ as follows: schedule the

k longest jobs first, resulting in a completion time of Ck(J\), and schedule

the remaining tasks for a total completion time of C (A.). If C (Ak) > max --k max

:,; 1 + 1
Q

1

4-13

where all q. ~ 1 and
1. 1

Q = max{min .{r k+l 1.r qj l - r qj r }, k+l }-
J \ r l q. q. \

li qi J J liqi

This is best possible when the qi. are integers and 'i'.q. divides k. L.1. 1.

Gonzalez, Ibarra and Sahni [Gonzalez et al. 1977] consider the follow-

ing generalization LPT' of LPT: assign each job, in order of nonincreasing

processing time, to the machine on which it will be completed soonest. Thus,

unforced idleness may occur in the schedule.

For the case that q 1 =

* e (LPT') /e
max max

~ {1+~
2 1
3 2m

For the general case, they show

* e (LPT') /e
max max

s 2 - - 2-m+1 ·

= ~-l = 1, ~ ~ 1, they show that

form 2,
(t)

for m > 2.

* 3 Also, examples are given for which e (LPT')/e approaches as m tends
max max 2

to infinity.

4.3.5.3. RI le max

Very little is known about approximation algorithms for this model. Ibarra

and Kim [Ibarra & Kim 1977] consider six algorithms, typical of which is to

schedule J. on the machine that executes it fastest, i.e., on an M. with
J 1.

minimum p. . . For all six algorithms A they prove . l.J

* e (A)/C Sm
max max

with equality possible for four of the six. For the other two, they conjec­

ture

* e (A) /C
max max

?
s 2.

For the special case R21 le , they give a complicated algorithm G (however,
max

with O(n log n) running time) such that

* e (G) /C
max max

1+/s s 2 • (t)

In a variation on RI le ' max
we assume that each J. has a processing time p.

J J

4-14

and a fixed memory requirement 'I J . I and that each
J

M. has a memory capacity
l.

IM. I. We require that IM. I 2:: IJ. I in order for M.
l. l. J l.

to be able to execute Jj,

i.e.,

= {pooj pij

if IM. I 2:: I J. I ,
l. J

otherwise.

Kafura and Shen [Kafura & Shen 1977] show

They also note that when mis a power of 2, the bound can be achieved.

Suppose a list is formed in order of decreasing IJ. I; this algorithm
J

is denoted by LMF (largest memory first). It can be shown [Kafura & Shen

1977] that

A refinement of LMF is LMTF where ties in IJ. I are broken by decreasing
J

order of p .• In this case,
J

C (LMTF)/c* ~ {~
2 max max 1

m-1

form= 2,

form 2:: 3.

(t)

(t)

Kafura and Shen also give a complicated (but polynomial-time) algorithm 2D

for which

Other results for this model may be found in [Kafura & Shen 1976].

4.3.5.4. Pjpreclc max

In the presence of precedence constraints it is somewhat unexpected
1 [Graham 1966] that the 2 bound still holds, i.e.,
m

(t)

Now, consider executing the set of jobs twice: the first time using proces­

sing times p., precedence constraints, m machines and an arbitrary priority
J

list, the second time using processing times pj ~ pj, weakened precedence

constraints, m' machines and a (possibly different) priority list. Then

[Graham 1966]

m-1
C' (LS)/C (LS) S 1 + -m• · max · max

4-15

(t)

Even when critical path (CP) scheduling is used, examples exist [Graham-]

for which

* C (CP) /C max · max
1 = 2 - -.
m

It is known [Graham-] that unforced idleness (UI) has the following behav­

ior:

C (LS)/c* (UI) S 2 - !
max · max m

(t)

* Let C (pmtn) denote the optimal value of C if preemption is allowed.
max max

As in the cas,e of UI, it is known [Graham -] that

* C (LS)/C (pmtn)
max · max

:;; 2 - !.
m

Liu [Liu 1972] shows that

* * C (UI)/C (pmtn) S
max · max

2 - _2_
m+l.

(t)

(t)

Relatively little is known in the way of approximation algorithms for the

more special case Pltreelc . It is conjectured in [Denning & Scott Graham
max

1973] that

If true this would be best possible as examples show. For the special case

that the precedence constraints form an intree, Kaufman [Kaufman 1974]

shows that

C (CP) S C * (pmtn) + max . { p . } - f ! max . { p . } 1.
max . max J J m J J

4 • 3 • 5 • 5 • Q I pr,ec I C
max

Liu and Liu [Liu & Liu 1974B] also consider the presence of precedence con­

straints in the case of uniform machines. They show that, when unforced

idleness or preemption is allowed,

4-16

* C (LS)/C (UI)
max max

(t)

(t)

1
When all q. = 1 this reduces to the earlier 2 - bounds for these questions

i m
on identical machines.

Suppose that the jobs are executed twice: the first time using m ma­

chines of speeds q 1 , ••• ,4m, the second time using m' machines of speeds

I I T.h q 1 , ..• ,~,. en

C' (LS)/C (LS) S max.{q.}/min.{q'.} + L,q~/L,q'. - max.{q.}/L,q~. (t)
max max i i i i ii ii i i ii

Note

of 1

that when
m-1

all q. = 1, this reduces to the previously mentioned bound
i

+ -,-.
m

We mention here two rather special results of Baer [Baer 1974]. He con-

structs an algorithm B based on the CG labelling algorithm which has the

following behavior. For Q2ltreelc with q 2/q1 = 3, max

* C (B) S C + 1;
max max

for Q2lpreclc with q 2/q1 = 2, max

* 6 C (B)/C S -max max 5·

4.3.5.6. Plres,preclc max

The most general bound for Plres,preclc is given in [Garey & Graham 1975].
max

It states

(t)

and, in fact, examples withs= 1 are given which achieve this bound. Thus,

the addition of even a single resource in the presence of precedence con­

straints can have a drastic effect on the worst-case behavior of an arbi­

trary priority list.

For Plreslc , it is shown in [Garey & Graham 1975] that form~ 2
max

C (LS)/c* s . {m+l s + 2 - 2s+l}. max max min -2-, m

With the restriction that m ~ n, s ~ 1, this can be improved to

* C (LS)/C S s + 1.
max max

(t)

(t)

4-17

The techniques used to prove this inequal'ity involve an interesting appli­

cation of Ramsey theory, a branch of combinatorics.

4.4. Preemptive scheduling

4.4.1. Plpmtnlic.
J

A theorem of McNaughton [McNaughton 1959] states that for Plpmtn!Iw.C. there
J J

is no schedule with a finite number of preemptions which yields a smaller

criterion value than an optimal nonpreemptive scqedule. The finiteness

restriction can be removed by appropriate application of results from open

shop theory. It therefore follows that the procedure of Section 4.3.1 can

be applied to solve Pjpmtn!Icj. It also follows that P2jpmtnliwjcj is NP­

hard, since P2j IIw.C. is known to be NP-hard.
J J

McNaughton's theorem does not apply to uniform machines, as can be demon­

strated by a simple counterexample. There is, however, a polynomial algo­

rithm for Qlpmtnlic ..
J

One can show that there exists an optimal preemptive schedule in which

cj ~ Ck if pj < pk [Lawler & Labetoulle 1977]. Accordingly, first place the

jobs in SPT order. Then obtain an optimal schedule by preemptively schedul­

ing each successive job in the available time on them machines so as to

minimize its completion time [Gonzalez 1977]. This procedure can be imple­

mented in O(n log n + mn) time and yields an optimal schedule with no more

than (m-1) (n-~) preemptions. It has been extended to cover the case in which

Ic. is minimized subject to a common deadline for all jobs [Gonzalez 1977].
J

4.4.3. Rlpmtnlic.
J

Very little is known about Rjpmtnlic .. We conjecture that the problem is
J

NP-hard. However, this remains one of the more vexing questions in the area

of preemptive scheduling.

