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* Perturbation theory for games in normal form and stochastic games 

by 

.. ** . S.H. TiJs and O.J. Vrieze 

ABSTRACT 

In this paper the effect on values and optimal strategies of pertur­

bations of game parameters (as payoff function, transition probability 

function and discount factor) is studied for the class of zero-sum games 

in normal form and for the class of stationary discounted two-person zero­

sum stochastic games. 

A main result is that, under certain conditions, the value depends in 

a (pointwise Lipschitz) continuous way on these parameters and that the 

sets of (E-)optimal strategies for both players are upper semicontinuous 

multifunctions of the game parameters. 

Extensions to general sum games and non-stationary stochastic games 

are also given. 

KEYWORDS & PHRASES: Gcune in noPmal foPm., stochastic game., non-stationary 

stochastic game., pertu;r,bation of "payoffs., transition 

probability function and discount factor". 
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1. INTRODUCTION AND SUMMARY 

In this paper the main question in various settings is: What is the 

influence of perturbation of the "game parameters" on the "solutions" of 

the game? This question is not only of theoretical importance but also 

of practical utility, because "favourable" answers to this question will 

give greater confidence in the use of game models in applications. 

Roughly speaking, "favourable" means here that small changes in the game 

parameters induce only small changes in the values, and "good" strategies 

in the original game are not "bad" in a slightly perturbed game. 

For papers in the same spirit - but in a different context - we refer 

to KRABS [4], SCHWEITZER [8], TIJS [II] and WHITT [14]. Here we focus our 

attention upon two classes of games, namely games in normal form (sections 

2 and 5) and stochastic games ( sections 3 and 4). 

In section 2 subclasses of two-person zer-sum games in normal form 

with fixed strategy spaces are considered. The value appears to depend in 

a (Lipschitz) continuous manner on the payoff function (theorem 2.1) and 

e-optimal strategies of the original game are (e+2o)-optimal in a a-per­

turbed game (theorem 2.2). Under additional topological conditions on 

strategy spaces and the payoff function, the space of (e-)optimal strate­

gies appears to depend in an upper semicontinuous manner (in the multi­

function sense) on the payoff function (theorem 2.3). Furthermore, in 

this section special attention is paid to a subclass of games with unique 

optimal strategies for both players (theorems 2.7 and 2.8). 

In section 5 for general sum games in normal form sufficient condi­

tions are given to guarantee that thee-equilibrium point set depends in 

an upper semicontinuous way on the payoff functions (theorem 5.4). 

In section 3, for a family of discounted two-person zero-sum 

stochastic games with fixed (countable) state space and (compact metric) 

action spaces, the effect of perturbations of the reward function and the 

transition probability function on the value and the set of stationary 

(e:-)optimal strategies is studied. "Favourable" answers are also obtained 

here in theorems 3.4, 3.5 and 3.7. 

In section 4 some of the results of section 3 are extended to two­

person zero-sum stochastic games where discount factor, reward and 
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transition probability functions are all time-dependent and where Markov 

strategies take over the role of stationary strategies. 

2. PERTURBATIONS OF TWO~PERSON ZERO-SUM GAMES IN NORMAL FORM 

A tlua-person zero-sum game in normal form is an ordered triplet 

<TT1,n2,p>, in which n 1 and n2 are non-empty sets and p: n1 x n 2 ➔ R is 

a real-valued function. n1 and n2 are called the strategy spaces of player 

1 and player 2, respectively, and p the payoff function of player 1. 

Such a game is played as follows. Player 1 and player 2 choose,independent­

ly of one another, a strategy TI1 E n1 and a strategy TI2 E n2, respectively; 

then player 1 receives a payoff p(rr1,TI2) from player 2. For such a game 

<TT1 ,n2,p> let 

and 

~(p) != sup inf p(TI 1,TI2) 
TIIETTI TI2ETT2 

V(p) != inf sup p(TI 1 ,'IT2) 
TI2t:TT2 TI1 ETTI 

If V(p) = V(p), then we say that the game is strictly determined, and then 

val(p): = ~(p) is called the value of the game <IT1 ,rr2,p>. Denote by: 

BV(TT1,n2) the set of those bounded functions p: n1 x n2 ➔ R for which the 

game <TT1,n2,p> is strictly determined. For p E BV(TT1,n2) and E ~ 0 let 

E 
{TI] ETTI ~·val(p) 01 (p) := .inf p(TT]sTI2) -d, 

TI2ETT2 
E 

: = { n2 E n2 :;;;· val(p) +d .. 02(p) sup p(rrl,TI2) 
TI- ETT 

1 1 
E E 

called E-opti-For each E > 0 the set 0. (p) ~~;the elements of O.(p) are 
l. l. 

mal strategies for player i(i E {t,2}). The elements of the (possibly 

empty) 0. (p) 0 called optimal strategies player i. set := 0. (p) are for 
l. l. 

Note that 

(2. 1) 
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and that val is a monotone function on BV(TT1,n2) (i.e. p ~ q impliesvaf(p) 

~ val(q)). We provide BV(TT1,TT2) with the metric d:BV(TT1,n2) x BV(TT1,n2) ➔ lR 

where d(p,q) := llp-qll for each p,q E BV(TT1 ,TT2). 

[Throughout this paper, for a bounded function f on a set S the number 

sup 8 1f(x) I is denoted by llfll]. 
XE 

We show now that the value function val :BV(TT1 ,TT2) + lR is Lipschitz 

continuous with constant 1. 

THEOREM 2 • I For each p, q E BV (TT 1 , n2) we have 

lval(p) - val(q)I ~ d(p,q). 

PROOF: Let i: n1 x n2 + lR be the function with i(rr 1,rr2) = 1 for each 

(rr 1,rr2) E TT 1 x n2 • Take p,q E BV(TT1 ,TT2). Then q + d(p,q)i and q - d(p,q)i 

are elements of BV(TT1,n2) and 

val(q,±_d(p,q)i) = val(q) .± d(p,q). 

