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ABSTRACT

In this paper two new generalizations of Carathéodory's theorem are
presented. One of these is used in the study of the connection between two
related mathematical programming problems. Both theorems extend results of

other authors.
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1. INTRODUCTION

In theorems 1 and 3 of this paper two new generalizations of Carathé&o-
dory's theorem are presented. As a simple corollary of theorem 1 we obtain
in theorem 2 again a well-known fact. Theorem 3 extends a recent result of
COOK [3].

In section 4 of this paper we compare two mathematical programming

problems with the aid of theorem 1.
2. NOTATIONS

For a finite set X, |X| is the number of elements of X.

Let V be a subset of R" . Then the closure of V and the convex hull
of V, are denoted by cl(V) and conv(V) respectively. The relative interior
of a convex subset G of R" is denoted by relint (G).

For each i € {1,2,...,m} the map ™ R" > R is the i—th projection

defined by ﬂi(xl,x .,xm) = X,.

.
Let 1 be a meisure on (the ;orel subsets of) ]fn. Then
supp(u) := {x € ]fn, u(U) > 0 for each open neighbourhood U of x}.
The probability measure with mass 1 in a is denoted by e(a).
The set of those infinite sequences (pl,pz,...) of real numbers, for
which 1 > 0 for each i ¢ N and z:=l P, = 1, is denoted by S.

R:= R u {-o,o},
3. GENERALIZATIONS OF CARATHEODORY'S THEOREM

First we recall CARATHEODORY'S THEOREM:
Let V be a subset of R™ and let a e conv(V). Then there exists a finite
subset W of V such that [W| <m + 1 and a € conv(W).

For a proof see e.g. [9], p.35.

The following theorem generalises Carathéodory's theorem.

THEOREM 1. Let u be a probability measure on R such that fﬂi(x)du(x)"e R
for each i € {1,2,...,m}. Let V be a subset of R™ with supp(n) = cl(V).
Then there exists a finite subset W of V such that |W| <m + 1 and such



that the barycenter

b(u) := (J ﬂl(X)du(X),---, [ ﬂm(X)du(X))

of u 28 an element of conv(W).

PROOF. In view of Carathdodory's theorem it is sufficient to show that

b(u) € conv(V). We shall first prove that
(3.1) b(u) € relint(ecl(conv(V))).

Suppose that this is not true. Then we may conclude (cf. theorem (3.3.9) in

[9]) that there exists a linear function f: R™ > R such that
(3.2) f(b(p)) < £(x) for eaph x € cl(conv(V))

and such that

(3.3) f(b(u)) < f(xo) for some x, € cl(conv(V)).

0

It follows from 3.3 that there is an x e V such that f(b(u)) < f(x*).
Now let € := g(f(x*) - f(b(u)). Then there exists an open neighbourhood
U of x* such that

(3.4) f(x) =2 £(b(p)) + ¢ for each x € U.

Moreover, u(U) > 0 because x* e supp(p). It follows from 3.2 that

(3.5) f(x) =2 £(b(n)) for each x e supp(u)

since cl(conv(V)) o cl(V) = supp (u).

But then, in view of 3.4 and 3.5, we have

f()) = J f(x)du(x) = £(b()) + en(v) > £(b(n))



and that is a contradiction. Hence 3.1 holds.

Then, in view of (3.2.13) in [9], we have
b(u) e relint(conv(V)) c conv(V)

and the proof is completed. [

The following theorem is a direct consequence of theorem 1.

THEOREM 2. Let 30>3 58550« be an infinite sequence in R® and
(ql,qz,...) € S such that ag = zw 1 anJ Then there exists an
r = (rl,rz,...) € S such that at most m + 1 coordinates of r are nonzero
and such that a. = Y. . r.a..