4-18

4.4.4. Plpmtn,preclc
max

An obvious lower bound on the value of an optimal Plpmtnlc schedule is
max

given by

A schedule meeting this bound can be constructed in O(n) time [McNaughton

1959]: just fill the machines successively, scheduling the jobs in any order

and splittinq a job whenever the above time bound is met. The number of

preemptions occurring in this schedule is at most m-1. It is possible to

design a class of problems for which this number is minimal, but the general

problem of minimizing the number of preemptions is easily seen to be NP-hard.

In the case of precedence constraints, Pipmtn,prec,p.=1Jc turns out
J max

to be NP-hard [Ullman 1976], but Plpmtn,treelc and P2lpmtn,preclc can
max max

be solved by a polynomial-time algorithm due to Muntz and Coffman [Muntz &

Coffman 1969,, 1970]. This is as follows.

Define Jl. (t) to be the level of a J. wholly or partly unexecuted at
J J

time t. Suppose that at time t m' machines are available and that n' jobs

are currentlv maximizing £. (t). If m' < n', we assign m' /n' machines to
~ J

each of then' jobs, which implies that each of these jobs will be executed

at speed m'/n'. If m' ?: n', we assign one machine to each job, consider the

jobs at the next highest level, and repeat. The machines are reassigned

whenever a job is completed or threatens to be processed at a higher speed

than another one at a currently higher level. Between each pair of succes­

sive reassignment points, jobs are finally rescheduled by means of

McNaughton's algorithm for PlpmtnJc . The algorithm requires O(n2) time
max

[Gonzalez & Johnson 1977].

Recently, Gonzalez and Johnson [Gonzalez & Johnson 1977] have developed

a totally different algorithm that solves Plpmtn,treelc by starting at
max

the roots rather than the leaves of the tree and determines priority by con-

sidering the total remaining processing time in subtrees rather than by

looking at critical paths. The algorithm runs in O(n log m) time and intro­

duces at most n-2 preemptions into the resulting optimal schedule.

Lam and Sethi [Lam & Sethi 1977], much in the same spirit as their

work mentioned in Section 4.2.2, analyze the performance of the Muntz­

Coffman (MC) algorithm for Plpmtn,preclc . They show
max

* $2--2 C (MC)/C
max max m

(m ?: 2) • (t)

4.4.5. Qlpmtn,preclc max

4-19

Horvath,

rithm to

sults in

Lam and Sethi [Horvath et al. 1977] adapt the Muntz-Coffman algo-

solve Qlpmtnlc and 02lpmtn,preclc in O(mn2) time. This re-
max - max 2

an optimal schedule with no more than (m-l)n preemptions.

A complicated, but computationally efficient, algorithm due to Gonzalez

and Sahni [Gonzalez & Sahni 1978] solves Qlpmtnlc in O(n) time, if the
max

jobs are given in order of nonincreasing p. and the machines in order of
J

nondecreasing q .. This procedure yields an optimal schedule with no more
1.

than 2(m-1) preemptions, which can be shown to be a tight bound.

The optimal value of C is given by
max

where p 1 ~ ..• ~ pn and q 1 s ... s ~- This result generalizes the one given

in Section 4.4.4.

The Gonzalez-Johnson algorithm for Plpmtn,treelc mentioned in the
max

previous section can be adapted to the case Q2lpmtn,treelc . max
In [Horvath et al. 1977] it is shown that for Qjpmtn,precjc , criti­

max
cal path scheduling has the bound

* C (CP) /C
max max

and examples are given for which the bound (~)½ is approached arbitrarily
8

closely.

4.4.6. Rjpmtnlc
max

Many preemptive scheduling problems involving independent jobs on unrelated

machines can be formulated as linear programming problems [Lawler &

Labetoulle 1977]. For instance, solving Rjpmtnlc is equivalent to mini-
max

mizing

C
max

subject to

\1'.1 1 x .. /p .. =1 (j=l, ... ,n),
l1.= l.J l.J

X,. s C
l.J max

(j = 1, ... ,n),

4-20

x .. 2': 0
1.J

C
max

(i = 1, ... ,m) ,

(i = 1, ••. ,m, j = 1, •.. ,n).

In this formulation x .. represents the total time spent by J. on M .. Given
1.J J 1.

a solution to the linear program, a feasible schedule can be constructed in

polynomial time by applying the algorithm for olpmtnlc , discussed in
max

Section 5.2.2.

This procedure can be modified to yield an optimal schedule with no

more than about J m2 preemptions. It remains an open question as to whether

O(m2) preemptions are necessary for an optimal preemptive schedule.

There is some evidence that it may be possible to solve the linear

program in polynomial time. It is known that, for fixed m, the problem can

be solved in O(n2 (m-l)) time; the special case R2lpmtnlc can be solved
max

in O(n) time [Sahni et al. 1977].

We note that a similar linear programming formulation can be given for

the minimization of L [Lawler & Labetoulle 1977].
max

4.4.7. Plpmtn,r.jL
J max

PjpmtnjL and Pjpmtn,r.lc can be solved by a procedure due to Horn
max 2 J max

[Horn 1974]. The O(n) running time has been reduced to O(mn) [Gonzalez &

Johnson 1977].

More generally, the existence of a feasible preemptive schedule with

given release dates and deadlines can be tested by means of a network flow

model in O(n3) time [Horn 1974]. A binary search can then be conducted on

the optimal value of L , with each trial value of L inducing deadlines
max max

which are checked for feasibility by means of the network computation. It

can be shown that this yields an O(n3 min{n2 ,log n + log max.{p.}}) algo­
J J

rithm [Labetoulle et al. 1977].

4.4.8. Qlpmtn,r. IL
J max

In the case of uniform machines, the existence of a feasible preemptive

schedule with given release dates and a common deadline can be tested in

O(n log n + mn) time; the algorithm generates O(mn) preemptions in the

worst case [Sahni & Cho 1977]. More generally, Qjpmtn,r.lc _ and, by sym-
2 2 J mctX

metry, QlpmtnlL are solvable in O(m n+n) time; the number of preemptions
max

4-21

generated is O(n2) [Labetoulle et al. 1977].

The feasibility test mentioned in the previous section has been adapted

to the case of two uniform machines [Bruno & Gonzalez 1976] and extended to

a polynomial-time algorithm for Q2lpmtn,r.lL [Labetoulle et al. 1977].
J max

It appears n~t unlikely that the Gonzalez-Johnson algorithm for

Plpmtn,treelc and the above mentioned algorithm for Qlpmtn,r.lc allow max J max
a common generalization that will make Qlpmtn,treelc solvable in polyno-max
mial time.

5-1

5. OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS

5.1. Introduction

We now pass on to problems in which each job requires execution on more than

one machine. Recall from Section 2.3 that in an open shop (denoted by 0) the

order in which a job passes through the machines is immaterial, whereas in a

flow shop (F) each job has the same machine ordering (M1 , ••• ,Mm) and in a

job shop (J) possibly different machine orderings are specified for the jobs.

we survey these problem classes in Sections 5.2,, 5.3 and 5.4, respectively.

