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ABSTRACT

In this paper the effect on values and optimal strategies of pertur-
bations of game parameters (as payoff function, transition probability
function and discount factor) is studied for the class of zero-sum games
in normal form and for the class of stationary discounted two-person zero-
sum stochastic games.

A main result is that, under certain conditions, the value depends in
a (pointwise Lipschitz) continuous way on these parameters and that the
sets of (e~)optimal strategies for both players are upper semicontinuous
multifunctions of the game parameters.

Extensions to general sum games and non-stationary stochastic games

are also given.
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1. INTRODUCTION AND SUMMARY

In this paper the main question in various settings is: What is the

"game parameters'" on the "solutions" of

influence of perturbation of the
the game? This question is not only of theoretical importance but also
of practical utility, because '"favourable" answers to this question will
give greater confidence in the use of game models in applications.
Roughly speaking, 'favourable" means here that small changes in the game

""good" strategies

parameters induce only small changes in the values, and
in the original game are not '"bad" in a slightly perturbed game.

For papers in the same spirit - but in a different context - we refer
to KRABS [4], SCHWEITZER [8], TIJS [11] and WHITT [14]. Here we focus our
attention upon two classes of games, namely games in normal form (sections
2 and 5) and stochastic games ( sections 3 and 4).

In section 2 subclasses of two—-person zer—sum games in normal form
with fixed strategy spaces are considered. The value appears to depend in
a (Lipschitz) continuous manner on the payoff function (theorem 2.1) and
g-optimal strategies of the original game are (e+28)-optimal in a S-per-
turbed game (theorem 2.2). Under additional topological conditions on
strategy spaces and the payoff function, the space of (e-)optimal strate-
gies appears to depend in an upper semicontinuous manner (in the multi-
function sense) on the payoff function (theorem 2.3). Furthermore, in
this section special attention is paid to a subclass of games with unique
optimal strategies for both players (theorems 2.7 and 2.8).

In section 5 for general sum games in normal form sufficient condi-
tions are given to guarantee that the e-equilibrium point set depends in
an upper semicontinuous way on the payoff functions (theorem 5.4).

In section 3, for a family of discounted two-person zero-sum
stochastic games with fixed (countable) state space and (compact metric)
action spaces, the effect of perturbations of the reward function and the
transition probability function on the value and the set of statiomary
(e-)optimal strategies is studied. "Favourable" answers are also obtained
here in theorems 3.4, 3.5 and 3.7.

In section 4 some of the results of section 3 are extended to two-

person zero—-sum stochastic games where discount factor, reward and



transition probability functions are all time-dependent and where Markov

strategies take over the role of stationary strategies.
2., PERTURBATIONS OF TWO-PERSON ZERO-SUM GAMES IN NORMAL FORM

A two-person zero—sum game in normal form is an ordered triplet

<ﬂ1,H2,p>, in which»ﬂ; and M, are non—empty sets and p: ﬂl x T, - R is

2 2

~a real-valued function. ﬂ] and ﬂ2 are called the strategy spaces of player

1 and player 2, respectively, and p the payoff function of player 1.
Such a game is played as follows. Player 1 and player 2 choose, independent-

ly of one another, a strategy m, ¢ ﬂ] and a strategy m, € ”2’ respectively;

1
then player 1 receives a payoff p(nl,nz) from player 2. For such a game
<M ,T,p> let

vip) := sup inf p(m,m,)

nleﬂl "26”2 ’

énd
V(p) := nir_llf[ sup p(m, ,M,)

o€l ﬂ]eﬂl .
If V(p) = V(p), then we say that the game is strictly determined, and then
val(p): = V(p) is called the value of the game <M,»M,,p>. Denote by.
BV(ﬂl,ﬂz) the set of those bounded functions p: ﬂl x ﬂz - R for which the
game <ﬂ1,ﬂ2,p> is strictly determined. For p ¢ BV(HI,HZ) and € > 0 let

Oi(p) i={mn e ﬂl l .ing p(ﬂl,nz) > val(p) -e},
Tyelly
Og(p) i={my e 1, | sup (T ,T) < val(p) +e}. .

T el
11

For each € > 0 the set Oi(p) # @; the elements of Oi(p) are called e-opti-
mal strategies for player i(i e {1,2}). The elements of the (possibly
empty) set Oi(p) := Og(p) are called optimal strategies for player 1i.

Note that

€ _ £
2.1) 0,(® = 05 0,(®, 0,(») = 07 05(p)



and that val is a monotone function on BV(”I’HZ) (i.e. p < q implies val(p)
< val(q)). We provide BV(ﬂ],ﬂz) with the metric d:BV(ﬂl,ﬂz) X BV(HI,WZ) - R
where d(p,q) := lp-qll for each p,q ¢ BV(ﬂl,ﬂz).

[Throughout this paper, for a bounded function f on a set S the number

supxeslf(x)l is denoted by I£l1].

We show now that the value function val:BV(Tl ﬂ2) + Ris Lipschitz

1’
continuous with constant 1.

THEOREM 2.1 For each p,q € BV(HI’HZ) we have
[val(p) - val(q)! < d(p,q).

PROOF: Let 1i: ﬂl X ﬂz + R be the function with i(n],nz) = 1 for each

(n],nz) € ﬂ] X ﬁz. Take p,q € BV(HI,HZ). Then q + d(p,q)i and q - d(p,q)i

are elements of BV(ﬂ],ﬂz) and

val(q+d(p,q)i) = val(q) + d(p,q).

Since q - d(p,q)i < p < q + d(p,q)i, the monotony of the value function

implies
val(q) - d(p,q) < val(p) < val(q) + d(p,q)

and so the theorem is proved. [J

THEOREM 2.2 Let € 2 0, § > 0. Let p,q € BV(HI,HZ) such that d(p,q) < 8.
Then Oi(p) c Oi+26(q) for each i e {1,2}.

PROOF: We only show the inclusion for i = 1. Let ;] € O?(p). The following

three inequalities hold:

I\

q(%],nz) p(;l,nz) - 8 for each m, e T

2 2°

1\

p(nl,nz) val(p) - € for each M, € HZ,

val(p) = val(q) - 6.