Since q - d(p,q)i ~ p ~ q + d(p,q)i, the monotony of the value function 

implies 

val(q) - d(p,q) ~ val(p) ~ val(q) + d(p,q) 

and so the theorem is proved. D 

THEOREM 2.2 Let€~ O, o > O. Let p,q E BV(TT1,n2) such that d(p,q) ~ o. 
€ €+20 Then 0. (p) c 0. (q) for each i E { 1 ,2}. 
l. l. 

PROOF: We only show the inclusion for i =I.Let rr 1 E O~(p). The following 

three inequalities hold: 

val(p) ~ val(q) - o~ 
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The last inequality follows from theorem 2.1. Combining these three inequal­

ities, we have for eaah n2 E TT2 : 

£+20 
Hence n 1 E o1 (q). D 

So far we have not needed topological assumptions on strategy spaces 

and the payoff function. Now we look at two-person zero-sum games for which 

the strategy spaces TT 1 and TT2 are topological Hausdorff spaces. We shall 

call a function p: TT 1 x TT2 + lR semicontinuous if for each n2 E TT2 the 

function n 1 1+ p(n1 ,n2) is an upper semicontinuous function on TT 1, and if 

for each n1 E TT 1 the function n2 1+ p(n1,n2) is lower semicontinuous on TT2 • 

Let SBV(TT1 ,n2) := {p E BV(TT1 ,TT2) I p is semicontinuous}. Then for each 

£ > O, the set O~(p) is a closed subset of n1 if p E SBV(TT1,TT2) because 
£ -1 o1(p) = f ([val(p)-£, 00)), where f is the upper semi-continuous function 

on TT 1, defined by f(n 1) := infTT2ETTz p(n1 ,n2). If, moreover; TT 1 is compact 

then it follows from (2.1) that 0 1(p) #~-Analogously, o2 (p) is closed if 

p E SBV(TT1 ,TT2). 

Following BERGE [1] pp. 114,115, we call a multifunction f from X into Y, 

where X and Y are topological spaces, an upper semicontinuous multifunction 

if for each open set Uc Y the set {x E xjf(x) c U} is an open subsetof X. 

THEOREM 2.3 Let TT1 and TT2 be Hausdorff spaces and let£~ 0. If TTi is 

compact (i E {J,2}) then O~: SBV(TT1,TT2) + TTi is an upper semicontinuous 

multifunction. 

PROOF: Let n1 be a compact space. In view of the corollary on page 118 of 

BERGE [1], 0~ is upper semicontinuous if (and only if) 

is a closed subset of SBV(TT1,TT2) x TT 1• We prove that the complement of G 

is open. Let (p,n1) E (SBV(TT1,TT2) x TT1)-G. Then we can take a o > 0 such 

that inf n p(TTI,TT2) <val(p)-£-o.Put 
TT2E 2 



u ·- {q E SBV(TT1,TT2); d(p,q) < I .- 2 

and 

V ·- { TT 1 ~ TTI; infTT2ETT2 p(TT1,TT2) .-

a} -

< val (p) - e: - a}. 

inf TT p(TT1,TT2) is an 
TT2E 2 
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Then U is open, and Vis also open, because TT 1 i+ 

upper semicontinuous function on TT1• Hence U x V 

of (p,rr1). Since for each (q,TT1) EU x V we have 

is an open neighbourhood 

we may conclude that (UxV) n G = ~- This implies that (SBV(TT1,TT2)x TT1) - G 

is an open set. Hence G is closed, and so 0~ is an upper semicontinuous 

function. D 

EXAMPLE 2.4. Now we want to show that the multifunction 0~ (e:~O) is not 

necessarily a lower semicontinuous multifunction. Take TT1 := [-1,1] and 

TT2 == {O}. Then TT 1 and TT2 are compact sets w.r.t. the usual topology. 

We assert that for each e: ~ 0 the multifunction 0~ is not lower semicon­

tinuous. To prove this assertion, we will show that the lower inverse (cf. 

[ l J, p. 25 and p. 115) 

of the open interval (-1,0) c TT 1 is not an open subset of SBV(TT1,TT2). 

For that purpose we introduce the sequence of functions p,p 1,p2, ••• in 

SBV(TT1,TT2), where for each n E :N 

and 
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!. 
0 if TT € [-] ,0) 

] 

p(TT] ,0) := 

TT] if TT] € [0'] J 

e: Then limn+'X' d(p ,p) = 0. It is easy to see that val(p) = e:, o1 (p) = [-1,1]; 
n -1 e: -1 

val(pn) = e: + n and o1 (pn) = [(l+ne:) , 1 J for each n E E. Hence 

e: - ] 
This implies that (0 1) ((-1,0)) is not open. 

From theorem 2.3 we infer the following 

COROLLARY 2.5. Let IT1 and IT2 be HausdoPff spaces and suppose trzat IT1 is 

compact~ Let p 1 ,p2,p3, ••• be a sequerzce in SBV(IT1 ,IT2) and TT 1 ,TT2 ,TT3 , ••• a 

sequence in IT1 such that TTn E o1(pn) foP each n EE. Let p E SBV(IT1,IT2) 

such that o1(p) consists of exactly one element, say TT, and suppose that 

limwc<> d(p,pn) = O. Then limrr+-00 TTn exists and is equal to TT. 

Let TT~ E IT1, TT; E IT2 • It is well-known that (TT7,TT;) E o1(p) x o2 (p) if and 

only if 

(2. 2) 

In view of (2.2), the elements of 0 1(p) x o2 (p) are called aadd1,e-points 

of the game <IT1,IT2 ,p>. We now want to study the subset US(IT1,IT2) of 

SBV(IT 1,IT2) consisting of those functions p for which <IT1,IT2 ,p> has a 

unique saddle-point. Note that for each (TT~,TT;) E IT1 x IT2 the bounded 

semicontinuous functions(* *) : IT1 x IT2 ➔ R defined by 
TT] ,TT2 

[ . * and * - I 1.f TT = TT TT I * TT I 2 2 
(2. 3) s( * *)(TT 1,TT2) := I if TT = TT* and TT2 * TT* 

TTl,TT2 I I 2 
0 elsewhere 

is an element of US(IT1,IT2) with unique saddle-point (TT~,TT;). For the proof 

of the next theorem we need a lemma. 
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LEMMA 2.6. Let p € SBV(TT1,n2) for which (TT;,TT;) E O1(p) x O2 (p). Then 

p + £ s * * £ US(TT1,n2) for each£> 0 and 0. (p+Es( * *)) = {TT~} for 
(TTJ, TT2) i TTJ , TT2 i 

i E { 1, 2}. 

