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Some generalizations of Caratheodory's theorem and an application in mathe-
. . * matical programming theory 

by 

S.H. Tijs 

ABSTRACT 

In this paper two new generalizations of Caratheodory's theorem are 

presented. One of these is used in the study of the connection between two 

related mathematical programming problems. Both theorems extend results of 

other authors. 
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1. INTRODUCTION 

In theorems 1 and 3 of this paper two new generalizations of Caratheo­

dory's theorem are presented. As a simple corollary of theorem 1 we obtain 

in theorem 2 again a well-known fact. Theo~em 3 extends a recent result of 

COOK [3]. 

In section 4 of this paper we compare two mathematical progrannning 

problems with the aid of theorem 1. 

2. NOTATIONS 

For a finite set X, IXI is the number of elements of X. 

Let V be a subset of ]Rm. Then the closure of V and the convex hull 

of V, are denoted by cl(V) and conv(V) respectively. The relative interior 

of a convex subset G of lRm is denoted by relint (G) • 

For each i E {1,2, ••• ,m} the map 

defined by ~.(x1 ,x2 , ••• ,x) := x .. 
i m i 

1T. : 
1. 

]Rm -+ lR is the i-th projection 

Letµ be a measure on (the Borel subsets of) ]Rm. Then 

supp(µ) := {x E ]Rm, µ(U) > 0 for each open neighbourhood U of x}. 

The probability measure with mass 1 in a is denoted by e(a). 

The set of those infinite sequences (p 1 ,p2 , ••• ) of real numbers, for 

which pi~ 0 for each i E JN and l:=l pi= 1, is denoted by S. 

lR := lR u {-00,00}. 

3. GENERALIZATIONS OF CARATHEODORY'S THEOREM 

First we recall CARATHEODORY'S THEOREM: 
m Let V be a subset of lR and let a E conv(V). Then there exists a finite 

subset W of V such that IWI ~ m + 1 and a E conv(W). 

For a proof see e.g. [9], p.35. 

The following theorem generalises Caratheodory's theorem. 

THEOREM 1. Let µ be a probability measure on lRm suah that hr. (x)dµ(x) E lR 
1. 

for eaah i E { 1 ,2, ••• ,ml. Let V be a subset of ]Rm with supp(µ) = cl(V). 

Then there exists a finite subset W of V suah that IWI ~ m + 1 and suah 



that the ba:i~center 

of µ is an element of conv(W). 

PROOF. In view of Caratheodory's theorem it is sufficient to show that 

b(µ) E conv(V). We shall first prove that 

(3 .1) b(µ) E relint(cl(conv(V))). 

2 

Suppose that this is not true. Then we may conclude (cf. theorem (3.3.9) 1.n 

[9]) that there exists a linear function f: ]Rm ➔ :JR such that 

(3.2) f(b(µ)) ~ f(x) for each x E cl(conv(V)) 

and such that 

(3. 3) for some x0 E cl(conv(V)). 

It follows from 3.3 that there is an x* EV such that f(b(µ)) < f(x*). 

Now let E := ½(f(x*) - f(b(µ)). Then there exists an open neighbourhood 

* U of x such that 

(3 .4) f(x) ~ f(b(µ)) + E for each x EU. 

* Moreover, µ(U) > 0 because x E supp(µ). It follows from 3.2 that 

(3.5) f(x) ~ f(b(µ)) for each x E supp(µ) 

since cl(conv(V)) ~ cl(V) = supp (µ). 

But then, in view of 3.4 and 3.5, we have 

f(b(µ)) = f f(x)dµ(x) ~ f(b(µ)) + Eµ(U) > f(b(µ)) 



and that is a contradiction. Hence 3. 1 hblds. 

Then, in view of (3.2.13) in [9], we have 

b(µ) E relint(conv(V)) c conv(V) 

and the proof is completed. D 

The following theorem is a direct consequence of theorem I. 

THEOREM 2. Let a0 , a 1 , a2 , • • • be an infinite sequence in ]Rm and 

(q 1,q2 , ••• ) ES such that a0 = lj=l qjaj. Then thePe exists an 

r = (r 1,r2 , ••• ) ES such that at most m + I cooPdinates of r aPe nonzepo 

and such that a0 = \~ 1 r.a .• 
lJ= J J 
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PROOF • Let P : = { j · E :N ; q . > 0}. Let V : = { a . ; j E P} and µ : = l · p q . e: (a. ) • 
J m J JE J J 

Then µ is a probability measure on ]R such that b(µ) = a0 and 

supp(µ)= cl(V). In view of theorem I we may conclude that 

which implies the conclusion of the theorem. D 

Theorem 2 has been proved independently by several authors. See e.g. 