The last inequality follows from theorem 2.1. Combining these three inequal-

ities, we have for each m, € ﬂzz

q(;],nz) > val(q) - € - 26.

Hence moe 0? 2 (q@). 0

So far we have not needed topological assumptions on strategy spaces
and the payoff function. Now we look at two—person zero-sum games for which
the strategy spaces I, and I, are topological Hausdorff spaces. We shall

1 2

call a function p: ﬂ] X ﬂz -+ R semicontinuous if for each m, € ﬂz the

function n]'+ p(nl,nz) is an upper semicontinuous function on ﬂ], and if

for each "l € ﬂ] the function n2‘+ p(nl,

Let SBV(ﬂl,nz) :={p e BV(ﬂ],ﬂz) l p is semicontinuous}. Then for each

nz) is lower semicontinuous on ﬂ2.
e > 0, the set O?(p) is a closed subset of ﬂ} if p € SBV(ﬂ],ﬂz) because
Oi(p) = f-l([val(p)—s,W)), where f is the upper semi-continuous function
on IT

. i s 1 .
defined by f(nl) 1nfTrzen p(nl,nz). f, moreover, T, is compact

1° 1
then it follows from (2.1) that Ol(p) # ¢. Analogously, Og(p) is closed if

p € SBV(ﬂl,ﬂz).

Following BERGE [1] pp. 114,115, we call a multifunction f from X into Y,
where X and Y are topological spaces, an upper semicontinuous multifunction

if for each open set U c Y the set {x ¢ le(x) c U} is an open subset of X.

THEOREM 2.3 Let ﬂ] and ﬂ2 be Hausdorff spaces and let ¢ = 0. If Hi 18
compact (i e {1,2}) then OE: SBV(ﬂl,ﬂz) > 18 an upper semicontinuous

multifunction.

PROOF: Let TI; be a compact space. In view of the corollary on page 118 of

BERGE [1], 0? is upper semicontinuous if (and only if)

G:={(p,m) € SBV( ,M,) x T | m e oj(m}

1 1

is a closed subset of SBV(ﬂl,ﬂz) x TI.. We prove that the complement of G

1
is open. Let (p,ﬂl) € (SBV(ﬂ],ﬂz) X ﬂl)—G. Then we can take a § > 0 such

that 1nf"2€w2 p(nl,nz) <val(p) - € - §. Put



c
i

{q ¢ SBV(T ,1,) 5 d(p,q) <3 81
and

Vo= {nl e M5 inf ey P

) ("1’"2) <val(p) - € - &}.

Then U is open, and V is also open, because m

Hence U x V is an open neighbourhood

- 3 .

1nf“2€n2 p(n],nz) is an
upper semicontinuous function on H].
of (p,;l). Since for each (q,nl) e U x V we have

inf < i ‘ 1S’ - - 1§ -
lnfﬁ e q(nl,nz) < 1nfTr Tl p(nl,nz) + 38 < val(p) € 36 <wval(q) - =,

22 272 .
we may conclude that (UxV) N G = (. This implies that (SBV(ﬂl,ﬂz)x ﬂl) -G
is an open set. Hence G is closed, and SO’OT is an upper semicontinuous

function. g

EXAMPLE 2.4. Now we want to show that the multifunction 0? (e=20) is not
s [-1,1] and
M, := {0}. Then T and T, are compact sets w.r.t. the usual topology.

2 1 2
. . € . .
We assert that for each € > 0 the multifunction 01 is not lower semicon-

necessarily a lower semicontinuous multifunction. Take TI

tinuous. To prove this assertion, we will show that the lower inverse (cf.

[1],p.25 and p. 115)

e. -1

OD7 (-1,00) == {p e SBY(T,M) | 0{(®) n (-1,0) # ¢}

of the open interval (-1,0) c M. is not an open subset of SBV(HI,H?).

1
For that purpose we introduce the sequence of functions PsP sPyseee in

SBV(ﬂl,Hz), where for each n ¢ N

0 if M€ [-1,0)

p_(m,,0) :=

(s+n“)n1 if m e [0,1]

1

and



0 1if ﬂ] e [-1,0)
p(ﬂl,O) =

em if L [0,1]

Then 1imn+w d(pn,p) = 0. It is easy to see that val(p) = ¢, OT(p) = [-1,1];

1

val(pn) = g+ n  and Oi(pn) = [(1+ne)_1,l] for each n € N . Hence

1

P € (0?)_ ((-1,0)) and 1 ¢ (0?)_1((—],0)) for each n ¢ N,

This implies that (0?)—]((—1,0)) is not open.

From theorem 2.3 we infer the following

COROLLARY 2.5. Let m and M, be Hausdorff spaces and suppose that ﬂ} 18

compact. Let P sPysPgsees be a sequence in SBV(n],ﬂz) and T 5Ty, T a

3oee
1 such that Mo Ol(pn) for each n € N. Let p € SBV(HI,HZ)

such that Ol(p) consists of exactly one element, say W, and suppose that

sequence in T

11mn+w d(p,pn) = 0. Then 11mn+w m extists and is equal to m.

Let nT € ﬂl, n; € ﬂz. It is well-known that (nT,n;) € Ol(p) x Oz(p) if and

only if

* * % *
< < :
(2.2) | p(n],ﬂz) < p(ﬂl,nz) < p(nl,nz) for all "1 € ﬂl, n2 € ﬂ2.

In view of (2.2), the elements of Ol(p) X Oz(p) are called saddle-points
of the game <ﬂ1,ﬂ2,p>. We now want to study the subset US(ﬂ],ﬂz) of
SBV(ﬂl,ﬂé) consisting of those functions p for which <ﬂ1,ﬂz,p> has a

unique saddle-point. Note that for each (nT,n;) € ﬂ] X ﬂz the bounded

semicontinuous function s : M, x T, > R defined by

(n?,ng) 1 2

-1 if n2 = n; and n1 * nr
o= 1 = * *
(2.3) s(n?,n;)(n],nz) : 1 if us ™ and m, * T

0 elsewhere

is an element of US(ﬂ],ﬂz) with unique saddle-point (nT,n;). For the proof

of the next theorem we need a lemma.