* * PROOF: Since (TT 1,TT2) is a saddle-point in the games <TT1,n2 ,p> and 

<TT1,n2 , es(* *)>' it is obvious that for each (TT 1,TT2) E n1 x n2 : 
TTl 'TT2 

where h: = 

* * Hence, in view of (2.2), (TT 1,TT2) E O1(h) x o2(h). Now ~uppose that (TTj,n2) 
. * is also a saddle-point of the game <TT1,n2,h>. If TTj *TT1, then on one hand 

we have 

and on the other hand 

which is impossible. Hence TTj = TT;. In a similar manner we may conclude 
' * ( * *) . . □ that TT2 = TT2 • Thus <TT 1,n2,h> has TT 1,TT2 as unique saddle-point. 

THEOREM 2.7. Let n1,n2 be compact Hausdorff spaces. Then 

(a) the restriction of Oi: SBV(TT1,n2) ➔ :JR to the subset US(TT1,n2) is a 

continuous map, 

PROOF: (a) follows from the fact that a single-valued map, which is upper 

semicontinuous in the multi-valued sense, is continuous. 

(b) Let p E SBV(TT1,TT2) and£> 0. We have to prove that there is a 

* * q € US(TT1,n2) such that d(p,q) <£.Take (TT 1,TT2) E O1(p) x O2(p) 

(0 1(p) x o2 (p) * (/J because n1 and n2 are compact). Now let 

q := p +!es(* *)'wheres(* *) is the function defined in (2.3). 
TTJ,TT2 TTJ,TT2 

Then q E US(TT 1,n2) by lemma (2.6) and d(p,q) ~ ½ £ < e. 0 
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THEOREM·2.8. Let TT1,TT2 be compact metY'ic spaces with memos d 1,d2 • Then 

US(TT1,TT2) is connected if and oniy if both sti'ategy spaces TT1 and TT2 a:r>e 

connected. 

PROOF: (a) First suppose that, say, TT 1 is not connected. Let TT 11 and TT12 
be two disjunct non-empty open subsets of TT1 with TT1 = TT 11 u TT12 • 

Let usi := {p E US I o1 (p) c TT]i} for each i E { 1 ,2}. It is obvious that 

us= us 1 u us 2 and that us 1 n us 2 =~-Further, us 1 and us 2 are open in us, 

because o1 and o2 are upper semicontinuous multifunctions. If we can show 

that us 1 * cf>, and us2 * cf>, then we have proved that US(TT1 ,TT2) is not 

connected if TT1 is not connected. Now TT 11 * cf>, TT 12 * cf>. Take TT' E TT 11 , 

TT" E TT 12 and TT E TT2 • Then it is obvious that s(TT',TT) E us 1 and s(TT",TT)e:us2, 

where s ( , ) , s ( 11 ·) are defined in an analogous manner to s ( * *) in TT ,TT TT ,TT TT],TT2 
(2.3). So US. * cf> for i E {J,2}; and we have proved the implication to the 

1. 

right in the theorem. 

(b) Now we suppose that TT1 and TT2 are connected sets. Let u 1 and u2 be 

disjunct open subsets of the metric space US(TT1,TT2) such that US(TT1,TT2) = 

u 1 u u2 • If we can show that u 1 = cf> or u2 = cf>, then US(TT1,TT2) is connected. 

* * (b.1) For each (TT 1,TT2) E TT 1 x TT2 , let z(TT~,TT;): TT1 x TT2 ➔ JR be the func-

tion defined by 

Then 

Z(' * *) (TT) ,TT2) TT 1 , TT2 

z( * *) E US(TT1,TT2) TT] , TT2 
for i E { 1 , 2} • 

Let F: TT1 x TT2 ➔ US(TT1,TT2) be the map defined by F(TT7,TT2) = z(TT* TT*)" 
* * ** ** ], 2 Then it is straightforward to show that IIF(TT 1 ,TT2) - F(TT 1 ,TT2 )II :.,; 

* ** * ** * * ** ** :-;::; d](TTl,TT]) + d2(TT2,TT2) for all (TT],TT2), (TT] ,TT2) e: TT] x TT2. Hence Fis 

a continuous map from the connected set TT1 x TT2 into US(TT1,TT2). This implies 

that either F(TT 1xTT2) c u 1 or F(TT1xTT2) c u2 • Without loss of generality we 

suppose that F(TT1xTT2) c u 1 i.e. 

(2 .4) 



(b.2) Now take an arbitrary p E US(TT1,TT2). Let O1(p) x O2(p) = {(n1,TI2)}. 

For each t E [O, 1] let G(t) := t p + (1-t)z( · ) • Then it is easy to 
TI 1 'TI2 
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show (cf. the proof of lemma (2.6)) that G(t) E US(TT1 ,n2) for each t E [O,1]. 

Furthermore, 

IIG(s) - G(t)0 $ ls-ti (llpll+llz( )II) 
TI 1 , TI2 

for each s, t E [0,1]. 

Hence G: [0,1] ➔ US(TT1,n2) is continuous. Since [0,1] is connected and 

G(O) = z( . ) E u1 by (2.4), we may conclude that G(l) = p E u1, as well. 
TI t 'TI2 

So we have proved that US(TT1,n2) c u1• Thus u2 =~;this completes the 

proof of the theorem. D 

Note that the metric property of n1 and n2 in theorem 2.8 is only used in 

the proof of the implication to the left of that theorem. 

REMARKS. 

2.9.1. The set US(TT1,n2) is not necessarily an open subset of SBV(TT1,n2) 

as the following example shows. Take n1 := [0,1], n2 := {O}. Then 

p E US(TT1,n2) if p(TI 1,O) := Til for each Til E n1• For each€> O, thee­

neighbourhood of p contains the function q E SBV(TT1,n2), defined by 

q(TI 1,O) := min {TI1,1-½e}, but qi US(TT 1,n2). Hence US(TT 1,n2) is not open. 