An obvious extension of this type of problem involves machines which

can process more than one job at the same time. The resulting resource con­

strained project scheduling problems are extremely hard to solve. We refer

to surveys by Davis [Davis 1966, 1973] that contain an extensive bibliography.

We shall be dealing exclusively with the C criterion. Other optimal-max
ity criteria lead usually to NP-hard problems, even form= 2 [Garey et al.

1976B; Lenstra et al. 1977]; a notable exception is 021 IIcj, which is open.

Only a few enumerative algorithms for problems involving criteria other than

C have been developed, e.g., for F2j IIc. [Ignall & Schrage 1965],
m~ J

Fj IIw.C. [Townsend 1977A], Fj jL [Townsend 1977B], and Jj IIw.T. [Fisher
J J max J J

1973].

5.2. Open shop scheduling

5.2.1. Nonpreemptive case

The case 02j jc admits of an O(n) algorithm [Gonzalez & Sahni 1976]. A
max

simplified exposition is given below.

For convenience, let aj = plj' bj = p2j. Let A= {Jjjaj ~ bj}, B =
{J.ja. < b.}. Now choose Jr and JJ/, to be any two distinct jobs (whether in

J J J
A or B) such that

a ~ maxJ {b.},
r ,EA J

J

bJ/, ~ maxJ.EB{aj}.
J

Let A'= A-{Jr,JJ/,}, B' = B-{Jr,JJ/,}. We assert that it is possible to form

feasible schedules for B'u{JJ/,} and for A'u{Jr} as indicated in Figure 5.1,

the jobs in A' and B' being ordered arbitrarily. In each of these separate

5-2

schedules, there is no idle time on either machine, from the start of the

first job on that machine to the completion of the last job on that machine.

T2-br being symmetric). We then combine the two schedules as shown in Figure

5.2, pushing the jobs in B'u{Jt} on M2 to the right. Again, there is no idle

time on either machine, from the start of the first job to the completion of

the last job.

We finally propose to move the processing of Jr on M2 to the first po­

sition on that machine. There are two cases to consider.

(1) a ~ T,1-b. The resulting schedule is as in Figure 5.3. The length of r ,_ r

the schedule is max{T 1 ,T2 }.

(2) a > T,1-b . The resulting schedule is as in Figure 5.4. The length of
r ,_ r

the schedule is max{T1 , a +b } .
r r

B'

s'

Figure 5.1

B' A'

B'

Figure 5.2

s'
s'

Figure 5.3

A'
A'

:~,___Ji ____ --.s~•-....__J_r_A_'_-+1-~~l--s-'_J_r~I--A-,-.....-1

Figure 5.4

5-3

For any feasible schedule we obviously h~ve that

C ~ max{T1,T2 ,max.{a.+b.}}.
max J J J

Since, in all cases, we have met this lower bound, it follows that the sched­

ules constructed are optimal.

There is a little hope of finding polynomial-time algorithms for non­

preemptive open shop problems more complicated than 021 le • The case
max

031 le is binary NP-hard [Gonzalez & Sahni 1976] and 02lr.lc ,
max J max

o2ltreelc and ol le are unary NP-hard [Lenstra -].
max max

5.2.2. Preemptive case

The result on 021 le presented in the previous section shows that there
max

is no advantage to preemption form= 2, and hence o2lpmtnlc can be
max

solved in O(n) time. More generally, olpmtnlc is solvable in polynomial
max

time as well [Gonzalez & Sahni 1976]. We already had occasion to refer to

this result in Section 4.4.6. An outline of the algorithm, adapted from

[Lawler & Labetoulle 1977], follows below.

Let P = (p ..) be the matrix of processing times and
l.J

C = max{max.{L:. p .. },max.{L, p. ,}}.
J l. l.J l. J l.J

Call row i (column j) of P tight if lj pij = C (Li pij = C), slack other­

wise.

* We clearly have C ~ C. It is possible to construct a feasible sched-
max

ule for which C max = C. Hence this schedule will be optimal.

Suppose we can find a subset S of strictly positive elements of P, with

exactly one element of Sin each tight row and in each tight column, and at

most one element of Sin each slack row and in each slack column. We shall

call such a subset a decrementing set, and use it to construct a partial

schedule of length o, for some o > 0. The constraints on the choice of o
are as follows.

(1) If pij E s and either row i or column j is tight, then Q s; p ...
l.J

(2) If p .. E s and row i (column j) is slack, then o s; p .. + C - Ik pik l.J l.J
co s; p .. + C - Ik pkj). l.J

(3) If row i (column j) contains no element in s (and is therefore neces-

sarily slack), then o s; C - lk pik (o s; C - lk Pkj).

For a given decrementing set S, let o be the maximum subject to (1), (2), (3).

5-4

Then the partial schedule constructed is, such that for each p .. E: S, M. proc-
lJ 1

esses J. for min{p .. ,o} units of time.
J l.J

We then obtain the matrix P' from P be replacing each p .. E: S by
l.J

max{0,p .. -o}, and repeat the procedure until after a finite number of times
l.J

P' = (0). Joining together the partial schedules obtained for successive

decrementing sets then yields an optimal preemptive schedule for P.

By suitably embedding Pin a doubly stochastic matrix and appealing to

the Birkhoff·-Von Neumann theorem, it can be shown that a decrementing set

can be found by solving a linear assignment problem; see [Lawler & Labetoulle

1977] for details.

Other network formulations of the problem are possible. An analysis of

various possible computations reveals that olpmtnjc can be solved in
max

O(r + min{m4 ,n4 ,r2 }) time, where r is the number of nonzero elements in P

[Gonzalez 1976].

5.3. Flow shop scheduling

5.3.1. F21Blc , F31Blc max max

A fundamental algorithm for solving F21 le is due to Johnson [Johnson
max

1954]. He shows that there exists an optimal schedule in which J. precedes
J

Jk if min{p 1 j,p2k} s min{p2 j,plk}. It follows that the problem can be solved

in O(n log n) time: arrange first the jobs with plj s p 2 j in order of non­

decreasing plj and subsequently the remaining jobs in order of nonincreasing

P2j"

Some special cases involve start lags .Q,lj and stop lags £ 2 j for Jj,

that represent minimum time intervals between starting times on M1 and M2

and between completion times on M1 and M2 , respectively [Mitten 1958;

Johnson 1958; Nabeshima 1963; Szwarc 1968]. Defining£.= min{£ 1 .-p1 .,£2 .-p2 .}
J J J J J

and applying Johnson's algorithm to processing times (p 1 .+£,,p2 .+£.) will
J J J J

produce an optimal permutation schedule, i.e., one with identical processing

orders on all machines [Rinnooy Kan 1976]. If we drop the latter restriction,

the problem :is unary NP-hard [Lenstra -].

Similarly, some F3I le problems can be solved by applying Johnson's
max

algorithm to processing times (p 1 j+p2 j,p2 j+p3 j), e.g., if there exists a

8 E: [0,1] such that Bp 1 j+(1-8)p3 j ~ p 2k for all (j,k) [Johnson 1954; Burns

& Rooker 1976] or if M2 can process any number of jobs at the same time

[Conway et al. 1967].

The general F31 le max
applies to F2lr. le and

J max
1977].

problem, however, is unary

F2Jtreejc [Garey et al.
max

5-5

NP-hard, and the same

1976B; Lenstra et al.