LEMMA 2.6. Let p e SBV(T,M)) for which (n’l‘,n;) e 0,(p) x 0,(p). Then

*
P+e s ¥ “;) e US(T,M,) for each e > 0 and Oi(P+€S(nT,n§)) = {ni} for

1>

ie {1,2}.
PROOF: Since (n?,n;) is a saddle-point in the games'<ﬂ],ﬂ2,p> and
<ﬂ1,ﬂ2, € s “?’“; >, it is obvious that for each (nl,nz) € ﬂ] x ﬂzz

* * * *
h(n],nz) < h(n],nz) < h(nl,nz), where h: = p + ¢ S(HT,H;).
. . *
Hence, in view of (2.2), (ﬂ],ﬁ;) € Ol(h) x 02(h). Now suppose that (n;,ﬁé)

is also a saddle-point of the game <TT_,M, ,h>. If n'#‘n?, then on one hand

12°2° 1
we have

* * * v 1 '
h(nl,nz) < h(nl,nz) < h(nl,nz)
and on the other hand
f 1 1 * * *
h(nl,nz) < h(n],nz) < h(n],nz)

. .. . * ..
which is impossible. Hence n; =Ty In a similar manner we may conclude

that né = n;. Thus <ﬂ],ﬂ2,h> has (nj,n;) as unique saddle-point. 0

THEOREM 2,7. Let T ﬂ2 be compact Hausdorff spaces. Then

]’
(a) the restriction of 0i : SBV(H],HZ) - R to the subset US(ﬂl,ﬂz) i8 a

continuous map,

(b) Us(ﬂ],ﬂz)'is a dense subset of SBV(HI,HZ).

PROOF: (a) follows from the fact that a single-valued map, which is upper
semicontinuous in the multi-valued sense, is continuous.

(b) Let p € SBV(ﬂ],ﬂz) and € > 0. We have to prove that there is a

q e US(HI,HZ) such that d(p,q) < e. Take (nT,nZ)'e Ol(p) X 02(p)

(Ol(p) x Oz(p) # () because T, and T, are compact). Now let

1 2

(“T,“ﬁ) is the function defined in (2.3).

Then q € US(UI,HZ) by lemma (2.6) and d(p,q) < 1 e < e. [

q:=p+1}e S(_n;i\— %y’ where s
H



THEOREM 2.8. Let ﬂl,ﬂz be compact metric spaces with metrics dl’dz' Then
US(HI,HZ) 18 commected 1f and only if both strategy spaces m and M, are
connected.

PROOF: (a) First suppose that, say, ﬂl is not connected. Let nll and ”12

be two disjunct non-empty open subsets of ﬂl with ﬂ] = n]l LJnlz.

Let USi :={p € USJ Ol(p) c nli} for each i e {1,2}. It is obvious that
US = US, u US, and that US, n US, = @, Further, US, and US, are open in US,

1 2 1 2 1 2
because 01 and O2 are upper semicontinuous multifunctions. If we can show

that US] * ¢, and U52 * ¢, then we have proved that US(ﬂ],ﬂz) is not

connected if T, is not connected. Now ”11 * ¢, M., # ¢. Take m' ¢ T

1 12

4] . . .
m € n]2 and m € ﬂz. Then it 1s obvious that s(",’") € US1

where s s . are defined in an analogous manner to S, 4 _4\ 1N
(n',m? “(@",m & (nf,m5)

11°
and s("",n)e USZ’

(2.3). So USi # ¢ for i € {1,2}; and we have proved the implication to the
right in the theorem.

(b) Now we suppose that ﬂl and ﬂz are connected sets. Let U] and U2 be
disjunct open subsets of the metric space US(nl’”Z) such that US(H],HZ) =
U1 LJU2. If we can show that Ul = ¢ or U2 = ¢, then US(ﬂ],ﬂz) is connected.
(b.1) For each (n?,n;) e

tion defined by

x I11,, let zZ( * *): M, xT, » R be the func-

1 1T 1 2

* *
Z("T’né) ("1’"2) = dz(nz,nz) - dl(nl,nl) for each (nl,nz) € ﬂl X ﬂz.

Then

2k ey € USCTLTL)  and 0, (2 1y ) = {n;} for i e {1,2}.
1272 1’72

. . * kY =
Let F: ﬂl X ﬂ2 - US(”I’HZ) be the map deflnei bz F(n],n%1 *i(nT’"i)'
Then it is straightforward to show that IF(m ,nz) - F(Tr1 ST yWo< o
* *% * * % * * * % * % - .
< dl(n],n1 ) + dz(nz,n2 ) for all (n],nz), (nl »Ty ) € ﬂl X ﬂz. Hence F is

a continuous map from the connected set T, x T, into US(ﬂ],ﬂz). This implies

1 2
that either F(ﬂ]xﬂz) c Ul or F(ﬂlxﬂz) c U2. Without loss of generality we
suppose that F(ﬂlxﬂz) c U, i.e.

1

* *
(2.4) Z(HT’“;) € U1 for each (n],nz) € Hl X ﬂz.



(b.2) Now take an arbitrary p € US(HI,HZ). Let Ol(p) X 02(p) = {(n],nz)}.
For each t € [0,1] let G(t) :=t p + (l-t)z(“]’ﬁz).
show (cf. the proof of lemma (2.6)) that G(t) € Us(ﬂ],ﬂz) for eacht e [0,1].

Then it is easy to
Furthermore,

le(s) - c(e)l < |s=t| (lpl+lz ) for each s, t € [0,1].
_ (m 5m,)
Hence G: [0,1] - US(ﬂl,ﬂz) is continuous. Since [0,1] is connected and
G(0) = z .y € U, by (2.4), we may conclude that G(1) = p ¢ U,, as well.
(nl,nz) 1
So we have proved that US(”]’”Z) cU

1’
z Thus U2 = ¢; this completes the
proof of the theorem. [J

Note that the metric property of ﬂl and T, in theorem 2.8 is only used in

2
the proof of the implication to the left of that theorem.

REMARKS .

