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On non-stationary Markov Chains with converging transition matrices* 

by 

A. Federgruen 

ABSTRACT 

00 

Recent papers have shown that nk=I P(k) = limm+oo (P(m) .•• P(I)) exists 

whenever the sequence of stochastic matrices {P(k)}~=I exhibits convergence 

to a unichained and aperiodic matrix P. We show how the limit matrix depends 

upon P(I). 

In addition we prove that lim lim (P(n+m) .•• P(m+I)) exists and m+oo n-+<><> 
equals the invariant probability matrix associated with P. The convergence 

00 

rate is determined by the rate of convergence of {P(k)}k=I towards P. 

KEY WORDS & PHRASES: non-stationary Markov chains; backwards products; 

ergodicity; convergence rates; invariant probability 

matrix. 

* This report will be submitted for publication elsewhere 



In two recent papers by ANTHONISSE and TIJMS [I], and CHATTERJEE and 

SENETA [3], the asymptotic behaviour was studied of backwards matrix pro­

ducts of the type 

(I) P(n) .•• P(k) as n -+ 00 ; k=l,2, ..• 

00 • 

where {P(m)}m=l 1.s a non-stationary N-state Markov chain, with 

(2) lim P(n) = P. 
n+oo 

Matrix products of the type (1) are strongly related to the forward pro­

ducts, known as inhomogeneous Markov chains, and studied in an extensive 

literature that started with the papers by HAJNAL [7], (cf. [8], [1 OJ and 

[11] for a survey of the present state of the art). 

The backward matrix products arise e.g. 

(a) in estimate modification processes, where n individuals each of whom 

has an estimate of some unknown quantity, enter information exchanges 

which lead them to readapt their estimates in an (infinite) sequence 

of iterations (cf. DE GROOT [5], and CHATTERJEE and SENETA [3] and 

DALKEY [4]) 

(b) in non-stationary Markov Decision Processes when analyzing the total 

reward in a planning period of n epochs as n tends to infinity (cf. 

MORTON and WECKER [9], and BOWERMAN [2]) 

(c) when applying value-iteration methods to Markov Decision Processes the 

transition probabilities of which are unknown in advance in the sense 

that only sequences of (converging) approximations can be obtained 

(cf. FEDERGRUEN and SCHWEITZER [6]). 

Let U(r,k) be the stochastic matrix defined by 

(3) U(r,k) = P(r+k) ... P(r+I), k=l,2, •.•• 

00 

The sequence {P(k)}k=l 1.s said to be ergodic (in a bakcwards direction) if 

(4) lim U(r,k) = ..!._D(r)', 
k+oo 

r :::: 0 
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where D(r) 1s obviously a probability vector, i.e. D(r) ~ 0 and l· D(r.) = I. 
i i 

00 

Ergodicity of {P(k)}k=l was shown in CHATTERJEE and SENETA [3] (th.5 and 

corollary) for the case where Pis aperiodic and unichained and can equally 

be obtained by a mere adaptation of the proof of th.I in ANTHONISSE and 

TIJMS [I]. Also in these papers the convergence in (4) was shown to be geo­

metrical. Hence we have: 

LEMMA I • Assume that P is unichained and areriodic. Then lim. U ( r, k) = 
K+oo 

= ID(r)' where there exist numbers M > 0 and O <:\~I, with 

(5) lu(r,k) - ID(r)' I r,k = 1,2, .•.. D 

00 

Note that the rate of convergence of {U(r,k)}k=l is independent of the 

rate at which {P(k)}~=I approaches P. 
00 

In this note we characterize the asymptotic behaviour of {D(r)}r=l, as 

is especially required for the application mentioned under (c). First, 

however, example I shows that D(r) may heavily depend upon P(r), the first 

matrix in the product. 

(6) 

For any N x N-stochastic matrix Q and for J = 1, .•• ,N let 

M. (Q) = max Q .. 
J i iJ 

and m. (Q) = 
J 

min 
i 

Q .• 
iJ 

and note from the identity Q(2)Q(I)ij = lk Q(2)ik Q(l\j• that for any pair 

Q(l), Q(2) of stochastic matrices: 

(7) M . ( Q ( 2) Q ( I ) ) :::; M . ( Q (I ) ) and m . ( Q ( 2) Q ( I ) ) ~ m . ( Q ( I ) ) ; j = I , . . . , N . 
J J J J 

A matrix is said to be strictly positive, if all of its entries are strict­

ly positive. 

