
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

BW 87/78

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN

GENERATING ALL MAXIMAL INDEPENDENT SETS:
NP-HARDNESS AND POLYNOMIAL-TIME ALGORITHMS

Preprint

~
MC

APRIL

2e boerhaavestraat 49 amsterdam

P!Unted. a.t :the Ma.thema..ti..c.ai. Centlte, 49, 2e BoeJthaa.vu:tJLa.a.t, Am.t>.teJtdam.

The Ma.thema..ti..cai. Centlte, 6ounded .the 11-.th 06 FeblLu.all.Y 1946, -l6 a non
p1Lo6U .i..n6:ti:tu,tlon ai..mi.ng a.t .the p!Lomo:Uon 06 pWte ma.thema..ti..c.6 and U6
app.Uca.:ti.on6. U:. -l6 .6pon601Led by .the Ne.thelll.a.nd6 Gove!Lnmen.t .th/Lough .the
Ne.thelll.a.nd6 OILganiza..ti..on 6olL .the Advancement 06 PUite Rel:iea!Lc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 05A15,05C30,68A10,68A20,90C10

GENERATING ALL MAXIMAL INDEPENDENT SETS:

NP-HARDNESS AND POLYNOMIAL-TIME ALGORITHMS

E. L. LAWLER

University of California, Berkeley

J . K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

ABSTRACT

Suppose that an independence system (E,I) is characterized by a subroutine

which indicates in unit time whether or not a given subset of Eis indepen

dent. It is shown that there is no algorithm for generating all the K maximal

independent sets of such an independence system in time polynomial in IEI

and K, unless P = NP. However, it is possible to apply ideas of Paull and

Unger and of Tsukiyama et al. to obtain polynomial-time algorithms for a

number of SPE=Cial cases, e.g. the efficient generation of all maximal fea

sible solutions to a knapsack problem. The algorithmic techniques bear an

interesting relationship with those of Read for the enumeration of graphs

and other combinatorial configurations.

KEY WORDS & PHRASES: independence system, satisfiability, maximality test,

lexicography test, set packing, clique, complete k-partite subgraph, knapsack

problem, on-time set of jobs, inequality system, facet generation, matroid

intersection.

NOTE: This report is not for review; it has been submitted for publication

in a journal.

1

1. INTRODUCTION

Let Ebe a finite set of elements and let 1 be a nonempty family of subsets

of E satisfying a single axiom: if IE 1 and I'S I, then I' E 1. Under these

conditions, (E,1) is said to be an independence system and 1 is its family

of independent sets. An independent set I is said to be maximal if there is

no I' E 1 such that I' ~I.The subsets of E that are not contained in 1

are dependent sets. A dependent set J is called mimimal if J' E 1 for each

J' CJ.

Suppose that IE!= n and that (E,1) is characterized by a computer sub

routine which indicates in unit time whether or not a given subset of Eis

an independent set. All independent sets can be generated in O(nl11) time:

given an independent set, O(n) applications of the subroutine suffice to

determine the next independent set in a lexicographic listing. But suppose

that one is interested only in all the maximal independent sets, of which

there are K, K ~ 111. These can be found in time polynomial inn and K only

in the unlikely event that P = NP, as we show in Section 2.

There are, however, a number of special types of independence systems

for which it is possible to generate all the maximal independent sets effi

ciently. In Section 3, an analysis of an algorithm due to Paull and Unger

[5] reveals that there is a polynomial-time algorithm for this purpose,

provided that a certain subproblem can be solved in polynomial time. Fol

lowing a discussion of improvements in running time and storage requirements

suggested by Tsukiyama et al. [8] in Section 4, we investigate some of these

independence systems in Section 5. Typical of these special cases is the

problem of generating all the maximal feasible solutions to a knapsack prob

lem. In Section 6, we examine the relationship between our approach and a

technique for the enumeration of graphs and other combinatorial configura

tions, recently proposed by Read [6].

2

2. COMPLEXITY OF THE PROBLEM

we shall show that the problem of generating all the K maximal independent

sets of an arbitrary independence system is NP-hard, i.e., if there is an

algorithm for the problem which runs in time polynomial inn and K, then

there is a polynomial-time algorithm for solving the satisfiability prob

lem [2].

Let F(x1 , ••• ,~) be a Boolean expression in conjunctive normal form.

Let E = {T1 ,F1 , ... ,TN,FN}, and for any j E {1, .•. ,N} and any J ~ E, define

if T, E J, F, i J,
J J

if F. E J, T. i J,
J J

otherwise.