2.9.1. The set US(ﬂl,nz) is not necessarily an open subset of SBV(H],HZ)
;= [0,11], ﬂ2 := {0}. Then

P € US(ﬂl,ﬂz) if p(nl,O) :=m, for each m, ¢ M,. For each € > 0, the e-

1 1 1
neighbourhood of p contains the function q ¢ SBV(”]’”Z)’ defined by

as the following example shows. Take TI

q(nl,O) t= min.{nl,l-%e}, but q ¢ US(ﬂl,ﬂz). Hence US(ﬂ],nz) is not open.

2,9.2. BOHNENBLUST, KARLIN & SHAPLEY proved in [3] that the set U of
those m x n-matrix games (m,n ¢ N), for which the mixed extension has a
unique saddle-point, is an open and dense subset of the set of all m x n-

matrix games (provided with the usual topology). With some labour one can

prov that Umn is:not connected for all (m,n) # (1,1). We will not do

this here but remark that in case (m,n) = (1,2) we have:
U, = {[a,b] | a +b} ={la,bl | a >bu{la,b] | a<bl.

Hence U, is the union of two disjunct open subsets. Thus Uy is not con-

nected.

2.9.3. For semi-infinite matrix games the influence of perturbations of

the payoffs on value and (e€-)optimal strategies was studied in TIJS [10],
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pp. 65-70.

1

of continuous functions p: ﬂl X ﬂz-» R such that the value of the game

‘ <1,,T,,p> exists. Let UC(HI,HZ) = {p e CV(Ul,ﬂz)f <M, ,M,,p> has a unique

2.9.4, Let T, and ﬂ2 be compact metric spaces. Let CV(ﬂl,ﬂz) be the family

saddle-point}. Then UC(ﬂl,ﬂz) is a dense subset of CV(ﬂl,ﬂz); also
UC(HI,HZ) is connected 1iff ﬂl and H2 are connected. The proofs of these
facts can be given by a minor modification of the proofs of 2.7 and 2.8.
[E.g. the role of the function S(“T,ﬂﬁ) in the proof of 2.7 can be taken

over by the function Z (o defined in the proof of 2.8.]

1513)

3. PERTURBATIONS IN STOCHASTIC GAMES

In this section we extend some results of section 2 to stochastic ga-—
mes. Stochastic games (or Markov games) were introduced in 1953 by SHAPLEY
[9]. For a recent survey of the theory of stochastic games we refer to
PARTHASARATHY & STERN [7]. In this section we restrict our attention to
discounted two-person zero—sum stochastic games, characterized by an order-—

ed six-tuple <S,A],A2,r,q,8>, where
(3.1) S is a non—empty countable set, called the state space,

(3.2) A] and A2 are non—empty compact metric spaces, called the action

spaces of player 1 and player 2, respectively,

(3.3) r: S x A] x A2 - R 1is a bounded function, called the reward func-— - .

tion, for which for each s € S the map (a],az) ) r(s,al,az) is a
measurable function on A1 X A2 (the measurability is taken with re-
‘spect to the product c-algebra of A1 and A2, where Ai is the o-

algebra generated by the Borel sets of Ai(i=1’2))’

(3.4) q: S x A1 b4 Az‘e P is a function from S x A1 b:q A2 into the family P of
probability measures on S, such that for all s, s' € S the map
(a],az) P q(s' | s,al,az) 1= q(s,al,az) {s'} is a measurable function

on A, X A,. q is called the transition probability function,

(3.5) B is a real number in [0,1), called the discount factor.
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Such a stochastic game corresponds with a dynamic system with state space
S, where the dynamic behaviour as well as the rewards are influenced by
the players at discrete points in time, say t = 0,1,2,..., in the following
way. At each time t ¢ {0,1,2,...} the players observe the current state of
the system. They, then, have to select, independently of one another, an
action., If at time t the system is in state s and if player 1 selects

action a, € A, and player 2 action a

1 1 € A2, then two things happen:

2

(1) player 1 obtains an immediate reward r(s,a],az) from player 2.

(2) the system moves with probability q(s' | s,a ,a2) to the state s' ¢ S,

1
which is observed at time t + 1.

Furthermore, one supposes that a reward r to player 1 (or 2) at time t has

worth B°r at time 0 (Br is called the discounted reward) and that player

1 (player 2) wants to maximize (minimize) the total discounted expected

reward.

DEFINITION 3.1. Letl<S,A1,A2,r,q,B> be a stochastic game. Let Pi be the set

of probability measures on <Ai’Ai> (i=1,2). Then each map T S - Pi is
called a stationary strategy for player i. The set of stationary strategies

is denoted by ﬂi.

Playing a stationary strategy m. o€ ﬂi means for player i that, each time
t ¢ {0,1,2,...} that the system is in state s ¢ S, he chooses his action
according to the probability measure ni(s).

] € ﬂl and

m, € ﬂz. Suppose further that the initial state (the state at t = 0) of

the system is s € S. Then the expected reward of player 1 at time

Let us suppose that the players 1 and 2 decide to play w

t e {0,1,2,...} exists and is denoted by fzrq(nl,nz); the total discounted
o t .t .
expected ri?ardtzt=0 B fsr E?I,nz) is denoted by fsrq(nl,nz). Note that
I ) el = (1-
E bimg B el = (1-8)

function s b f (tt. ,m,) satisfies the relation:
srq 172

Irl. Furthermore, it can be seen that the

(3.6) fsrq(nl,nz) = T(s,m (s),my(s)) +

<+

Y o
B s'éS q(s Is,nl(s),nz(s)) fs'rq (nl,nz)
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for all s € S, where

(s,m (s),my(s)): = J J r(s,a;,a,)dm (s) (a;)dm, (s) (a,)
A, A

2 1
and

a(s'ls,nl(s),nz(s)): J [ q(s'ls,al,az) dnl(s)(al) dnz(s)(az)r
A, A

21
(;(s,nl(s),n?(s)) is the expected reward at time 0 and if at time 1 the
state is s' € S (chance a(s'ls,n](s),nz(s)), then s' can be seen as a new

starting state, so the discounted expected reward from time 1 on is

B Lgreg 4(s"Is,m (), my(s)E, (W) )

DEFINITION 3.2. Let <S, A Az,r,q,8> be a stochastic game and € 2 0, A pair

of stationary strategies (n],ng) e T }(ﬂz, such that

1

€ € €
- e + fsrq(nl,nz) < f rq(n],nz) < f

€
s rq(n]’nz) Te

S

for all s € S and all (nl,nz) e M xT, is called an e-saddle-point if

e > 0, and a saddle-point if € = 0. 1If, for each € > 0, there are e-saddle-
points, then we say that the stochastic game is strictly determined. In
122 f5rq”
is strictly determined and the function Vr : S > R, where qu(s) is the

that case, for each s € S, the two-person game in normal form <IT

value of <ﬁ ﬂz,f >, is called the value of the stochastic game. By an
e-optimal (optzmal) strategy m. € H. for player i in the stochastic game
we mean a strategy such that m, (s) is e-optimal (optimal) in <M, ﬂz,L >

rq
for all s € S.