EXAMPLE I. In this example we show that D(r) is strictly positive whenever 

P(r) Ls. In other words, whenever P(r) > 0 and P has transient states, 

D(r) -I TI where TI is the (unique) stationary probability distribution as­

sociated with the matrix P. 

To verify the implication P(r) > 0 =a> D(r) > 0, note from (1 .7) that 
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m. (P(r)) $ m.(U(r,k)) $ M.(U(r,k)) $ M.(P(r)) for 
J J J J 

r,k = 1,2, ... and j = l, ••• ,N. Conclude that for all i = l, ••. ,N: 

D(r). = lim U(r,k) .. ~ m.(P(r)) > O. 
J k+oo l.J J 

The next theorem shows that ]TT' appears as the limit matrix when both 

rand k tend to infinity in the matrix product U(r,k); in addition, the 

rate of convergence is specified. 
00 

Let {£k}k=I be a non-increasing sequence of positive numbers such that 

IP(k)-PI = 

THEOREM 2. 

(8) 

and 

(9) 

max .. IP(k) .. -P .. I $ £k. 
l.J l.J l.J 

lim lim U(r,k) = lim ..!_D(r)' = _!_TT', 
r-+oo k-+00 r-+oo 

ln(r)-TTI = 0(£ ) • 
r 

PROOF. We first prove by complete induction with respect to k that 

(IO) r,k= 1,2, ••.• 

Note that (1.10) holds fork= 1 and assume it holds for some k. Then, 

$ 0(£) + IP(r+k+l)-PI $ 0(£) + £ k 1 $ 0(£ ). r r r+ + r 

Fix j = 1,: .. ,N and o > 0 and recall from the aperiodicity and unichained-

ness of p that there exists an integer n ~ I such that 

P:1. - 0 $ TT • $ P:1. + o; l. = 1, ••• ,N. 
l.J J l.J 

Hence, 

(II) M. (Pn) 0 
n o. - $ TT . $ m. (P ) + 

J J J 
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Use (IO) with k = n and the fact that both M.(.) and m.(.) are Lipschitz 
J J 

continuous functions on the set of all N x N-matrices, to conclude that, 

(12) 

Insert (12) into (II) to conclude that 

( I 3) M.(U(r,n)) - O(e) - o ~ TT. ~ m.(U(r,n)) + O(e) + o. 
J r J J r 

Next one verifies by a repeated application of (7) and in view of the fact 

that M.(.) and m.(.) are Lipschitz-continuous, that for all r = 1,2, ... 
J J 

{Mj(U(r,k)}~=l and {mj(U(r,k))}~=I are resp. monotonically non-increasing 

and non-decreasing towards M. (ID(r) ') = m. (ID(r) ') = D(r) .• In particular 
J - J - J 

we have for all r = 1,2, ..• : 

(14) m.(U(r,n)) ~ D(r). ~ M.(U(r,n)) 
J J J 

and insert (14) into (13) to conclude that for all o > 0 

(I 5) D(r). - O(e) - o ~TT.~ D(r). + O(e) + o 
J r J J r 

and hence 

ID(r).-TT.I = O(e ). D 
J J r 

Finally, example 2 below shows that the upperbound for the rate of 

convergence of {D(r)};=l towards TT is the sharpest possible one: 

EXAMPLE 2. Let 

P(k) = [

! + Cl, 
2 k 

! + Cl, 
2 k 

Verify that U(r,k) = P(r) for all k = 1,2, ..• , such that D(r) = li~-+= 
00 

U(r,k) = P(r). Conclude that {D(r)}r=I approaches TT at the same rate 

BlBUOTHEEK MATl➔FH.t\TISCH i',U,lt".',?. 
ll.llAC:TFf~DAM 
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00 

as is exhibited by the convergence of {P(k)}k=l towards P (or alternative-
co 

ly by the rate of convergence of {ak}k=l towards zero). 
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