2.9.2. BOHNENBLUST, KARLIN & SHAPLEY proved in [3] that the set U of mn 
those m x n-matrix games (m,n E "N), for which the mixed extension has a 

unique saddle-point, is an open and dense subset of the set of all m x n­

matrix games (provided with the usual topology). With some labour one can 

prov that U is,not connected for all (m,n) * (1,1). We will not do mn 
this here but remark that in case (m,n) = (1,2) we have: 

u12 = {[a,b] I a* b} = {[a,b] I a> bu {[a,b] I a< b}. 

Hence u12 is the union of two disjunct open subsets. Thus u12 is not con­

nected. 

2.9.3. For semi-infinite matrix games the influence of perturbations of 

the payoffs on value and (t-)optimal strategies was studied in TIJS [IO], 
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pp. 65-70. 

2.9.4. Let TT1 and TT2 be compact metric spaces. Let CV(TT1,TT2) be the family 

of continuous functions p: TT1 x TT2 ➔ R such that the value of the game 

<TT1 ,TT2,p> exists. Let UC(TT1 ,TT2) := {p € CV(TT1 ,n2) I' <TT1 ,TT2,p> has a unique 

saddle-point}. Then UC(TT1,n2) is a dense subset of CV(TT1,n2); also 

UC(TT1,n2) is connected 'iff n1 and n2 are connected. The proofs of these 

facts can be given by a minor modification of the proofs of 2.7 and 2.8. 

[E.g. the role of the functions(* *) in the proof of 2.7 can be taken 
TT) , lTZ 

over by the function z( * *) defined in thB proof of 2.8.] 
TT)' TTz 

3. PERTURBATIONS IN STOCHASTIC GAMES 

In this section we extend some results of section 2 to stochastic ga-

mes. Stochastic games (or Markov games) were introduced in 1953 by SHAPLEY 

[9]. For a recent survey of the theory of stochastic games we refer to 

PARTHASARATHY & STERN [7]. In this section we restrict our attention to 

discounted two-person zero-sum stochastic games, characterized by an order­

ed six-tuple· <S,A1 ,A2,r,q,S>, where · 

(3.1) Sis a non-empty countable set, called the state space, 

(3.2) A1 and A2 are non-empty compact metric spaces, called the action 

spaaes of player 1 and player 2, respectively, 

(3.3) r: S x A1 x A2 ➔ R is a bounded function, called the reward func- ·. 

tion, for which for each s € S the map (a 1,a2) i-+ r(s,a1,a2) is a 

measurable function on A1 x A2 (the measurability is taken with re­

spect to the product o-algebra of A1 and A2, where Ai is the cr­

algebra generated by the Borel sets of A.(i=l,2)), 
1. 

(3.4) q: S x A1 x A2 ➔ Pis a function from S x A1 x A2 into the familyP of 

probability measures on S, such that for all s, s' € S the map 

(a 1 ,a2) 1-+ q(s' I s,a1 ,a2) := q(s,a1 ,a2) {s'} is a measurable function 

on A1 x A2• q is called the transition probability function, 

(3.5) e is a real number in [0,1), called the discount factor. 
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Such a stochastic game corresponds with a dynamic system with state space 

S, where the dynamic behaviour as well as the rewards are influenced by 

the players at discrete points in time, say t = 0,1,2, ••• , in the followirg 

way. At each time t E {0,1,2, ••• } the players observe the current state of 

the system. They, then, have to select~ independently of one another, an 

action. If at time t the system is in state sand if player I selects 

action a 1 € Al and player 2 action a2 E A2, then two things happen: 

(I) player I obtains an innnediate reward r(s,a1,a2) from player 2. 

(2) the system moves with probability q(s' I s,a1,a2) to the states' ES, 

which is observed at time t + I. 

Furthermore, one supposes that a reward r to player I (or 2) at time t has 

worth ~tr- at time O (Str is called the discounted reward) and that player 

I (player 2) wants to maximize (minimize) the total discounted expected 

reward. 

DEFINITION 3.1. Let <S,A1,A2,r,q,S> be a stochastic game. Let Pi be the set 

of probability measures on <A. ,A.> (i=I, 2). Then each map TT.: S ➔ P. is 
]. ]. ]. ]. 

called a stationary st'Pategy for player i. The set of stationary strategies 

is denoted by TT .• 
]. 

Playing a stationary strategy TT. E TT. means for player i that, each time 
]. ]. 

t E {O,I,2, ••• } that the system is in states ES, he chooses his action 

according to the probability measure TT.(s). 
]. 

Let us suppose that the players I and 2 decide to play TT 1 E TT1 and 

TT2 E TT2• Suppose further that the initial state (the state at t = 0) of 

the system is s ES. Then the expected reward of player I at time 

t E {O,I,2, ••• } exists and is denoted by ft (TT 1,TT2); the total discounted 
oo t t srq 

expected rewaPd Lt-OS f (TT1,TT2) is denoted by f (TT1 ,TT2). Note that 
00 t - srq_1 srq 

Df II s l O S llrll = (1-S) llrll. Furthermore, it can be seen that the srq t= 
functions 1-+ f (rt1,TT2) satisfies the relation: srq 

(3.6) 
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for alls ES, where 

and 

;(s,TT1(s),TT2(s)): = J J r(s,a1 ,a2)dTT 1(s)(ai)dTT2 (s)(a2) 

A2 Al 

q(s' ls,TT1(s),TT2(s)): = J j q(s'I s,a 1,a2) dTT 1(s)(a1) dTT2(s)(a2). 

Az Al 

(;'(s, TT 1 (s), TT:;/s)) is the expected reward at time O and if at time the 

state is s' ES (chance q(s' ls,TT 1(s),TT2(s)), thens' can be seen as a new 

starting state, so the discounted expected reward from time I on is 

f3 ls'ES q(s'ls,TT1 (s),TT2(s))fs'r/TT1,TT2).) 