1 A2 and B are fixed. Let DV

be the family of pairs of functions (r,q) satisfying (3.3) and (3.4) such

For the remainder of this section S, A

that for each bounded function Y : S » R and all s € S the (dummy—) game
in normal form

1° st ;(S’-’~) + B Z E(S' ! S,.,.) Y(S') > has a Xalue.

s'eS

“ep
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THEOREM 3.3. Let (r,q) € DV and € > 0. Then <8,A,,A,,1,q,B> s strictly
determined. The value of the stochastic game is the unique solution of the

following functional equation in Y : S -» R :

Y(s) = val(;(s,.,.) + B Z a(s' [ Sy.5.) Y(s')) for all s ¢ S.
s'eS
Furthermore, if for each s € S an e-optimal strategy ni(s) s given for

player i in the game in normal form

<P PyT(s,.,) + B ] a(s'ls,.,.) V_ (s")>,
s'eS 4
then the map s n?(s) 8 a (1—5)_13—0ptimal strategy for the stochastic

game.

PROOF: Let B(S) be the family of bounded realvaluéd functions on S. Let
T : B(S) -» B(S) be the map defined by

(TY) (s) := val(r(s,.,.) +B ) q(s'ls,.,.) Y(s"))
s'eS

for all Y € B(S) and s € S.
Then, using theorem 2.1, we have

Y, € B(S).

Ty -TYZH < B HYI—YZH for each Y, Y,

1
Hence T is a contraction with factor B ¢ [0,1), so that by the Banach-
Picard fixed point theorem T has a unique fixed point, say V. So V satis-
fies: V(s) = val(;(s,.,.) + BZ;,€S H(s'ls,.,.) V(s") for all s € S. We now
show that V is the value of the game <S,A1,A2,r,q,8>. For ¢ > 0 let
E ~ ‘1 ~
ﬂl(s) € Pl ],Pz,r(s,.,.) + B Lgtes q(s'ls,.,.)V(s")>.

For ("1’"2) € ﬂl X ﬂz let Qn]nz : B(S) - B(S) be the map defined by

be e-optimal in <P

Q , V() = ] a(s'ls,m,m)) Y(s")

L) s'eS

for all Y € B(S) and s € S.
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Consider the strategy s = Hi(s), denoted by ne. Then, for each m, e M., we

1 2 2
have:
—, €
(3.7) r(n],nz) + B Qn?nzv + €g ZS v,
where f(n?,nz) is the function s+ ;(s,n?(s),nz(s)) on S, €g is the func-
tion s » € on S and ZS is the relation on B(S), defined by Y1 ZS Y2 =

= YI(S) > Yz(s) for all s € S. When we repeatedly substitute for V in the
left hand side of (3.7) the entire left hand side, then we see, that for
each t ¢ N the following inequality holds:

t-] t=1

(3.8) LBQ T(nT,m) + 85 Qe V4 ] BT Q. (e 2V
=0 ) MMy w20 MM 508
0 . . . t
where Q ?"2 is the identity map and Qn? M = Q Qn?nz (t e N). Note that
Vt 1 B Q r(nf,nz) equals the total expected discounted reward until

time t, if the players use the strategies n? and . So letting t - = in

(3.8) we get

vV - (I—B)—] € for each m, ¢ Tl

- e
(3.9) frq(nl,nz) > S 9 )

S

- € . . € .
where frq(n],nz) is the function s » fsrq(n],nz) on S. As € > 0 was arbi-

trary, (3.9) yields:

s#? 135 fsrq(nl,nz) > V(s) for all s ¢ S.

Similarly, we can show that infTT supTTl fsrq(nl,nz) < V(s) and, as always,
. < 3 .
sup_ inf_ £ (n],nz) < 1nfTr sup_ f rq(nl,nz). Consequently, we arrive

™ My srq U

at the desired result: 2 !
(3.10) 53? 122 fsrq(n T, ) = 1%§ sgﬁ fsrq(nl,nz) = V(s) for all s 8.

So V is the value of the stochastic game and then (3.9) yields, for & > 0,
the second assertion in the theorem. Now it is easy to show that this as-—

sertion also holds for € = 0; this is left to the reader. 0
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Now we provide DV with the metric d defined by
d((r,q),(r'q")) := max{lr-r'l, p(q,q")},

v o ' el (!
where p(q,q') : SUPS"S’aI’aZ lq(s"' | s,3,,8,)7q" (s | s,a;,a,) |-

THEOREM 3.4. The map (r,q) » qu from DV into B(S) <s a continuous map

(even pointwise Lipschitz continuous).

PROOF: Let (r,q),(r',q') € DV. First note that, in view of theorem 2.1, we

have
(3.11) [qu(s)—Vr.q.(s)l = lval(fsrq)—val(fsr.q,al < ls = , I,

srq 8r'q

s = ' : = .
Take (nl,nz) € Hl X H2 and put x(s): fsrq(nl,nz) and x'(s): fsr,qﬁn1$n2)

for each s € S. Then it follows from (3.6) that for each s € S
Ix(s)-x"(s)| < le=c'l + B8 Ix-x"ll + B p (q,q") Ixl,
so
Ilx=-x'"ll < le=2'l + B Ix-x'l + B p (q,q") Ixl.