It should be noted that an interpretation of precedence constraints

which differs from our definition is possible. If Jj <' Jk only means that

Oij should precede Oik for i = 1,2, then F2ltree' lemax can be solved in

O(n log n) time [Sidney 1977]. In fact, Sidney's algorithm applies even to

series-parallel precedence constraints. The arguments used to establish this

result are very similar to those referred to in Section 3.3.1 and apply to

a larger class of scheduling problems [Monma & Sidney 1977]. It is an open

question whether F2lprec' le is NP-hard. max
Gonzalez and Sahni [Gonzalez & Sahni 1977] consider the case of pre-

emptive flow shop scheduling. They show that preemptions on M1 and Mm can

be removed without increasing e . Hence, Johnson's algorithm solves
max

F2lpmtnle as well. F3lpmtnle turns out to be unary NP-hard.
max max

5.3.2. Fl le max

As a general result, we note that there exists an optimal flow shop schedule

with the same, processing order on M1 and M2 and the same processing order

on M 1 and Ml [Conway et al. 1967]. It is, however, not difficult to con-
m- m

struct a 4-machine example in which a job "passes" another one between M2

and M3 in the optimal schedule. Nevertheless, it has become tradition in the

literature to assume identical processing orders on all machines, so that in

effect only the best permutation schedule has to be determined.

Except for some rather simple worst-case results for heuristics, ob­

tained by Gonzalez and Sahni [Gonzalez & Sahni 1977], that are to be men­

tioned in Section 5.4.2, all research in this area has focused on enumera­

tive methods.

The usual enumeration scheme is to assign jobs to the ,Q,-th position in

the schedule at the t-th level of the search tree. Thus, at a node at that

level a partial schedule (Jcr(l), ... ,Jcr(,Q,)) has been formed and the jobs with

index set S =, {1, ... ,n} - {cr(1), ... ,cr(£)} are candidates for the (£+1)-st

position. One then needs to find a lower bound on the value of all possible

completions of the partial schedule. It turns out that almost all lower

bounds developed so far are generated by the following bounding scheme

[Lageweg et al. 1977A].

Let us relax the capacity constraint that each machine can process at

5-6

most one job at a time, for all machines'but at most two, say, M u and M
V

(1 ~ u ~ v ~ m). We then obtain a problem of scheduling {J.jj Es} on
J

five

machines N ,M ,N ,M ,N in that order,
•u u UV V v•

which is specified as follows.

Let e (o, i) denote the completion time of J (n) 6n M. . N , Nuv and N
a)(, i •u v•

have

'infinite capacity; the processing times on these machines are defined by

\v-1
= lh=u+l phj'

M and M have capacity 1 and processing times p .
U V UJ

and p ., respectively.
VJ

Note that we can interpret N as yielding release • u dates q . on M and N
0 UJ --u v•

as setting due dates -4v.j on Mv'

mized.

with respect to which L is to be mini-max

Any of the machines N ,N ,N can be removed from this problem by •u uv v•
underestimating its contribution to the lower bound to be the minimum pro-

cessing time on that machine. Valid lower bounds are obtained by adding

these contributions to the optimal solution value of the remaining problem.

For the case that u = v, removing N and N from the problem produces •u u•
the machine-based bound used in [Ignall & Schrage 1965; McMahon 1971]:

max1< < {min. s{q .} + '. s puJ· + min. s{q .}}. -U-m]€ 0 UJ lJ€]€ U"J

Removing only N results in a lj IL problem on M, which can be solved · •u max u
by Jackson's rule (Section 3.2) and provides a slightly stronger bound.

If u ~ v, removal of N , N and N yields an F2j je problem, to
•u uv v• max

be solved by Johnson's algorithm (Section 5.3.1).Aspointedoutinthatsec-

tion, solution in polynomial time remains possible if N is taken fully
UV

into account; the resulting bound dominates the job-based bound proposed in

[McMahon 1971] and is the best one currently available.

All other variations on this theme (e.g., taking u = v and considering

the resulting llr.lL problem) would involve the solution of NP-hard
J max

problems. The development of fast algorithms or strong lower bounds for

these problems thus emerges as a possibly fruitful research area.

The computational performance of branch-and-bound algorithms for

Fl le might be improved by the use of elimination criteria. Particular max
attention has been paid to conditions under which all completions of

(Jo(l)'"""'Jcr(Jl)'Jj) can be eliminated because a schedule at least as good

5-7

exists among the completions of (Jo(l),.;.,J0 (t)'Jk,Jj). If all information

obtainable from the processing times of the other jobs is disregarded, the

strongest condition under which this is allowed is as follows. Defining

6. = C(okj,i) - C(oj,i), we can exclude J. for the t-th position if
l. J

max{6. 1 ,6.} ~ p.. (i = 2, ••• ,m)
1.- l. l.J

[McMahon 1969; Szwarc 1971, 1973]. Inclusion of these and similar dominance

rules can be very helpful from a computational point of view, depending on

the lower bound used [Lageweg et al. 1977A]. It may be worthwhile to con­

sider further extensions that, for instance, invblve the processing times

of the unscheduled jobs [Gupta & Reddi 1977; Szwarc 1977].

5.3.3. No wait in process

In a variation on the flow shop problem, each job, once started, has to be

processed without interruption until it is completed. This no wait constraint

may arise out of certain job characteristics (e.g., the "hot ingot" problem

in which metal has to be processed at continuously high t~mperature) or out

of the unavailability of intermediate storage in between machines.

The resulting Fino waitlc problem can be formulated as a traveling max
salesman problem with cities 0,1, ••• ,n and intercity distances

(j,k = 0,1, ••• ,n),

where piCI = 0 (i = 1, .•. ,m) [Piehler 1960; Reddi & Ramamoorthy 1972; Wismer

1972]. We refer to [Van Deman & Baker 1974] for a branch-and-bound approach

to Fino "raitlicj and to [Lenstra & Rinnooy Kan 1975] for a minor extension

to job shop systems.

Both Fino

1977]. For the

waitlc and Fino waitlic. are unary NP-hard [Lenstra et al.
max J

case F2lno waitlc , the traveling salesman problem assumes max
a special structure, and the results from [Gilmore & Gomory 1964] can be

applied to yield an O(n2) algorithm [Reddi & Ramamoorthy 1972]. In spite of

challenging prizes awarded for their solution [Lenstra et al. 1977],

F2lno waitlic. and F3lno waitlc are still open.
J max

The no wait constraint may lengthen the optimal flow shop schedule

considerably. It is not difficult to see that

* * C (no wait)/C < m form~ 2, max max

5-8

and examples show that this bound can be approached arbitrarily closely

[Lenstra -] •

5.4. Job shop scheduling

5.4.1. J2islc , J3lslc max max

A simple extension of Johnson's algorithm for F21 le allows solution of
max

J2lm.~2lc in O(n log n) time [Jackson 1956]. Let J. be the set of jobs
J max 1

with operations on Mi only (i = 1,2) and Jhi the.set of jobs that go from

~ to Mi (hi= 12,21). Order the latter two sets by means of Johnson's al­

gorithm and the former two sets arbitrarily. One then obtains an optimal

schedule by executing the jobs on M1 in the order (J12 ,J1 ,J21) and on M2 in

the order (]21 ,J2 ,J12).

This, however, is probably as far as we can get. Unary NP-hardness of

J21 le results as soon as we allow one job to have more than two opera-
max

tions [Garey et al. 1976A; Lenstra et al. 1977]. In fact, J211~p .. ~2lc
J.J max

and J3lp .. =lie are already NP-hard [Lenstra & Rinnooy Kan 1978].
J.J max

5.4.2. JI Jc max

The general job shop problem is extremely hard to solve optimally. An indi­

cation of this is given by the fact that a 10-job 10-machine problem, formu­

lated in 1963 [Muth & Thompson 1963], still has not been solved.