DEFINITION 3.2. Let <S,A1,A2,r,q,f3> be a stochastic game and£~ O. A pair 

of stationary strategies (TTf' TT~) E nl X nz, such that 

- £ + f (TT 1 ,TT£2) ~ f (TT£1 ,TT2£) ~ f (TT£1 ,TT2) + £ 
srq srq srq 

for all s E S and all (TT 1 , TT 2) E n1 x n2 is called an £-saddle-point if 

£ > O, and a saddle-point if£= O. If, for each£> 0, there are £-saddle­

points, then we say that the stochastic game is strictly determined. In 

that case, for each s Es, the two-person game in normal form '<nl,n2,f > srq 
is strictly dletermined and the function V rq S ➔ R, where V (s) is the rq 
value ot' <TT1, n2 , f >, is called the value of srq the stochastic game. By an 

£-optimal ( optimal) strategy TT. E TT. for player 
i i 

i in the stochastic game 

we mean a strategy such that TT. (s) is £-optimal (optimal) in <TT1 ,TT2,f > 
i srq 

for all s E S:. 

For the remainder of this section S, A1, A2 and f3 are fixed. Let DV 

be the family of pairs of functions (r,q) satisfying (3.3) and (3.4) such 

that for each bounded function Y : S ➔ R and all s E S the ( cJ..wnmy-) game 

in normal form 

<Pl' Pz, ;'cs,.,.)+ f3 I q(s' I s,.,.) Y(s') > has a value. 
s'ES 
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THEOREM 3.3. Let (r,q) E DV and i:: ~ O. Then· <S,A1 ,A2,r,q,S> is strictly 

determined. The value of the stochastic game is the unique solution of the 

foUowing functional, equation in Y : S ➔ JR : 

Y(s) = val(;(s,.,.) + S I q(s' I s,.,.) Y(s')) for alls ES. 
s'ES 

Furthermore, if for each s ES an i::-optimaZ strategy n:(s) is given for 
l. 

player i in the game in normal form 

<P 1,P2,;(s,.,.) + S I 
s'ES 

q(s'ls,.,.) V (s')>, rq 

then the maps 1--+ n:(s) is a (I-S)- 11::-optimaZ strategy for the stochastic 
l. 

game. 

PROOF: Let B(S) be the family of bounded realvalued functions on S. Let 

T : B(S) ➔ B(S) be the map defined by 

(TY)(s) := val(;(s,.,.) + S I q(s'ls,.,.) Y(s')) 
s'ES 

for all Y E B(S) ands ES. 

Then, using theorem 2.1, we have 

for each Y1, Y2 E B(S). 

Hence Tis a contraction with factor SE [0,1), so that by the Banach­

Picard fixed point theorem T has a unique fixed point:, say V. So V satis­

fies: V(s) = val(;(s,.,.) + S~'ES q(s'ls,.,.) V(s')) for alls Es. We now 

show that Vis the value of the game <S,A1,A2,r,q,S>. For E: > 0 let 

n~(s) E P1 be i::-optimal in· <P 1,P2,;(s,.,.) + S Ls'ES q(s' ls,.,.)V(s')>. 

For (nl,n2) E TT] x n2 let QTTJTT2 : B(S) ➔ B(S) be the map defined by 

I q(s'ls,n1,n2) Y(s') 
s'ES 

for all Y E B(S) ands ES. 
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E E 
Consider the strategy s 1-+ TT 1 (s), denoted by TT 1• Then, for each TT2 E n2 , we 

have: 

(3. 7) 

E ~ E • 
where r(TT 1,TT2) is the functions-...+ r(s,TT 1(s),TT2 (s)) on S, ES 1s the func-

tions i-+ Eon Sand ~Sis the relation on B(S), defined by Y1 ~S Y2 ~ 

~ Y1(s) ~ Y2 (s) for alls ES. When we repeatedly substitute for Vin the 

left hand side of (3.7) the entire left hand side, then we see, that for 

each t E JN the following inequality holds: 

t-1 t-1 
I ST QTE r(TTE1,TT2) + st QtE ,v + I ST QTE (Es) ~s v, 

T=O TT1TT2 TTITT2 T=O TTITT2 
(3. 8) 

0 t t-1 
where Q E is the identity map and Q E : = Q QTTEJTT2 (tEJN). Note that 

TTJ TT2 n 1 n2 

lt=0
1 STQTE r(TTE1,TT2) equals the total expected discounted reward until 

T- TTJTT2 

time t, if the players use the strategies TT~ and TT2 • So letting t ➔ 00 in 

(3.8) we get 

(3. 9) for each TT2 E n2 

- E E where frq(TT 1,TT2) 1s the functions 1-+ fsrq(TT 1,TT2) on S. As E > 0 was arbi-

trary, (3.9) yields: 

sup inf f (TT 1,TT2) ~ V(s) 
n 1 TT2 srq 

for alls Es. 

Similarly, we can show that inf sup f (TT 1,TT2) $ V(s) and, as always, 
TTz TTJ srq 

sup inf f (TT 1,TT2) $ inf sup f (TT 1,TT2). Consequently, we arrive 
TTJ TTz srq TT 2 TT 1 srq 

at the desired result: 

(3.10) sup inf f (TT 1,TT2) = inf sup f (n 1,n2) = V(s) 
TTI TT2 srq TT2 TT] srq 

for all s ES. 

So Vis the value of the stochastic game and then (3.9) yields, for E > 0, 

the second assertion in the theorem. Now it is easy to show that this as­

sertion also holds for E = O; this is left to the reader. D 



Now we provide DV with the metric d defined by 

d (( r, q) , ( r' q' ) ) : = max{ II r-r' II , p ( q, q' ) } , 

where p(q,q') :=sup, lq(s' I s,a 1,a2)-q'(s' 
s ,s,a1 ,a2 

THEOREM 3.4. The map (r.,q) i-+ V from DV into B(S) is a continuous map 
rq 

(even pointwise Lipschitz continuous). 