Let IE 1 if either

(i) there exists a j E {1, ... ,N} such that both T. i I, F. i I, or
J J

(ii) each clause of F contains a letter X, whose defined value x.(I) is
J J

true, i.e., F(x1 (I), ••• ,xN(I)) = true.

It is easily seen that (E,1) is an independence system. Moreover, Fis not

satisfiable if and only if the only maximal independent sets are E-{T.,F.}
J J

for j = 1 , ••• , N.

Assume there exists a general procedure for generating all the maxi

mal independent sets of an arbitrary independence system with running time

~(n,K), where~ is a polynomial function of n and K. Apply this procedure

to the independence system defined above and allow it to run for time

~(2N,N). Then Fis satisfiable if and only if either

(i) F(x1 (I), ... ,xN(I)) = true for some generated I, or

(ii) the procedure fails to halt within the allotted time, establishing

that there are more than N maximal independent sets.

For any given J ~ E, the conjunctive normal form can be evaluated in time

proportional to its length. Appropriate modification of the unit-time as

sumption for independence testing thus establishes that the procedure solves

the satisfiability problem in polynomial time. Since the latter problem is

NP-complete, it can be solved in polynomial time if and only if P = NP [2].

Hence, we have the following theorem.

THEOREM 1. Lf there exists an algorithm for generating all the maximal

independent sets of an arbitrary independence system in time polynomial

in n and K, then P = NP.

To obtain a reduction to, rather than from, the satisfiability problem,

we now consider the problem of generating all maximal independent sets

and all minimal dependent sets of an independence system. Let there be L

of such sets .. We shall show that if there is a polynomial-time algorithm

for the satisfiability problem, then there is an algorithm for generating

all these sets in time polynomial inn and L. Each step of the latter al

gorithm yields a new set on the list.

Suppose then, that at a certain point sets r 1 , ... ,IQ, have been gener-

3

ated. Let L c: {1, ... ,£} indicate the generated sets which are maximal inde-

pendent and i: = { 1, ... , Q,}-L those which are minimal dependent. Any new set

I must satisj:y I 1:. I. for all i E L and I. 1:. I for all i E [. Form the
l l

Boolean expression

(A. LV. ,1 x.)A(A. -LV. 1 x.).
lE]~ . J lE JE .]

l l

The length of this expression is O(nQ,) and by our assumption one can deter

mine if it is satisfiable in ~(n£) time, for some polynomial function~- If

the expression is not satisfiable, then Q, =Land the algorithm terminates.

Otherwise, construct a truth assignment in polynomial time, by successively

fixing the value of each variable and determining if the reduced expression

is satisfiable. Next define I= {jJx. = true} and test I for independence
J

in unit time .. If I is independent, augment it until a maximal independent

set results; if I is dependent, remove elements until a minimal dependent

set is found .. Either procedure requires O(n) time. Since clearly I ,JI. for
l

i = 1, .•. ,Q,, I is the new set on the list. We thus have the following the-

orem.

THEOREM 2. If P = NP, then there exists an algorithm for generating all the

maximal independent sets and all the minimal dependent sets oF an arbitrary

independence system in time polynomial inn and L.

4

3. A GENERALIZED PAULL-UNGER PROCEDURE

We now assume that E = {1, .•. ,n} and that independence testing requires

time c. Let I. be the family of all independent sets that are maximal with
J

in {1, ••• ,j}. By definition, I 0 = {0}. We seek to construct I. from I. 1 in
J J-

order to obtain I , the family of all K independent sets that are maximal
n

within E.

Suppose that IE I. 1 . If Iu{j} EI, then clearly IU{j} EI .. If
J- J

IU{j} i I, then IE I .. It follows that
J

Observing that the elements of E can be numbered arbitrarily, we obtain the

following result.

THEOREM 3. For any J .:: E, the number of independent sets maximal within ,T

does not exceed K.

Suppose that I' E I. and j E I I • Since I'-{j} is independent and included
J

in {1, •.. ,j-1}, there must be some I E I. 1 such that I'-{j} ;: I. More-
J-

over, I' is an independent set that is maximal within Iu{j}. This obser-

vation suggests the following procedure to obtain I. from I. l' which is
J J-

a generalization of an algorithm due to Paull and Unger [5].

Step 1. For each IE I. 1 , find all independent sets I' that are maximal
J-

wi thin Iu{ j}.

Step 2. For each such I', test I' for maximality within {1, ..• ,j}.