A convenient problem representation is provided by the disjunctive

graph model, introduced by Roy and Sussmann [Roy & Sussmann 1964]. Assume
._j-1 .

with u = L.k=l ~ + 1 and add two each operation 0 .. being renumbered as 0
J.J u

fictitious initial and final operations o 0 and

disjunctive graph is then defined as follows.

O* with Po= p* = 0. The

There is a vertex u with

weight p corresponding to each operation O. The directed conjective arcs
u u

link the consecutive operations of each job, and link o 0 to all first opera-

tions and all last operations too*. A pair of directed disjunctive arcs

connects every two operations that have to be executed on the same machine.

A feasible schedule corresponds to the selection of one disjunctive arc

of every such pair, granting precedence of one operation over the other on

their common machine, in such a way that the resulting directed graph is

acyclic. The value of the schedule is given by the weight of the maximum

weight path from Oto*· We refer to Figures 5.5 and 5.6 for examples.

5-9

Figure 5.5 Job shop problem, represented as a disjunctive graph.

0

Figure 5.6 Job shop problem, represented as an acyclic directed graph.

At a typical stage of any enumerative algorithm, a certain subset D

of disjunctive arcs will have been selected. We consider the directed graph

obtained by removing all other disjunctive arcs. Let the maximum weights of

paths from Oto u and from u to *, excluding p, be denoted by r and q, u u u
respectively. In particular, r* is an obvious lower bound on the value of

any feasible schedule obtainable from the current graph [Charlton & Death

1970]. We can get a far better bound in a manner very similar to the devel­

opment of flow shop bounds in Section 5.3.2 [Lageweg et al. 1977B].

Let us relax the capacity constraints for all machines except M .• We
i

then obtain a problem of scheduling the operations O on M. with release u i

dates r, processing times p, due dates -q and precedence constraints u u u
defined by the directed graph, so as to minimize maximum lateness. As pointed

5-10

out in Section 3.2, this llprec,r. IL problem is NP-hard, but there exist
J max

fast enumerative methods for its solution on each M .. Again, all lower
l.

bounds proposed in the literature appear as special cases of the above one

by underestimating the contribution of r, q or both, by ignoring the
u u

precedence constraints, or by restricting the set of machines over which

maximization is to take place.

The currently best job shop algorithm [McMahon & Florian 1975] involves

the 1!r.lL bound combined with the enumeration of active schedules.
J max

Starting from o0 , we consider at each stage the subset S of operations all

of whose predecessors have been scheduled and calculate their earliest pos­

sible completion times r +p. It can be shown [Giffler & Thompson 1960]
u u

that it is sufficient to consider only a machine on which the minimum value

of r +p is achieved and to branch by successively scheduling next on that u u
machine all O for which r < min0 ES{r +p }. In this scheme, several dis-

v V U U U

junctive arcs are added to D at each stage. An alternative approach whereby

at each stag·e one disjunctive arc of some crucial pair is selected leads to

a computationally inferior approach [Lageweg et al. 1977B].

The applicability of Lagrangean techniques to obtain stronger lower

bounds is the subject of ongoing research. Either the precedence constraints

fixing the machine orders for the jobs or the capacity constraints of the

machines can be multiplied by a Lagrangean variable and added to the objec­

tive function. For fixed values of the multi pliers, the resulting problems

can be solved in (pseudo)polynomial time. Computational experiments will

have to reveal if this approach, combined with subgradient optimization or

another suitable technique, will lead to any substantially better job shop

algorithm.

As far as approximation algorithms are concerned, a considerable effort has

been invested in the empirical testing of various priority rules [Gere 1966;

Conway el': al. 1967; Day & Hotten.stein 1970; Panwalkar & Iskander 1977]. No

rule appears to be consistently better than any other and in practical situ­

ations one would be well advised to exploit any special structure that the

problem at hand has to offer.

Not much has been done in the way of worst-case analysis of approxima­

tion algorithms for flow shop and job shop problems. Gonzalez and Sahni

[Gonzalez & Sahni 1977] show that for any active flow shop or job shop

schedule (AS)

5-11

* C (AS)/C Sm.
max max

This bound is tight even for LPT schedules, in which the jobs are ordered

according to nonincreasing sums of processing times. They give an O(mnlogn)

algorithri H :for F 11 C based on Johnson's algorithm for F2 J JC with max max

* fml C (H)/C S -2 .
max max

With SPT defined similarly as LPT, it is also shown that for FJ !Ic. and
J

Ic. (AS)/Ic~ s n,
J J

(t)

fcj(SPTJ/Ic; s m. (t)

It thus appears that, in general, the obvious algorithms can deviate quite

substantially from the optimum for this class of problems.

6-1

6. CONCLUDING REMARKS

If one thing emerges from the preceding survey, it is the amazing success

of complexity theory as a means of differentiating between easy and hard

problems. Within the very detailed problem classification developed espe­

cially for this purpose, surprisingly few open problems remain. For an

extensive class of scheduling problems, a computer program has been devel­

oped that classifies these problems according to their computational com­

plexity [Lageweg et al. 1978]. It employs elementary reductions such as

those defined in Section 2.7 in order to deduce,the consequences of the

development of a new polynomial-time algorithm or a new NP-hardness proof.

As far as polynomial-time algorithms are concerned, the most impres­

sive recent advances have occurred in the area of parallel machine schedul­

ing and are due to researchers with a computer science background, recogniz­

able as such by their use of terms like tasks and processors rather than

jobs and machines. Single machine, flow shop and job shop scheduling has

been traditionally the domain of operations researchers. Here, an analyti­

cal approach to the performance of approximation algorithms is badly needed,

although for any practical problem it probably will remain true that a

successful heuristic will have to exploit whatever special structure and

properties the problem at hand may have.

Thus, the area of deterministic scheduling theory appears as one of

the more fruitful interfaces between computer science and operations re­

search. Much progress has been made and more can be expected in the near

future.

Note. The last three authors are currently engaged in writing a book on

scheduling problems and would very much appreciate being informed about

new algorithmic and complexity results in this area.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the useful comments from M.L. Fisher.

The research by the last three authors was supported by NSF grant

MCS76-17605.

R-1

REFERENCES

D. ADOLPHSON (1977) Single machine job sequencing with precedence constraints.

SIAM J. Comput . .§_,40-54.

D. ADOLPHSON,. T.C. HU (1973) Optimal linear ordering. SIAM J. Appl. Math.

£,403-423.

A.V. AHO, M.R. GAREY, J.D. ULLMAN (1972) The transitive reduction of a

directed graph. SIAM J. Comput • .!_,131-137.

J. L. BAER (1974) Optimal scheduling on two processors with different speeds.

In: E. GELENBE, R. MAHL (eds.) (1974) Computer Architectures and Net­

works.North-Holland, Amsterdam, 27-45.

K. R. BAKER (l 974) Introduction to Sequencing and Scheduling. Wiley, New York.

K.R. BAKER, l~.G. MERTEN (1973) Scheduling with parallel processors and

linear delay costs. Naval Res. Logist. Quart. 3.Q_,793-804.

K.R. BAKER, L.E. SCHRAGE (1977) Finding an optimal sequence by dynamic

programming: an extension to precedence-related tasks. Operations Res.

£, to appear.