15 

PROOF: Let (r,q),(r',q') E DV. First note that, in view of theorem 2.1, we 

have 

(3. I I) IV (s)-V , ,(s) I = lval(f ),..val(f • ,) I :$ llf -'-f , ,II. 
rq r q sFq nr q srq sr q 

Take (TT1,TT2) E TT1 x TT2 and put x(s): = fsrq(TT1,TT2) and x'(s): = fsr'q'QTTI"TT2) 

for each s E S. Then it follows from (3.6) that for each s E S 

I x ( s) -x' ( s) I ::; II r-r ' II + S II x-x' II + 13 p ( q , q ' ) II xii , 

so 

II x-x' II ::; II r-r ' II + f3 II x-x' II + f3 p ( q, q ' ) II xii • 

Recall that II xii ::; (I -f3) - l II rll and put 

(3.12) 

Then 

(3.13) 

C : r 
-I I 

= (1-f3) (1+f3(I-!B)- llrll). 

llf -f , ,II ::; C d((r,q),(r' ,q')) 
srq sr q r 

Combining (3.11) and (3.13), we obtain: 

llv -v, ,II::; C d((r,q),(r',q')) 
rq r q r 

for each s ES. 

and this implies that Vis (pointwise Lipschitz) continuous in (r,q). D 
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Let e > 0 and (r,q) E DV. Denote the set of e-optimal strategies for 
. ~ ~ ~ player i of the game <P 1,P2,r(s,.,.) + S l , ·s q(s' ls,.,.)V (s')> by 

€ S E rq 
Oi(s,r,q) and the set of optimal strategies by Oi(s,r,q), {i=t,2). Then 

€ -t X S O.(s,r,q) can be seen as a subset of the set of (1-8) e-optimal SE l. 

strategies of the stochastic game <S,A1,~,r,q,8> and XSES Oi(s,r,q) can 

be identified with the set of optimal strategies (cf. theorem 3.3). The 

influence of perturbations of (r,q) on this subset X S o:(s,r,q) of the SE l. 

set of (1-8)-l e-optimal strategies can be studied by looking at 07(s,r,q) 
l. 

for each s ES. 

THEOREM 3.5. Let e ~ 0 and (r,q), (r',q') E DV., such that d((r,q),(r',q'))':;; 

:;; o. Then for each s ES we have 

with C as defined in (3.12). 
r 

PROOF: This theorem is a direct consequence of (3.13) and theorem 2.2. 0 

Let CDV be the subset of DV consisting of the elements (r,q), such 

that for each s,s' ES the realvalued functions on A1 x A2:(a 1,a2) 1-+ 

,-+ r(s,a 1,a2) and (a 1,a2) r+ q(s' ls,a 1,a2) are continuous. Now endow Pi with 

the weaktopology. Then P. is compact (cf. PARTHASARATHY [5],th.6.4, p.45), 
l. 

and so TT. = P~, provided with the product topology, is also compact. 
l. l. 

THEOREM 3.6. Let (r,q) E CDV. Then 

( 1) for each s e: S the function f : TT x n2 ➔ JR is continuous. srq 1 

(2) O.(s,r,q) * ~ 
l. 

for each s ES and i E {1,2}. 

(3) There is a one-to-one correspondence between the set of optimal 

stationary strategies for player i in the stochastic game and the set 

X S O.(s,r,q), i E {1,2}. SE l. 

PROOF: The statements 1.n this theorem are special cases of more general 

statements in VRIEZE [13] (especially lemma 2.1 and theorem 2.1). 0 



THEOREM 3.7. For each s ES and 1. E {1,2} we have 

O.(s,.,.): CDV ➔ P. 
l. l. 

is an upper semicontinuous multifunction and therefore also 

X SO.(s,.,.): CDV ➔ TT .• 
SE l. l. 

PROOF: This statement is a direct consequence of theorem 2.3. D 

REMARKS. 
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3.8.1. In this section we have studied stochastic games, for which in each 

states ES player i has available to him the same set A. of pure actions. 
l. 

However this restriction is not serious with respect to models in which 1.n 

each state player i can only use a state-dependent subset of A., as 1.s 
l. 

pointed out in PARTHASARATHY [6] (remark 3.2, p.3O). So our results also 

apply to that case. 

3.8.2. So far we have restricted ourselves to the classes of stationary 

strategies for both players. A reason to do so is given in the following 

theorem. The proof of this theorem runs along the same lines as the proof 

of the analogous statements for Markov-decision problems (BLACKWELL [2], 

th. 6, p. 232) and will be omitted here. 

THEOREM. If a stochastic game <S,A 1,A2,r,q,S> is strictly determined within 

the classes of aU behavioural strategies., then it is strictly determined 

within the classes of stationary strategies and the value in both cases &S 

the same. Fu~thermore., if a player has an optimal behavioural strategy., 

then he has an optimal stationary strategy., which is optimal within the 

classes of all behavioural strategies. 

3.8.3. Now, let A1 and A2 be finite sets consisting of m and n elements, 

respectively (m,nEJN). Once again let S be a countable set. Let B(S,m,n) 

consist of the pairs (r,q) with r as in (3.3) and q as in (3.4). As SHAPLEY 

[9] proved, for each pair (r,q) E B(S,m,n) the stochastic game 

<S,A 1,A2 ,r,q,S> has a value and both players have stationary optimal 

strategies. Now for each s ES the dtlIIllily game <p 1,P2 ,r(s,.,.) + 
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+ 13 L, S q(s' Is,.,.) V (s')> with value V (s) can be seen as a mixed s E rq rq 
extension of an m x n-matrix game. Let U(S,m,n) be the subset of pairs 

(r,q) E B(S:,m,n) for which the game <S,A 1,A2 ,r,q,S> has a unique pair of 

optimal strategies. Now, if (r,q) E B(S,m,n), then we can see from remark 

2.9.2 that, for each£> O, there exists a pair (r ,q) E B(S,m,n) with 
u 

llr-r II <£and such that for each s ES the game in normal form 
u 

q(s'ls,.,.) V (s')> 
rq 

possesses a unique pair of optimal strategies and, furthermore, we may 

suppose that the game has value V (s). But this means (cf. theorem 3.3) rq 
that the stochastic game <S,A1,A2 ,r ,q,13> has value V and possesses a 

u rq 
unique pair of optimal strategies. So (r ,q) E U(S,m,n). The following 

u 
theorem is now innnediate. 