BLACKWELL & GIRSHICK [I], p.48, COOK & WEBSTER [5] and MORSCHE [7]. 

Applications of theorem 2 in game theory were given by BLACKWELL & 

GIRSHICK [I], p.50 and TIJS [IO], pp.34, 38 and 46. 

We now derive an extension of a result of COOK [3] which can also be 

seen as a generalization of theorem 2. 

k oo 
THEOREM 3. Let D = [d .. ]. 1 . 1 be an uppeP bounded OP a ZOu)eP bounded 

1J 1= ,J= 
k x oo-matPix of Peal numbePs and Zet d = (d 1 ,d2 , ••• ,dk) E ]Rk • Put 

-k S(D,d) := {p=(p 1 ,Pz, ... ) E S; Dp E JR , Dp ~ d}. Let x0 ,x1 ,x2 , ••• be an 

infinite sequence in ]Rm and Zet q = (q1 ,q2 , ••• ) E S(D,d) such that 

x0 = lj=I qjxj. Then thePe exists an r = (r1,r2 , ••• ) E S(D,d) such that 

at most m + k + I cooPdinates of r aPe nonzePo and such that 

r.x .. 
J J 
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k . , 
PROOF. Note that Dp E JR for each p E S (D, d) if D is lower bounded, and 

that Dp E (JR u { - 00 }) k if D is upper bounded. 

(a) 

(b) 

k \oo . 
First suppose that Dq E JR . Then (x0 ,Dq) = l· 1 q.(x.,D.), where D. 

J= J J J J 
is the j-th column of the matrix D. It follows from theorem 2 (with 

m k m the (m+k)-dimensional space JR · x JR in the role of JR and (x0 ,Dq) , 

(x1 ,D 1), (x2 ,D2), ••• in the roles of a0 ,a1 ,a2 , •• ) that. there is an 

r ES with at most (m+k) + l coordinates unequal to zero and such that 

00 
( 00 

(x0 ,Dq) = I r. (x. ,D.) = \ I r.x. ,Dr). 
j=l J J J j=l J J 

But then r E S(D,d) because Dr= Dq s d, and x0 = Ij=l 
k have proved the theorem for the case that Dq E JR • 

r .x .. Thus we 
J J 

Now suppose that Dq J JRk • Then D is upper bounded and so 

s := sup{d .. ;i E {I, ••• ,k}, J E :IN} E JR. 
1] 

Further I := {i E {I, ••• ,k}; \~ 1 d .. q. = - 00 } is a nonempty set. 
lJ= 1J J 

Take a t E ]N such that 

Let C 

and 

t 

I 
j=l 

d .. q. 
l.J J 

s d. - max{O,s} 
J 

for each i E I. 

k oo 
= [c .. ]. 1 . 1 be the k x 00-matrix with 

l.J 1.= ,J= 

c .. := max{O,d .. } 
1J l.J 

if i EI and j > t, 

c: •• := d .. otherwise. 
1] 1J 

Put S(C,d) {p S; Cp E -k Cp s d}. := E JR ' 
Then it is straightforward to show that q k E S (C ,d) and that Cq E JR 

In view of part (a) of this proof (with C in the role of D) we may 

conclude that there exists an r E S(C,d) with at most m + k + 1 

coordinates unequal to zero such that x0 = \~ 1 r.x .• Now Dr s Cr s d. 
lJ= J J 

Hence r E S(D,d) and we have proved the theorem. D 
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W.D. Cook proved the above theorem hnder the two additional assumptions: 

(1) The sequence DI,D2 , ••• of columns of Dis a closed bounded sequence in 
]Rk. 

(2) xI ,x2 ,.. . is a closed bounded sequence in ]Rk • 

In his proof he used a duality theorem of semi-infinite programming theory. 

Our proof is considerably simpler and our result much more general. 

Without going into details we note that those results of the paper of 

COOK, FIELD & KIRBY [4] which were obtained by using Cook's theorem can be 

strengthened by using theorem 3. 