0 zJ=l 3]

PROOF. Let P := {j ¢ N; a; > 0}. Let V := {aj;j € P} and u := ZJeP . e(a)
Then u is a probability measure on I{ such that b(np) = a and
supp(p) = cl(V). In view of theorem 1 we may conclude that

ay € conv(V) c conv({al,az,...}),

which implies the conclusion of the theorem. [J

Theorem 2 has been proved independently by several authors. See e.g.
BLACKWELL & GIRSHICK [1], p.48, COOK & WEBSTER [5] and MORSCHE [71].

Applications of theorem 2 in game theory were given by BLACKWELL &
GIRSHICK [1], p.50 and TIJS [10], pp.34, 38 and 46.

We now derive an extension of a result of COOK [3] which can also be

seen as a generalization of theorem 2.

THEOREM 3. Let D = [d, J]l'] =1 be an upper bounded or a Zo%fr bounded
k x o-matrix of real numbers and let d = (dl, 2,...,dk) e R™. Put
S(D,d) := {p=(p1,p2,...) € S; Dpteiﬁk, Dp < d}. Let L ITEINE TTRER be an
infinite sequence in R® and let q= (q],qz,...) e S(D,d) such that

X, = Z?=l qjxj. Then there exists an r = (r],rz,...) e S(D,d) such that
at most m + k + 1 coordinates of r are nonzero and such that

XO = 2_]:1 rjxj.



PROOF. Note that Dp « ]Q‘ for each p € S(D,d) if D is lower bounded, and

that Dp € (]iu'{-m})k if D is upper bounded.

(a)

(b)

First suppose that Dq € ]ﬂ‘, Then (xo,Dq) = Z§=l qj(xj;Dj), where Dj
is the j-th column of the matrix D. It follows from theorem 2 (with
the (m+k)-dimensional space Rr™ x ]gg in the role of R™ and (xO,Dq),

V(Xl,Dl),'(xz,Dz),... in the roles of a al,a ..) that there 1is an

0’
r ¢ S with at most (m+k) + 1 coordinates unequal to zero and such that

lo~18

= v = (
(XOaDq) z rj (Xj sDj) \

r.x.,Dr).
i=1 \

j=1 1]
But then r € S(D;d) because Dr = Dg < d, and X = Z§=l rjxj. Thus we
have proved the theorem for the case that Dq ¢ R

Now suppose that Dq ¢ Bﬂi. Then D is upper bounded and so
s := sup{dij;i e {1,...,k}, j e N} ¢ R.

Further I := {i ¢ {1,...,k}; z;=1 dijqj = -»} is a nonempty set.
Take a t € N such that ’

t .
) d..q. < dj - max{0,s} for each i ¢ I.

jllJJ
Let C = [c. ]k % . be the k x «-matrix with
ij i=1,j=1
55 1T max{O,dij} ifielI and j > t,
and
c.. :=4d.. otherwise.
ij ij

Put S(C,d) := {p € S; Cp € ﬁ?‘, Cp < d}.

Then it is straightforward to show that q € S(C,d) and that Cqg € Rk
In view of part (a) of this proof (with C in the role of D) we may
conclude that there exists an r € S(C,d) with at most m + k + 1
coordinates unequal to zero such that Xy = Z§=1 r.x.. Now Dr < Cr < d.

Hence r ¢ S(D,d) and we have proved the theorem. [J



W.D. Cook proved the above theorem under the two additional assumptions:

(1) The sequence DI’D2’°" of columns of D is a closed bounded sequence in
k
R .

(2) EIFEIPRRR is a closed bounded sequence in Bgc.

In his proof he used a duality theorem of semi-infinite programming theory.
Our proof is considerably simpler and our result much more general.

Without going into details we note that those results of the paper of
COOK, FIELD & KIRBY [4] which were obtained by using Cook's theorem can be
strengthened by using theorem 3. \

For other generalizations of Carathéodory's theorem we refer to BONNICE

& KLEE [2] and REAY [81].
4, AN APPLICATION IN MATHEMATICAL PROGRAMMING THEORY

Let Y be a set and m ¢ N. Let.fl,fz,...,fm be real-valued lower bound-

ed functions on Y, let fm+1 be a real-valued bounded function on Y and let
b = (bl’bz"'°’bm) e R™. By B we denote the smallest o-algebra of subsets
of Y such that fl’fz""’fm+1 are measurable functions. Let R1 be the fami-

ly of those finite measures u on the measurable space (Y,B) for which
(4.0) J fi(y)du(y) < b, for each i ¢ {1,2,...,m}.