TIIEOREM. The set U(S,m,n) is an open and dense subset of B(S,rn,n). 

3.8.4. A criterion other than the discounted reward criterion, which is 

also often considered, is the average reward per unit of time criterion. 

Note that, :i.n deducing the theorems of this section, the main argument we 

use is, that small perturbations of the game parameters (r,q) cause for 

each pair of stationary strategies small deviations of the expected dis­

counted reward. In general this is not the case, when we look at the aver­

age reward per unit of time, because small perturbations for q may 

cause a change in the chainstructures, belonging to the divers pairs of 

strategies. When we only admit perturbations of r, then small deviations 

cause small deviations in the average reward per unit of time for each 

pair of stationary strategies. In SCHWEITZER [8] one can find, that small 

perturbations of q, which cause no change in the chain structure for each 

pair of strategies, yield small deviations of the average reward per unit 

of time (a sufficient condition). So by choosing an appropriate family of 

pairs (r,q) (it is not yet known if every game with finite S ,A1 and A2 
has a value with respect to the average reward criterion) adapt ions of the 

theorems 3.•+, 3.5 and 3.7 hold true for stochastic games under the aver­

age reward per unit of time criterion. 
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In the next section we direct our attention to non-stationary stochastic 

games and shall see, that analogous theorems to those in this section can 

be stated. 

4. NON-STATIONARY STOCHASTIC GAMES 

So far we only have considered perturbations of the game parameters 

rand q and, furthermore, we have assumed them time-independent. In this 

section we look at stochastic games in which r, q and Sare each time-de­

pendent and we shall study the influence of perturbations of them. In the 

following the set {0,1,2, ••• } of non-negative integers is denoted by JN0 • 

A non-stationary ·two-person zero-sum stochastic game is characterized 

by a quadruplet< S,A1 ,A ,<r ,q ,S >>, where S,A1 and A2 are as in (3.1) 
2 t t t 

and (3.2) and <r ,q ,S > denotes the infinite sequence of triples t t . t 

with the property that rt,qt and St statisfy (3.3), (3.4) and (3.5), res­

pectively, for each t E JN0 • Now rt,qt and St, respectively, are called 

reward function, transition probability function and discount factor at 

time t E N0 • 

DEfINITION 4.1. Let <S,A1,A2 , <r ,q ,S >> be a non-stationary two-person 
t t t 

zero-sum stochastic game. Let P. be the set of probability measures on 
M 1. 

<A.,A.>. 
1. 1. 

Then each map TT. : JN0 x S ➔ P. is called a Markov-strategy (or 
1. 1. 

memoryless strategy) 

i is denoted by rr'f. 
1. 

for player i. The set of Markov-strategies of player 

Fix$ E [0,1) and ME [0, 00). Let 

FSM := {(r,q,S) I (r,q) E DV, SE [0,$], llrH :;:; M}. 

Let <S,A1,A2,<rt,qt,St>> be a game such that <rt,qt,St> E (FSM)lNo i.e. 

(rt,qt,St) E FS~for each t E lN0 • Let us suppose that the players 1 and 2 

decide to play n1 E ~ and TT~ E ~' respectively. Then, for each initial 
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states€ S, the expected reward of player 1 at time t € :N0 exists 

denoted by ft (nM1,riM2). The total expected discounted reward s<r q > 

and is 

,~ nt-1 8 tt t M M 
l·t=O -r=O -r f s<r q > (TT 1 'TT2) 

t t 

M M is denoted by f (TT 1,TT2), where s<r ,q ,e > 
t t t 

-1 
ITT=O ST:= 1. We note that 

00 t-1 
I IT e llr II 

t=O -r=O T t 

The notions of value and (E-) optimal stPategies are defined in a similar 

way as in sectio~ 3, but now the roles of n1 and n2 in section 3 are taken 

over by r,; and~- In the following, for a sequence <rt,qt,Bt> and a -r € JN0 
the sequence 

--r --r --r 
is denoted by <rt ,qt ,Bt >. Further, for a game <S,A1,A2 ,<rt,qt,St>> with 

value, this value is denoted bys ~ V(s,<rt,q ,8 >) or by V(.,<r ,q ,e >). 
t t t t t 

THEOREM 4.2. Let <S,A1,A2,<rt,q ,B >> be a non-stationa,y,y stochastic two-
t t lNo 

pePson zepo-sum game, such that <rt,qt,8t> € (F~M) • Then the game is 
ME p 

stPictly determined. Let E ~ 0 and let TT. be a MaPkov stPategy foP 
l. M 

playeP i, such that (foP each -r € :N0 and s € S) rri E(-r ,s) is an £-optimal 

stPategy in the following game in normal form: 

M 
Then ~.Eis a (1-S)- 1E-optimal stPategy in the stochastic game. 

l. 

PROOF. Let B be the family of bounded realvalued functions on S x (FSM)JNO. 

Then Bis a complete metric space, if we provide B with the metric derived 

from the sup-norm. Let T: B + B be the map such that 

l ~ I -1 -1 -1 + 80 qo(s' s,.,.)f(s',<r ,q ,8 >)) 
t t t s 1 €S 
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for each f E B and each s E S and <rt'qt'St> E (F8M)lNO. Then 

llfff 1-Tf2ft ~ 'eHf1-f2D for each f 1,f2 EB. So T: B-+ Bis a contraction map 

with factor S < 1. This implies that T has a unique fixed point. The proof 

of the theorem can now be concluded in a similar way as the proof of 

theorem 3.3, whereby the role of the stationary strategies there is taken 

over by the Markov strategies. D 

As an inequality similar to (3.13) can be compounded, an easy exten­

sion of the theorems 2.1 and 3.4 leads to 

THEOREM 4.3. The map <rt,qt'St> t+ V(. ,<rt'qt'St>) from (F~M)JNO into B(S), 

where B(S) is the metl'ic space of bounded reaZvaZued functions on S, is a 

continuous map. 