For other generalizations of Caratheodory's theorem we refer to BONNICE 

& KLEE [2] and REAY [8]. 

4. AN APPLICATION IN MATHEMATICAL PROGRAMMING THEORY 

Let Y be a set and m E lil' • Let f I ,f2 , ••• ,fm be real-valued lower bound­

ed functions on Y, let fm+I be a real-valued bounded function on Y and let 
m b = (bI,b2, ••• ,bm) E JR • By! we denote the smallest a-algebra of subsets 

of Y such that fI,f2 , ••• ,fm+I are measurable functions. Let RI be the fami­

ly of those finite measuresµ on the measurable space (Y,!) for which 

(4.0) for each i E {I,2, ••• ,m}. 

Let C be the convex cone generated by the set of probability measures 

{E(y); y E Y}, where E(y) is the point measure with mass I in y. Let R2 
be the subset of those elementsµ of C for which (4.0) holds. For i E {1,2} 

we look at 

PROBLEM i. Find the value 

v. 
l. 

and (if possible) an element of the solution set 
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Note that the problems 1 and 2 coiricide if Y is a finite set and that 

then essentially we have a standard finite linear programming problem. 

The following theorem shows that both problems are feasible if one of 

them is so; that the values of both problems are equal and that both solu­

tion sets are nonempty if one of these sets is. Theorem l plays a crucial 

role in the proof of this theorem. 

THEOREM 4. Notations as above. Moreover, let 

s v. + o} 
1 

for each i E: { l ,2} and for each o ~ 0. Then 

( 4. I) 

(4.2) 

(4.3) 

PROOF. Since R2 c R1, we may conclude that 

(4.4) 

(4.5) 

Note that the theorem holds if R1 = r/J. 

Suppose now that we can show that 

:for each µ E R1, there is a µ E R2 such that 

J fi(y)dµ(y) = I f.(y)dµ(y) for each i E {1,2, ... ,m+l}. 
1 

Then we may conclude that 4.1 holds and that v2 s v 1, and thus v2 = v 1 in 

view of 4.4. Furthermore,µ E o2 (o) ifµ E o1(o), while it is also obvious 

that o2 (o) c o1(o); thus 4.3 holds. Hence, all that remains is the proof of 

4.5. 

Takeµ E R1• If µ(Y) = O, then letµ := µ E R2 , and 4.5 holds. Suppose 



now that µ(Y) > O. Note that 

m.µ(Y) ~ f f.dµ ~ b. 
1 1 1 

and 

where 
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for each i E {1, ••• ,m} 

m. := inf f. (y) E JR for each i E { l, ••• ,_m+l} and M := sup fm+l (y). 
1 yEY 1 yEY . 

m+l Hence J f. dµ E JR for each i E { 1 , 2, ••• ,m+ l}. Let T: Y ➔ JR be the map 
1 

with T(y) := (f 1(y),f2(y), •.• ,fm+l(y)) for each y E Y, and let v be the 

probability measure on JRm+l defined by 

v(A) = (µ(Y))- 1µ(T-l(A)) · for each Borel subset A of JRm+l. 

Then, in view of theorem C in HALMOS [6] p.163, we have 

for each i E {1,2, ••• ,m+l}. Hence 

b(v) := f xdv(x) = (µ (Y)) -I f T(y)dµ (y) E JRm+l • 

-1 Let V := T(T (supp(v))). Then cl(V) = supp(v). Hence, in view of theorem 

I, there exists a finite subset W of V such that b(v) E conv(W). Let 

IWI = k. Then there are y 1,y2 , ••• ,yk E Y such that W = 

= {T(y1),T(y2), ••. ,T(yk)}. Moreover, there is a (p 1 ,p2 , •.• ,pk) E JRk, with 

pj ~ 0 for each j E {l, ••• ,k} and L~=l pj = I, such that b(v) = L~=l pjT(yj). 

Putµ :·~ µ(Y) '~ l o. E:(y.) E R2 • Then 
lJ= . J J 

f fi(y)dµ(y) = µ(Y) I p.f.(y.) = µ(Y)(b(v)). = f fi(y)dµ(y) 
j=l J i J i 

for each i E {1,2, ••• ,m+l} and thus 4.5 holds. D 
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