Let C be the convex cone generated by the set of probability measures
{e(y); v € Y}, where e€(y) is the point measure with mass 1 in y. Let R2
be the subset of those elements u of C for which (4.0) holds. For i ¢ {1,2}

we look at

PROBLEM i. Find the value

v, := inf J fm+1(y)du(y)
ueRi

and (if possible) an element of the solution set

0; := {u e R, J fm+1(y)du(y) = Vi}'

e CENTRIA
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Note that the problems 1 and 2 coincide if Y is a finite set and that
then essentially we have a standard finite linear programming problem.

The following thebrem shows that both problems are feasible if one of
them is so; that the values of both problems are equal and that both solu-
tion sets are nonempty if one of these sets is. Theorem 1 plays a crucial

role in the proof of this theorem.

THEOREM 4. Notations as above. Moreover, let
01(6) = {p € Ri; j fm+1(y)du(y) v ¥ 5}

for each i € {1,2} and for each § 2 0. Then

4.1) R #0 Iff Ry#0
(4.2) v, =,
(4.3) for each 6 2 0: 0,(8) # 8 <ff 0,(8) # 0.
PROOF. Since R2 c Rl’ we may conclude that
(4.4) R] +# 0 if R2 # @ and v, < v,
Note that the theorem holds if R, = §.

=
Suppose now that we can show that

for each u ¢ Rl’ there is a U € R2 such that

(4.5)
J fi(y)du(y) = J fi(y)dﬁ(y) for each 1 ¢ {1,2,...,m+1}.

= v, in
2 1
view of 4.4. Furthermore, | € 02(6) if u € 01(6), while it is also obvious

Then we may conclude that 4.1 holds and that v, < Vs and thus v

that 02(6) c 01(6); thus 4.3 holds. Hence, all that remains is the proof of
4.5,

Take u € Rl' If u(Y) = 0, then let § :=1u € RZ’ and 4.5 holds. Suppose



now that u(Y) > 0. Note that

miu(Y) < J fidu < bi for each 1 ¢ {1,...,m}

and

mn+lu(Y) < [ fm+] du < Mp(Y)

where

m, = inf fi(y) € R for each i ev{l,...{m+1} and M := sup £ .. (y).

+
yeY veY .m :

+
Hence [ fi du € R for each i ¢ {1,2,...,m+1}. Let T: Y Rr" ! be the map

with T(y) := (fl(y),f (y),...,fm+1(y)) for each v ¢ Y, and let v be the

probability measure on ]fmk] defined by

v(a) = @) el A)) for each Borel subset A of R™! .

Then, in view of theorem C in HAILMOS [6] p.163, we have

u(Y) J T (Rdv(x) = J T (T(y))du(y) = [ £.(y)du(y) ¢ R

for each i ¢ {1,2,...,m+1}. Hence

1 1

b(v) := f xdv(x) = (U(Y)) f T(y)du(y) ¢ R™ .

Let V := T(T—](supp(v))). Then c1(V)

1, there exists a finite subset W of V such that b(v) € conv(W). Let

supp(v). Hence, in view of theorem

I[W| = k. Then there are Y 3TgseesYy € Y such that W =

k
. k .
= {T(yl),T(yz),...,T(yk)}. Moreover, there is a (pl’PZ""’pk) e R, with
pj > 0 for each j ¢ {1,...,k} and Z?=] pj = 1, such that b(v) = Z?=] pjT(yj).
~ k
Put i= Y . p. €(y.) € R,. Then
ut {i w(Y) ZJ=1 D, (YJ) 9

k
J £, = u@ ]

i pjfi(yj) = u(Y)(b(v))i = J fi(y)du(y)

for each i € {1,2,...,m+1} and thus 4.5 holds. [
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