Recall that Ixl < (1-8)"! ¢l and put

-1 -
(3.12) c.: = (1-8)  (1+8(1-B) Diey.,
Then
(3.13) “fsrq—fgr'qm < Cr d((r,q),(r',q")) for each s ¢ S.

Combining (3.11) and (3.13), we obtain:
"qu‘Vr'q'" < €. d(r,9),(r',q"))

and this implies that V is (pointwise Lipschitz) continuous in (r,q). [
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Let € > 0 and (r,q) € DV. Denote the set of e-optimal strategies for
player i of the game <P|,P),T(s,.,.) + B [ g a(s'ls,., )V (s)> by
Oi(s,r,q) and the set of optimal strategies by Oi(s,r,q), (i=1,2). Then

XS€S Oi(s,r,q) can be seen as a subset of the set of (1—6)_1 e-optimal

strategies of the stochastic game <S,A ,A ,r,q,B> and XS€

1°72° S
be identified with the set of optimal strategies (cf. theorem 3.3). The

Oi(s,r,q) can

influence of perturbations of (r,q) on this subset XS€ Oi(s,r,q) of the

S
set of (1-B) ! e-optimal strategies can be studied by looking at Oi(s,r,q)

for each s € S.

THEOREM 3.5. Let € 2 0 and (r,q), (r',q') e DV, such that d((r,q),(r',q") <
< 8. Then for each s € S we have

€+2C.S
i

£
Oi(s,r,q) coO (s,r',q")

with C_as defined in (3.12).
PROOF: This theorem is a direct consequence of (3.13) and theorem 2.2. [J

Let CDV be the subset of DV consisting of the elements (r,q), such

that for each s,s' € S the realvalued functions on Al x Az:(al,az)’»

P r(s,a ,az) and (al,az);» q(s'ls,a ,a2) are continuous. Now endow Pi with

1 1
the weak topology. Then P, is compact (cf. PARTHASARATHY [5]1,th.6.4, p.45),

and so ﬂi’= P?’ provided with the product topology, is also compact.

THEOREM 3.6. Let (r,q) € CDV. Then

(1) for each s € S the function fsrq: m xm, - R 18 continuous.
1

(2) 0.(s,r,q) # @ for each s e S and i e {1,2}.

(3) There is a one—to-one correspondence between the set of optimal
stationary strategies for player i in the stochastic game and the set
XseS Oi(s,r,q), ie {1,2}.

PROOF: The statements in this theorem are special cases of more general

statements in VRIEZE [13] (especially lemma 2.1 and theorem 2.1). 0
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THEOREM 3.7. For each s € S and i e {1,2} we have
Oi(s,.,.): CDV - Pi

18 an upper semicontinuous multifunction and therefore also

Xy g0i(85050) 2 CDV +~ni.

PROOF: This statement is a direct consequence of theorem 2.3. 0

REMARKS .

3.8.1. In this section we have studied stochastic games, for which in each
state s ¢ S player i has available to him the same set Ai of pure actions.
However this restriction is not serious with respect to models in which in
each state player i can only use a state-dependent subset of Ai’ as is
pointed out in PARTHASARATHY [6] (remark 3.2, p.30). So our results also
apply to that case.

3.8.2, So far we have restricted ourselves to the classes of stationary

strategies for both players. A reason to do so is given in the following

theorem. The proof of this theorem runs along the same lines as the proof
of the analogous statements for Markov-decision problems (BLACKWELL [2],

th. 6, p. 232) and will be omitted here.

THEOREM. If a stochastic game <S,A1,A2,r,q,8> 18 strictly determined within
the classes of all behavioural strategies, then it is strictly determined
within the classes of stationary strategies and the value in both cases is
the same. Furthermore, 1f a player has an optimal behavioural strategy,
then he has an optimal stationary strategy, which is optimal within the
classes of all behavioural strategies.

3.8.3. Now, let A1 and A2 be finite sets consisting of m and n elements,

respectively (m,nelN ). Once again let S be a countable set. Let B(S,m,n)

consist of the pairs (r,q) with r as in (3.3) and q as in (3.4). As SHAPLEY
[9] proved, for each pair (r,q) € B(S,m,n) the stochastic game
<S,A1,A2,r,q,8> has a value and both players have stationary optimal

strategies. Now for each s ¢ S the dummy game <P1,P2,;(s,.,.) +
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+ B Zs'eS Z(s'ls,.,.) qu(s')> with value qu(s) can be seen as a mixed
extension of an m X n-matrix game. Let U(S,m,n) be the subset of pairs
(r,q) € B(S,m,n) for which the game <S,A],A2,r,q,6> has a unique pair of
optimal strategies. Now, if (r,q) € B(S,m,n), then we can see from remark
2.9.2 that, for each e > 0, there exists a pair (ru,q) € B(S,m,n) with

Hr—ru" < € and such that for each s € S the game in normal form

<P1,P2,?u(s,.,.) + B 'Z a(s'ls,.,.) qu(s')>
s €S

possesses a unique pair of optimal strategies and, furthermore, we may

suppose that the game has value qu(s). But this means (cf. theorem 3.3)

that the stochastic game <S,A1,A2,ru,q,8> has value qu and possesses a

unique pair of optimal strategies. So (ru,q) € U(S,m,n). The following

theorem is now immediate.
THEOREM. The set U(S,m,n) 78 an open and dense subset of B(S,m,n).

3.8.4. A criterion other than the discounted reward criterion, which is
also often considered, is the average reward per unit of time criterion.
Note that, in deducing the theorems of this section, the main argument we
use is, that small perturbations of the game parameters (r,q) cause for
each pair of stationary strategies small deviations of the expected dis-
counted reward. In general this is not the case, when we look at the aver-
age reward per unit of time, because small perturbations for q may

cause a change in the chainstructures, belonging to the divers pairs of
strategies. When we only admit perturbations of r, then small deviations
cause small deviations in the average reward per unit of time for each
pair of stationary strategies. In SCHWEITZER [8] one can find, that small
perturbations of q, which cause no change in the chain structure for each
pair of strategies, yield small deviations of the average reward per unit
of time (a sufficient condition). So by choosing an appropriate family of
pairs (r,q) (it is not yet known if every game with finite S,A] and A2

has a value with respect to the average reward criterion) adaptions of the
theorems 3.4, 3.5 and 3.7 hold true for stochastic games under the aver-

age reward per unit of time criterion.
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In the next section we direct our attention to non-stationary stochastic
games and shall see, that analogous theorems to those in this section can

be stated.