K.R. BAKER, Z.-s. SU (1974) Sequencing with due-dates and early start times

to minimize maximum tardiness. Naval Res. Logist. Quart. ~,171-176.

M.S. BAKSHI, S.R. ARORA (1969) The sequencing problem. Management Sci . .!.§_,

B247-263.

J.W. BARNES, J.J. BRENNAN (1977) An improved algorithm for scheduling jobs

on identical machines. AIIE Trans. 9,25-31.

P. BRATLE:Y, M. FLORIAN, P. ROBILLARD (1975) Scheduling with earliest start

and due date constraints on multiple machines. Naval Res. Logist.

Quart. 22,165-173.

P. BRUCKER, M.R. GAREY, D.S. JOHNSON (1977) Scheduling equal-length tasks

under treelike precedence constraints to minimize maximum lateness.

Math. Operations Res., to appear.

J. BRUNO, E.G. COFFMAN, JR., R. SETHI (1974) Scheduling independent tasks

to reduce mean finishing time. Comm. ACM .!._I,382-387.

J. BRUNO, T. GONZALEZ (1976) Scheduling independent tasks with release dates

and due dates on parallel machines. Technical Report 213, Computer

Science Department, Pennsylvania State University.

F. Buro.rs, J. ROOKER (1976) 3xn Flow-shops with convex external stage time

dominance. Unpublished manuscript.

A.K. CHANDRA,, C.K. WONG (1975) Worst-case analysis of a placement algorithm

related to storage allocation. SIAM J. Comput. 4,249-263.

R-2

J.M. CHARLTON, C.C. DEATH (1970) A generalized machine scheduling algorithm.

Operat}onal Res. Quart. ~,127-134.

N.-F. CHEN (1975) An analysis of scheduling algorithms in multiprocessing

computing systems. Technical Report UIUCDCS-R-75-724, Department of

Computer Science, University of Illinois at Urbana-Champaign.

N.-F. CHEN, C.L. LIU (1975) On a class of scheduling algorithms for multi­

processors computing systems. In: T.-Y. FENG (ed.) (1975) Parallel

Processing. Lecture Notes in Computer Science 24, Springer, Berlin,

1-16.

E.G. COFFMAN, JR. (ed.) (1976) Computer and Job-Shop Scheduling Theory.

Wiley, New York.

E.G. COFFMAN, JR. M.R. GAREY, D.S. JOHNSON (1977) An application of bin­

packing to multiprocessor scheduling. SIAM J. Comput., to appear.

E.G. COFFMAN, JR., R.L. GRAHAM (1972) Optimal scheduling for two-processor

systems. Acta Informat. _!_,200-213.

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling. Addison­

Wesley, Reading, Mass.

E.W. DAVIS (1966) Resource allocation in project network models - a survey.

J. Indust. Engrg. _!2_,177-188.

E.W. DAVIS (1973) Project scheduling under resource constraints - histori­

cal review and categorization of procedures. AIIE Trans. ~,297-313.

J. DAY, M.P. HOTTENSTEIN (1970) Review of scheduling research. Naval Res.

Logist. Quart . ..!.2_,11-39.

P.J. DENNING, G. SCOTT GRAHAM (1973) A note on subexpression ordering in

the execution of arithmetic expressions- Comm. ACM ..!..§_,700-702.

W.L. EASTMAN, S. EVEN, I.M. ISAACS (1964) Bounds for the optimal scheduling

of n jobs on m processors. Management Sci • .!...!_,268-279.

S.E. ELMAGHRABY, S.H. PARK (1974) Scheduling jobs on a number of identical

machines. AIIE Trans. 6,1-12.

M.L. FISHER (1973) Optimal solution of scheduling problems using Lagrange

multipliers, part I. Operations Res. ~,1114-1127.

M.L. FISHER (1976) A dual algorithm for the one-machine scheduling problem.

Math. Programming .!...!_,229-251.

M. FUJII, T. KASAMI, K. NINOMIYA (1969, 1971) Optimal sequencing of two

equivalent processors. SIAM J. Appl. Math . ..!.2_,784-789; Erratum. ~,141.

M.R. GAREY (-) Unpublished.

M.R. GAREY, R.L. GRAHAM (1975) Bounds for multiprocessor scheduling with

resource constraints. SIAM J. Comput. i_,187-200.

M.R. GAREY, R.L. GRAHAM, D.S. JOHNSON (1977) Performance guarantees for

scheduling algorithms. Operations Res.~' to appear.

M.R. GAREY, R.L. GRAHAM, D.S. JOHNSON(-) Unpublished.

R-3

M.R. GAREY, R.L. GRAHAM, D.S. JOHNSON, A.C.-C. YAO (1976A) Resource con­

strained scheduling as generalized bin packing. J. Combinatorial Theory

Ser. A ~,257-298.

M.R. GAREY, D.S. JOHNSON (1975) Complexity results for multiprocessor sched­

uling under resource constraints. SIAM J. Comput. i,397-411.

M.R. GAREY, D.S. JOHNSON (1976A) Scheduling tasks with nonuniform deadlines

on two processors. J. Assoc. Comput. Mach. ~,461-467.

M.R. GAREY, D.S. JOHNSON (1976B) Approximation algorithms for combinatorial

problems: an annotated bibliography. In: J.F. TRAUB (ed.) (1976)

Algorithms and Complexity: New Directions and Recent Results. Academic

Press, New York, 41-52.

M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with start-times

and deadlines. SIAM J. Comput • .§_,416-426.

M.R. GAREY, D.S. JOHNSON, R. SETHI (1976B) The complexity of flowshop and

jobshop scheduling. Math. Operations Res • .!_,117-129.

L. GELDERS, P.R. KLEINDORFER (1974) Coordinating aggregate and detailed

scheduling decisions in the one-machine job shop: part I. Theory.

Ope.rations Res. ~' 46-60.

L. GELDERS, P.R. KLEINDORFER (1975) Coordinating aggregate and detailed

schieduling in the one-machine job shop: II - computation and structure.

Ope.rations Res. Q,312-324.

w.s. GERE (1966) Heuristics in job shop scheduling. Management Sci . .!2_,

167-190.

B. GIFFLER, G.L. THOMPSON (1960) Algorithms for solving production-sched­

uling problems. Operations Res. ~,487-503.

P.C. GILMORE, R.E. GOMORY (1964) Sequencing a one-state variable machine:

a solvable case of the traveling salesman problem. Operations Res. g,
655-679.

T. GONZALEZ (1976) A note on open shop preemptive schedules. Technical

Report 214, Computer Science Department, Pennsylvania State University.

T. GONZALEZ (1977) Optimal mean finish time preemptive schedules. Technical

Report 220, Computer Science Department, Pennsylvania State University.

T. GONZALEZ, O.H. IBARRA, S. SAHNI (1977) Bounds for LPT schedules on uni­

form processors. SIAM J. Comput • .§_,155-166.

T. GONZALEZ, D.B. JOHNSON (1977) A new algorithm for preemptive scheduling

R-4

of trees. Technical Report 222, Computer Science Department, Pennsyl­

vania State University.

T. GONZALEZ,, S. SAHNI (1976) Open shop scheduling to minimize finish time.

J. Assoc. Comput. Mach. ~,665-679.

T. GONZALEZ,, S. SAHNI (1977) Flowshop and jobshop schedules: complexity and

approximation. Operations Res. ~, to appear.

T. GONZALEZ., S. SAHNI (1978) Preemptive scheduling of uniform processor

systems. J. Assoc. Comput. Mach., to appear.