Also the theorems 3.5 and 3.7 can be extended to the case of non-sta­

tionary stochastic games. We only indicate the extension of theorem 3.7. 

Let CFBM := {(r,q,8) E CDV x [O,S] I llrll ~ M}. Let <S,A1,A2 ,<rt'qt'8t» be 
lNO a game with <rt,qt,8t> E (CF8M) . Then for the game in normal form 

the set Oi(s,<rt,qt,8t>) of optimal strategies for player i is a non-empty 

set. Furthermore, it can be shown that there is a one-to-one correspondence -. -'[ -'[ 
between the set X ,T X S O.(s,<r ,qt ,St>) and the set of optimal TE..11., O SE l. t 
Markov strategies for player i (cf. theorem 3.6). 

THEOREM 4.4. For each s ES the multivalued map O/s,<.,.,.>):(CF8M)JNO -+Pi 

is an upper semicontinuous multifunction. 

In the next section, where we return to games in normal form, we shall 

concern ourselves with non-zero-sum games. 

5. NON-COOPERATIVE GAMES IN NORMAL FORM 

So far we only have looked at zero-sum games. In this section we study 

perturbations of general sum two-person games in normal form. We emphasize 
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that all results in this section can easily be extended to N-person games 

in normal form with N ~ 2; only for notational reasons we restrict our 

attention to two-person games. 

DEFINITION. 5.1. A (general swn) wo-person game in noY'TTlal foY'TTI is an order-

ed quadruplet 

p•TT x1TT + 
I • I * 2* 

point (n l , l\'2) 

<TI1,n2 ,p1,p2>, in which n1 and n2 are non-empty sets 

JR , p2 : T\ x TT2 -+ JR are real-valued functions on n1 
e n 1 x n2 is called an equilibriwn point of the game 

* * * * * p1(n1,n2) = max p1(n1,n2), p2(n11 n2) = 
TTle:TTI 

and is called an e-equilibriwn point (£>0) if 

and 

x n2 • A 

* * * * sup P1(TT1,TT2)-e, P2<n1,TT2) ~ sup P2(TT1,TT2) - e:. 
TT} e:TTI TT2e:TT2 

The set of equilibrium points of <TT1,n2 ,p 1,p2> is denoted by E(p 1,p2) and 

the set of e-equilibrium points by Ee(p 1,p2). 

For fixed n1,n2 , let B(n1,n2) be the metric space of pairs (p 1,p2) of 

bounded realvalued functions on n1 x n2 , provided with the metric d defined 

by: 

for all (p 1,p2) e: B(TT1,TT2) and (pj,Pi) e: B(TT1,TT2). Let BE(TT1,n2) be the 

subset of B(TT1,IT2), consisting of those pairs (p 1,p2) for which 
€ E (p 1,p2); 0 for all e: > O. 

The following two theorems are extensions of theorems 3.6 and 3.7 in 

TIJS [JO], pp.99-100. 

THEOREM 5.2. Let e ~ O, o ~ O, (p 1,p2) e: B(TT1 ,TT2), (pj,Pi) e: B(TT1,TT2) and 

d((pl ,P), (pj ,pi)) :,; o. Then Ee:(pl ,p2) c Ee:+2°(pj ,Pi). 
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and, analogously, for each TT2 E TT2 : 

( * *) £+2o < , , ) Hence TT}, TT2 E E P.1 ,P2 • D 

PROOF. Suppose that (p1,p2) is an element of the closure of BE(TT1,TT2), and 

let£> O. Then we can1 take (p 1,p2) E BE(TT1,n2) such that d((p 1,p2),(p1,P2)) 

<¼£.Take (TT1,u2) E E2 £(p 1,p2) I 0. Then, in view of theorem 5.2, 
£ - - - -(TT1,TT2) EE (p 1,p2) ~ 0. Hence (p 1,p2) E BE(TT1 ,TT2) and we may conclude 

that BE(TT1,TT2) is closed. 0 

Now let TT1 and n2 be topological spaces. Put CBE(TT1 ,TT2) := { (p 1 ,p2) E 

E BE(TT1,TT2) I p 1 and p2 are continuous functions}. 

THEOREM 5.4. Let TT1 and TT2 be compact metric spaces. Then 

(1) E(p1,P2) I 0 for each (p1,P2) E CBE(TT1,TT2). 

(2) (p 1,p2) 1+ E(p 1,p2) is an upper semicontinuous multifunction from 

CBE(TT1,TT2) into TT1 x TT2 • 

(3) (p 1,p2) t+ E£(p 1,p2) is upper semicontinuous for each£> O. 

PROOF. (a) We note that (1) follows from 

where E£(p 1,p2) is, for each£> O, a non-empty closed subset of the com­

pact set TT1 x n2 • 

1 2 2 3 3 • (b) Let£~ O. Let (p 1,p2), (p 1,p2), (p 1,p2), ••• be a sequence in 
. n_n £nn 

CBE(TT1,TT2) converging to (p 1,p~). Let (TT1,n2) EE (p 1,p2) for each n E JN 

and suppose that limn-+oo n1;' = TT1, limn-+<x> ~=TT;. If we can show that 
* * e: (TT1,TT2) EE (p 1,p2), then we have proved (2) and (3). Put on:= 

n n = d((p 1 ,p2), (p 1 ,p2)) for each n E JN. Then, by theorem 5.2, 
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So 

REMARKS 

n 
kElN 

□ 

5.5.1. Theorem 5.4 can be extended to the class of games, which is studied 

in VRIEZE [12], namely the class of mixed extensions of the games 

<{A. Ii E I},{p. Ii EI}>, where I is a countable set of players, where the 
1 1 

action space A. of player i is a compact topol~gical space, satisfying the 
1 

first axiom of countability and where the payoff function p.: X. I A. ➔ JR 
1 1€ 1 

for player i is a continuous function with respect to the product topology. 

5.5.2. In a similar way to thae in which we have extended results obtain­

ed for the zero-sum game in normal form to the zero-sum discounted stochas­

tic game in section 3, we could extend some of the results of this section 

(e.g. theorem 5.4) to the general sum discounted stochastic game. 
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