4, NON-STATIONARY STOCHASTIC GAMES

So far we only have considered perturbations of the game parameters
r and q and, furthermore, we have assumed them time-independent. In this
section we look at stochastic games in which r, q and B are each time-de-
pendent and we shall study the influence of perturbations of them. In the
following the set {0,1,2,...} of non-negative integers is denoted by N, .
A non-stationary two-person zero—sum stochastic game is characterized

by a quadruplet <S,A ,A ,<rt,qt,6t>>, where S,A, and A, are as in (3.1)

1°79 1 2
and (3.2) and <rt,qt,Bt> denotes the infinite sequence of triples

(rO’qO’BO) ’ (rl ’q] 961) 5 (rZ’qZ’BZ) 9000

with the property that rod, and Bt statisfy (3.3), (3.4) and (3.5), res-
pectively, for each t eiNO. Now ro,d, and Bt, respectively, are called
reward function, transition probability function and discount factor at

time t € NO.

DEFINITION 4.1. Let <S,A1,A2, <rt,qt,8t>> be a non-stationary two-person

zero-sum stochastic game. Let P, be the set of probability measures on
i

<Ai’Ai>' Then each map n?: I%)x S - Pi is called a Markov-strategy (or

memoryless strategy) for player i. The set of Markov-strategies of player

i is denoted by ﬂ?.

Fix g € [0,1) and M ¢ [0,®). Let

Fay ©= {(r,q,8) | (r,q) ¢ DV, B € [0,81, Il < M}.

Ny .
Let <8,A ,A,,<r ,q,,8,>> be a game such that <r_,q_,B > e (F§M) 0 i.e.
(rt,qt,Bt) € Fg for each t e‘NO. Let us suppose that the players 1 and 2

. M .
decide to play h] € ﬂ? and M, € ﬂ?, respectively. Then, for each initial
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state s € S, the expected reward of player 1 at time t € N, exists and is

0
t M M .
denoted by fS<r q > (H],nz). The total expected discounted reward

t't

Zt=0 n’[‘=0 BT fs<r q, > (ﬂl,ﬂz) 1s denoted by fS<r ,q B> ("1’"2)’ where
-1 t't t"tt
Mg Bg i= 1. We note that
§ t-1 ~ =1
3 I < moe_lrl < (1-8) '
Sqt’qt’6t> t=0 =0 T t

The notions of value and (e-) optimal strategies are defined in a similar
way as in section 3, but now the roles of ”l and ﬂé in section 3 are taken

over by ﬂ? and ﬂ?. In the following, for a sequence <rt,qt,8t> and a T € N

the sequence

) SR

(rT,qT’BT) 2 (rT+1 ’q.T+1 ’8T+1

. -T =T =T .
is denoted by <rt T ,Bt >, Further, for a game <S,A1,A2,<rt,qt,8t>> with

value, this value is denoted by s ~ V(s,<rt,qt,8t>) or by V(.,<rt,qt,8t>).

THEOREM 4.2. Let <S,A],A2,<rt,qt,8t>> be a non—sta%?onary stochastic two-

0

person zero—-sum game, such that <rt,qt,6t> e (Fy.) . Then the game is

M BM
strictly determined. Let € 2 0 and let niE be a Markov strategy for

M
player <, such that (for each 1 € N, and s € S) ﬁia(T,S) 18 an e-optimal

0
strategy in the following game in normal form: |

~ o . =1=1 —1=1 _-T-1
<P1’P2!rT(Ss',-)+BT Z qT(S'I s,..)V(s',<rt ,qt
s'eS
Me ~ -1
Then ™ i8 a (1-B) e-optimal strategy in the stochastic game.

PROOF. Let B be the family of bounded realvalued functions on S X (FEM-NO.

Then B is a complete metric space, if we provide B with the metric derived

from the sup—norm. Let E: B -~ B be the map such that
(T) (s,<r ,q,,8,>) := val(T (s,.,.) +

* B0 Z HO(S' l S,.,.)f(s',<r_1,q;],B;]>))

s'eS t
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. Ny
for each £ ¢ B and each s € S and <rt,qt,8t> € (FﬁM) . Then
HTfl—szﬂ < Bﬂfl—fzﬁ for each f],f2

with factor B < 1. This implies that T has a unique fixed point. The proof

€ B. So T: B> B is a contraction map

of the theorem can now be concluded in a similar way as the proof of
theorem 3.3, whereby the role of the stationary strategies there is taken

over by the Markov strategies. [J

As an inequality similar to (3.13) can be compounded, an easy exten-

sion of the theorems 2.1 and 3.4 leads to

N ,
THEOREM 4.3. The map <r_,q,,8.> P V(.,<r ,q,,8.>) from (Fgﬁ) 0 Znto B(S),
where B(S) is the metric space of bounded realvalued functions on S, 18 a

continuous map.

Also the theorems 3.5 and 3.7 can be extended to the case of non-sta-
tionary stochastic games. We only indicate the extension of theorem 3.7.
Let CFg, = {(r,q,8) ¢ CDV x [0,81 | Izl < M}. Let <S,A ,A,,<r_,q,,B,>> be
a game with <rt,qt,8t> € (CFgMYNO. Then for the game in normal form

~ ~ -1 -1 -1
<P]9P2’ro(s"") + BO Z qO(S' IS"‘)V(S"<rt ’qt ’Bt >)>
s'eS
the set Oi(s’<rt’qt’8t>) of optimal strategies for player i is a non-empty
set. Furthermore, it can be shown that there is a one-to-one correspondence
between the set X X 0.(s,<r_T,q;T,B;T>) and the set of optimal

TelN, "seS 1 t
Markov strategies for player i (cf. theorem 3.6).

THEOREM 4.4. For each s € S the multivalued map Oi(s,<.,.,.>):(CF§MfN0 -+Pi

18 an upper semicontinuous multifunction.