D.K. GOYAL (1977A) Scheduling equal execution time tasks under unit resource

restriction. To appear.

D.K. GOYAL (1977B) Non-preemptive scheduling of unequal execution time tasks

on two identical processors. Technical Report CS-77-039, Computer

SciencE~ Department, Washington State University, Pullman.

R.L. GRAHAM (1966) Bound for certain multiprocessing anomalies. Bell System

Tech. ~T. ~, 1563-1581.

R.L. GRAHAM (1969) Bounds on multiprocessing timing anomalies. Siam J.

Appl. Math • ..!2_, 263-269.

R.L. GRAHAM (1976) Bounds on the performance of scheduling algorithms.

In: [Coffman 1976], 165-227.

R.L. GRAHAM (-) Unpublished.

J. N. D. GUPTA, S.S. REDDI (1977) Improved dominance conditions for the three­

machine flowshop scheduling problem. Operations Res.~, to appear.

W.A. HORN (1972) Single-machine job sequencing with treelike precedence

ordering and linear delay penalties. SIAM J. Appl. Math. ~,189-202.

W.A. HORN (:1973) Minimizing average flow time with parallel machines.

Ope.rat:ions Res. ~, 846-84 7.

W.A. HORN (1974) Some simple scheduling algorithms. Naval Res. Logist.

Quart. ~,177-185.

E. HOROWITZ, S. SAHNI (1976) Exact and approximate algorithms for scheduling

nonidentical processors. J. Assoc. Comput. Mach. ~,317-327.

E.C. HORVATH, S. LAM, R. SETHI (1977) A level algorithm for preemptive

scheduling. J. Assoc. Comput. Mach. ~,32-43.

N.C. HSU (1966) Elementary proof of Hu's theorem on isotone mappings.

Proc . .ill.mer. Math. Soc • ..!2_, 111-114.

T.C. HU (1961) Parallel sequencing and assembly line problems. Operations

Res. ~, 841-848.

O.H. IBARRA, C.E. KIM (1975) Scheduling for maximum profit. Technical Report,

Compute~r Science Department, University of Minnesota, Minneapolis.

O.H. IBARRA, C.E. KIM (1976) On two-processor scheduling of one- or two­

unit time tasks with precedence constraints. J. Cybernet. ~,87-109.

R-5

O.H. IBARRA, C.E. KIM (1977) Heuristic algorithms for scheduling independent

tasks on nonidentical processors. J. Assoc. Comput. Mach. 24,280-289.

E. IGNALL, L. SCHRAGE (1965) Application of the branch-and-bound technique

to some flow-shop scheduling problems. Operations Res. _!2,400-412.

J.R. JACKSON (1955) Scheduling a production line to minimize maximum tardi­

ness. Research Report 43, Management Science Research Project, Univer­

sity of California, Los Angeles.

J.R. JACKSON (1956) An extension of Johnson's results on job lot scheduling.

Naval Res. Logist. Quart. 2_,201-203.

D.S. JOHNSON (1973) Near-optimal bin packing algorithms. Report MAC TR-109,

Massachusetts Institute of Technology, Cambridge, Mass.

D.S. JOHNSON (1974) Fast algorithms for bin packing. J. Comput. System Sci.

8,272-314.

D.S. JOHNSON, A. DEMERS, J.D. ULLMAN, M.R. GAREY, R.L. GRAHAM (1974) Worst­

case performance bounds for simple one-dimensional packing algorithms.

SIAM J. Comput. 2_, 299-325.

S.M. JOHNSON (1954) Optimal two- and three-stage production schedules with

setup times included. Naval Res. Logist. Quart. _!_,61-68.

S.M. JOHNSON (1958) Discussion: sequencing n jobs on two machines with

arbitrary time lags. Management Sci. ~,299-303.

D.G. KAFURA, V.Y. SHEN (1976) An algorithm to design the memory configura­

tion of a computer network. Technical Report 76-6, Computer Science

Department, Iowa State University, Ames.

D.G. KAFURA, V. Y. SHEN (1977) Task scheduling on a multiprocessor system

with independent memories. SIAM J. Comput. _§_,167-187.

R.M. KARP (1972) Reducibility among combinatorial problems. In: R.E. MILLER,

J.W. THA'rCHER (eds.) (1972) Complexity of Computer Computations.

Plenum Press, New York, 85-103.

R.M. KARP (1975) On the computational complexity of combinatorial problems.

Networks 5,45-68.

M.T. KAUFMAN (1972) Anomalies in scheduling unit-time tasks. Technical

Report 34, Stanford Electronic Laboratory.

M.T. KAUFMAN (1974) An almost-optimal algorithm for the assembly line sched­

uling problem. IEEE Trans. Computers C-.?..l, 1169-1174.

H. KISE, T. IBARAKI, H. MINE (1977) A solvable case of the one-machine sched­

uling problem with ready and due times. Operations Res., to appear.

R-6

D. KNUTH (1973) Private communication to T.C. Hu, July 23, 1973.

K.L. KRAUSE (1973) Analysis of Computer Scheduling with Memory Constraints.

Doctoral Dissertation, Computer Science Department, Purdue University,

West Lafayette.

K.L. KRAUSE, V.Y. SHEN, H.D. SCHWETMAN (1975, 1977) Analysis of several task­

scheduling algorithms for a model of multiprogramming computer systems.

J. Assoc. Comput. Mach. ~,522-550;24,527.

M. KUNDE (1976) Beste Schranken beim LP-Scheduling. Bericht 7603, Institut

fur Informatik und Praktische Mathematik, Christian-Albrechts-Univer­

sitat Kiel.

J. LABETOULLE, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1977) Preemp­

tive scheduling of uniform processors subject to release dates. To

appear.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) Computer

aided complexity classification of deterministic scheduling problems.

To appear.

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1976) Minimizing maximum

lateness on one machine: computational experience and some applications.

Statistica Neerlandica 30,25-41.

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1977A) A general bounding

scheme for the permutation flow-shop problem. Operations Res. ~, to appear.

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1977B) Job-shop scheduling

by implicit enumeration. Management Sci., to appear.

s. LAM, R. SETHI (1977) Worst case analysis of two scheduling algorithms.

SIAM J. Comput. §_,518-536.

E.L. LAWLER (1973) Optimal sequencing of a single machine subject to prece­

dence constraints. Management Sci • ..!2_,544-546.

E.L. LAWLER (1976A) Sequencing to minimize the weighted number of tardy

jobs. Rev. Franqaise Automat. Informat. Recherche Operationnelle 10.5

Suppl. 27-33.

E.L. LAWLER (1976B) Combinatorial Optimization: Networks and Matroids.

Holt, Rinehart, and Winston, New York.

E.L. LAWLER (1976C) Sequencing jobs to minimize total weighted completion

time subject to precedence constraints. Ann. Discrete Math., to appear.

E.L. LAWLER (1977) A "pseudopolynomial" algorithm for sequencing jobs to

minimize total tardiness. Ann. Discrete Math • .!_,331-342.

E.L. LAWLER, J. LABETOULLE (1977) Preemptive scheduling of unrelated paral­

lel processors. J. Assoc. Comput. Mach., to appear.

R-7

E.L. LAWLER, J.M. MOORE (1969) A functional equation and its application to

resource allocation and sequencing problems. Management Sci. ~,77-84.

J.K. LENSTRA (1977) Sequencing by Enumerative Methods. Mathematical Centre

Tract 69, Mathematisch Centrum, Amsterdam.