In the next section, where we return to games in normal form, we shall

concern ourselves with non-zero—sum games.
5. NON-COOPERATIVE GAMES IN NORMAL FORM

So far we only have looked at zero-sum games. In this section we study

perturbations of general sum two-person games in normal form. We emphasize
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that all results in this section can easily be extended to N-person games
in normal form with N = 2; only for notational reasons we restrict our

attention to two-person games.

DEFINITION. 5.1. A (general sum) two-person game in normal form is an order-

ed quadruplet <ﬂ1,ﬂ2,pl,p2>, in which ﬂl and ﬂé are non-empty sets and

« 1 AT, « T1 n - i .
P, 1 X ) - R, Py 1 X ) - R are real-valued functions on ﬂ] X ﬂ2 A

. * . cq e ,
point (HI,NE) e T, x ﬂz is called an equilibrium point of the game

<n] 9”271’] ’P2> if

1

P (n*,n*) = max ©p,(m ,n*), P (n*,n*) = max p (n*,n )
1V1°°2 1V17°2 2V1°°2 2°71°7°2
“16”1 “26”2

and is called an e-equilibrium point (e>0) if

* * * * * *
p,(T,>W) 2 sup p (T ,M)=-¢, p, (T ,M) = sup p,(T ,T,) - €.
11772 1V1°°2 2 1%°2 2 1°°2
m. ell . el
171 272
The set of equilibrium points of <ﬂl,ﬂ2,p1,p2> is denoted by E(pl,pz) and
the set of e-equilibrium points by Es(pl,pz).

For fixed ﬂl,ﬂ , let B(ﬂl,nz) be the metric space of pairs (pl,pz) of

bounded realvalued functions on ﬂ] X ﬂz, provided with the metric d defined

by:
- d((py»>Py) 5 (P]5Py)) 3= max{"pl-p{“,"pz-Péﬂ}

for all (pl,pz) € B(ﬂl,ﬂé) and (p;,pé) € B(ﬂl,ﬂz). Let BE(”l,ﬂz) be the
subset of B(HI,WZ), consisting of those pairs (p],pz) for which
Ee(pl,pz) # 0 for all € > 0.

rThe following two theorems are extensions of theorems 3.6 and 3.7 in
TIJS [10]1, pp.99-100.

THEOREM 5.2. Let € =2 0, § 2 0, (pl,pz) € B(ﬂl,ﬁz), (p;,pé) € B(ﬂl,ﬂz) and
d((p,>p,), (p]>p))) < 8. Then ES(p,,p,) < E€*28(p1,p)).

* * €
PROOF. Let (T ) € E (p],pz). Then for each W ¢ TT

m
1* 2 1 1
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* * * % * %
p;(nlgnz) < p](ﬂl,nz) + § < p](“l’ﬂ2) + e+ 8§ < p;(nl,nz)i-ei-ZG

e T,

and, analogously, for each T 9°

2
1 * ' * *
pz(nl,nz) < pz(nl,nz) + e + 26.

e+28 , ,

pl’ 2 D

* *
Hence (nl,nz) € E
THEOREM 5.3. BE(WI, 2) 18 a closed subset of B(H ﬂz).

PROOF. Suppose that (5],52) is an element of the closure of BE(U T ), and
let € > 0. Then we can take (pl,pz) € BE(ﬂ],ﬂ ) such that d((p ,pz) (pl’PZ))
< ie. Take (nl,n ) € E2 (p],pz) # @. Then, in view of theorem 5 2,

(nl,nz) ¢ EF (pl,pz) # @. Hence (pl,pz) € BE(ﬂl, 2) and we may conclude

that BE(HI’ 2) is closed. [

1

Now let TT andTE be topological spaces. Put CBE(ﬂ],ﬂz) 1= {(pl’PZ) €
€ BE(HI’HZ)] P, and p, are continuous functions}.

THEOREM 5.4. Let Wl and ﬂz be compact metric spaces. Then

(1) E(py»P,) # @ for each (p ,p,) € CBE(”!’”Z)'

(2) (p],pz) g E(pl,pz) 18 an upper semicontinuous multifunction from
CBE(U],W ) into nl X Wz.

(3) (Pl’pz) > Ee(p],pz) 18 upper semicontinuous for each € > 0.

PROOF. (a) We note that (1) follows from

e>0

where Ee(pl,pz) is, for each € > 0, a non-empty closed subset of the com-

pact set ﬂl X ﬁé,

1 1 2 2 3 3 .
(b) Let € 2 0. Let (pl,pz), (pl’PZ)’ (p],pz),... be a sequence in
CBE(”I’ 2) converging to (pl’PZ) Let (ﬂl,ﬂz) ¢ E (pl,pz) for each n e N
n

and suppose that lim oo ﬂ? = 1, 11mn_*°° “2 = "2 If we can show that

(“1, 2) e ES (pl,pz), then we have proved (2) and (3). Put 6 i=
= d((p],pz), (pl’PZ)) for each n € N . Then, by theorem 5.2,
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(),my) e g€ 28n(,

Ek(p!,pz) c Eu(pl,pz) if 0 £ X £ u), we may conclude that for each fixed

. . 2 -1
k ¢ N and n sufficiently large: (n?,ng) e E€Yk (p],pz). But then (nT,n;) €

1’p2) for each n ¢ N . Because 1imn+m Gn = 0 (and

-1 . -1 . .
e EE*K (pl,pz), since EEYK (pl,pz) is closed and (TT’HE)fAllmn+m (nn,ng).
So

-1
(M) e 5 sp,) = 0BT (p,p)y. O
keNN
REMARKS
5.5.1. Theorem 5.4 can be extended to the class of games, which is studied
in VRIEZE [12], namely the class of mixed extensions of the games
<{Ai|i € I},{pili € I}>, where I is a countable set of players, where the
action space Ai of player i is a compact topological space, satisfying the
first axiom of countability and where the payoff function p;: Xi€I Ai -~ R
for player i is a continuous function with respect to the product topology.

5.5.2. In a similar way to that in which we have extended results obtain-

ed for the zero-sum game in normal form to the zero-sum discounted stochas-
tic game in section 3, we could extend some of the results of this section

(e.g. theorem 5.4) to the general sum discounted stochastic game.
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