J.K. LENSTRA (-) Unpublished.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1975) Some simple applications of the

travelling salesman problem. Operational Res. Quart. ~,717-733.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1977) Complexity of scheduling under pre­

cedence constraints. Operations Res.~, to appear.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) Computational complexity of dis­

crete optimization problems. Ann. Discrete Math., to appear.

J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of machine

scheduling problems. Ann. Discrete Math. l_,343-362.

C.L. LIU (1972) Optimal scheduling on multi-processor computing systems.

Proc. 13th Annual IEEE Symp. Switching and Automata Theory, 155-160.

C.L. LIU (1976) Deterministic job scheduling in computing systems. Depart­

ment of Computer Science, University of Illinois at Urbana-Champaign.

J.W.S. LIU, C.L. LIU (1974A) Bounds on scheduling algorithms for heteroge­

neous computing systems. In: J.L. ROSENFELD (ed.) (1974) Information

Processing 74. North-Holland, Amsterdam, 349-353.

J.W.S. LIU, C.L. LIU (1974B) Bounds on scheduling algorithms for heteroge­

neous computing systems. Technical Report UIUCDCS-R-74-632, Department

of Computer Science, University of Illinois at Urbana-Champaign, 68 pp.

J.W.S. LIU, C.L. LIU (1974C) Performance analysis of heterogeneous multi­

processor computing systems. In: E. GELENBE, R. MAHL (eds.) (1974)

Computer Architectures and Networks. North-Holland, Amsterdam, 331-343.

G.B. McMAHON (1969) Optimal production schedules for flow shops. Canad.

Operational Res. Soc. J. 7,141-151.

G.B. McMAHON (1971) A Study of Algorithms for Industrial Scheduling Problems.

Thesis, University of New South Wales, Kensington.

G.B. McMAHON, M. FLORIAN (1975) On scheduling with ready times and due dates

to minimize maximum lateness. Operations Res. 23,475-482.

R. McNAUGHTON (1959) Scheduling with deadlines and loss functions. Manage­

ment Sci. ~,1-12.

L.G. MITTEN (1958) Sequencing n jobs on two machines with arbitrary time

lags. Management Sci. l,293-298.

C.L. MONMA, J·.B. SIDNEY (1977) A general algorithm for optimal job sequenc­

ing with series-parallel precedence constraints. Technical Report 347,

R-8

School of Operations Research, Cornell University, Ithaca, N.Y.

J.M. MOORE (1968) Ann job, one machine sequencing algorithm for minimizing

the number of late jobs. Management Sci. l2._,102-109.

R.R. MUNTZ, E.G. COFFMAN, JR. (1969) Optimal preemptive scheduling on two­

processor systems. IEEE Trans. Computers C-]J!_,1014-1020.

R.R. MUNTZ, E.G. COFFMAN, JR. (1970) Preemptive scheduling of real time

tasks on multiprocessor systems. J. Assoc. Comput. Mach. ·.!1_,324-338.

Y. MURAOKA (1971) Parallelism, Exposure and Exploitation in Programs.

Ph.D. Thesis, Department of Computer Science, University of Illinois

at Urbana-Champaign.

J.F. MUTH, G.L. THOMPSON (eds.) (1963) Industrial Scheduling. Prentice­

Hall, Englewood Cliffs, N.J., 236.

I. NABESHIMA (1963) Sequencing on two machines with start lag and stop lag.

J. Operations Res. Soc. Japan 2_,97-101.

S.S. PANWALKAR, w. ISKANDER (1977) A survey of scheduling rules. Operations

Res. ~,45-61.

J. PIEHLER (1960) Ein Beitrag zum Reihenfolgeproblem. Unternehmensforschung

i,138-142.

S.S. REDDI, C.V. RAMAMOORTHY (1972) On the flow-shop sequencing problem

with no wait in process. Operational Res. Quart. ~,323-331.

A.H.G. RINNOOY KAN (1976) Machine Scheduling Problems: Classification,

Complexity and Computations. Nijhoff, The Hague.

A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA (1975) Minimizing total

costs in one-machine scheduling. Operations Res. ~,908-927.

P. ROSENFELD (-) Unpublished.

M.H. ROTHKOPF (1966) Scheduling independent tasks on parallel processors.

Management Sci. g,437-447.

B. ROY, B. SUSSMANN (1964) Les problemes d'ordonnancement avec contraintes

disjonctives. Note DS no.9 bis, SEMA, Montrouge.

S. SAHNI (1976) Algorithms for scheduling independent tasks. J. Assoc.

Comput. Mach. ~,116-127.

S. SAHNI, Y. CHO (1977) Scheduling independent tasks with due times on a

uniform processor system. Computer Science Department, University of

Minnesota, Minneapolis.

S. SAHNI, T. GONZALEZ, E.L. LAWLER (1977) Preemptive scheduling of two un­

related machines. To appear.

R. SETHI (1976A) Algorithms for minimal-length schedules. In: [Coffman

1976], 51-99.

R. SETHI (1976B) Scheduling graphs on two processors. SIAM J. Comput. ~'

73-82.

R-9

R. SETHI (1978) On the complexity of mean flow time scheduling. Math. Opera­

tions Res., to appear.

J.B. SIDNEY (1973) An extension of Moore's due date algorithm. In:

S.E. ELMAGHRABY (ed.) (1973) Symposium on the Theory of Scheduling and

its Applications. Lecture Notes in Economics and Mathematical Systems

86, Springer, Berlin, 393-398.

J.B. SIDNEY (1975) Decomposition algorithms for single-machine sequencing

with precedence relations and deferral costs. Operations Res.~'

283-298.

J.B. SIDNEY (1977) The two-machine maximum flow time problem with series­

parallel precedence constraints. Faculty of Management Sciences,

University of Ottawa.

W.E. SMITH (1956) Various optimizers for single-stage production. Naval Res.

Logist. Quart. i,59-66.

H.I. STERN (1976) Minimizing makespan for independent jobs on nonidentical

parallel machines - an optimal procedure. Working Paper 2/75, Depart­

ment of Industrial Engineering and Management, Ben-Gurion University

of the Negev, Beer-Sheva.

W. SZWARC (1968) On some sequencing problems. Naval Res. Logist. Quart. 12_,

127-155.

W. SZWARC (1971) Elimination methods in the mxn sequencing problem. Naval

Res. Logist. Quart. ~,295-305.

W. SZWARC (1973) Optimal elimination methods in the mxn sequencing problem.

Operations Res. ~,1250-1259.

W. SZWARC (1977) Dominance conditions for the three machine flow-shop prob­

lem. Operations Res.~' to appear.

W. TOWNSEND (1977A) A branch-and-bound method for sequencing problems with

linear and exponential penalty functions. Operational Res. Quart. 28,

191-200.

W. TOWNSEND (1977B) Sequencing n jobs on m machines to minimise maximum

tardiness: a branch-and-bound solution. Management Sci. ~,1016-1019.

J.D. ULLMAN (1975) NP-complete scheduling problems. J. Comput. System Sci •

.!Q_,384-393.

J.D. ULLMAN (1976) Complexity of sequencing problems. In: [Coffman 1976],

139-164.

J.M. VAN DEMAN, K.R. BAKER (1974) Minimizing mean flowtime in the flow shop

R-10

with no intermediate queues. AIIE Trans • .§_,28-34.

D.A. WISMER (1972) Solution of the flowshop-scheduling problem with no

intermediate queues. Operations Res. 20,689-697.