Each set I' that is maximal within {1, ••. ,j} is a member of I., and we
J

have seen that each member of I. can be found in this way. However, a given
J

I' E Ij may be obtained from more than one IE Ij_ 1 . In order to eliminate

duplications, we need one further step.

Step 3. Reject each I' that passes the maximality test if it appears among

the sets already found to be in I .•
J

5

Suppose that in Step 1, for each IE 1. 1 , at most K' sets I' are found in
J-

time c•~ by Theorem 3, we have K' ~ K. For each I', the maximality test in

Step 2 requires O(nc) time, and the duplication test in Step 3 can be ac

complished with O(K) pairwise set comparisons, each of which requires O(n)

time. It follows that, for fixed j, O(c'K) time suffices for the first step,

O(ncKK') time for the second step, and O(nK2K1) time for the third step.

Thus, the overall running time to obtain 1 is O(nc'K+n2cKK'+n2K2K1). This n
yields the following theorem.

THEOREM 4. All the maximal independent sets of an independence system can

be generated in time polynomial inn, c and K, if it is possible to list

in polynomial time all independent sets that are maximal within Iu{j}, for

arbitrary IE 1. 1 , j = 1, ••• ,n.
J-

In Section .5, we investigate several cases in which the subproblem referred

to in Theorem 4 (the "Iu{j} problem") can be solved in polynomial time.

6

4. IMPROVEMENTS OF TSUKIYAMA ET AL.

A technique suggested by Tsukiyama et al. [8] enables one to eliminate

duplications more efficiently. It yields significant improvements in both

running time and storage requiiements of the Paull-Unger procedure.
I

Instead of comparing a set· I' with all members of 1 . found previous'ly,
. J

one retains I' only if it is obtained from the lexicographically smallest

IE I. 1 from which it can be produced. Hence Step 3 is modified in the
J-

following way.

Step 3'. For each I' obtained from IE I. 1 that is maximal within {1, ••• ,j},
J-

test for each i < j, ii I, the set (I'-{j})u(In{l, ••• ,i-l})u{i} for indepen-

dence. Reject I' if any these tests yields an affirmative answer.

If, indeed, any affirmative answer is obtained, then I'-{j} is included in

an independent set that is lexicographically smaller than I, and hence in a

lexicographically smaller maximal independent set from 1. 1 •
J-

For each I', the lexicography test in Step 3' requires O(nc) time,

which is the same as required by the maximality test in Step 2. Hence, the

overall running time of the revised procedure is O(nc'K+n2cKK').

Possibly of even greater interest for some applications is the fact

that storage requirements can be greatly reduced by organizing the compu

tation as a depth-first search of a tree. Nodes at level j correspond to

members of 1j, with the tree rooted at~, the unique member of 10 • Since

for each IE 1, 1, either Iu{j} EI, or IE 1,, each node has at least one
J- J J

and at most K' children. Whenever in the depth-first search a member of 1
n

is encountered, it is outputted. The maximum number of subproblems that

must be maintained in stack to allow backtracking is O(nK'). A further de

crease in storage requirements can be obtained at the expense of an increase

in running time.

5. APPLICATIONS

In this section we investigate various independence systems for which all

maximal independent sets can be generated in polynomial time.

5.1. Set packing

7

Lets be a finite set with Isl = m and let S = {s1 , ••• ,sn} be a family of

(not necessarily distinct) subsets of s. A subfamily IE Sis a packing in

S if the sets in I are pairwise disjoint. The packings correspond to the

independent sets of an independence system with E = S. All maximal packings

can be generated in polynomial time, as shown below.

First consider the "IU{J'} problem". Let A. c S consist of the sets S.
J - 1

for which s.ns. # 0- Given IE I. 1 , the only sets which can possibly be
1 J J-

maximal within Iu{s.} are I itself and (I-A.)u{s.}. Thus K' ~ 2. It follows
J J J

that, given A., the Iu{j} problem can be solved in O(n) time.
J

Assuming the sets S. are specified by ordered lists of indices, one
1

can find the sets A1, ••• ,An in O(mn2) time. It follows that Step 1 requires

o(mn2+n2K) time.

The maximality test for I' is equivalent to verifying that I'nA. # 0
12

for all i < j, S. i I. Since each such test can be carried out in O(n)
1

time, Step 2 requires O(n3K) time.

The lexicography test is easily seen to be equivalent to verifying

that [I-(A.n{s.+1 , ••• ,s. 1})JnA. # 0 for all i < j, s. i I. Thus, Step 3'
J 3 1 J- 1 1

requires O(n K) time as well.
2 3 It follows that the overall running time of the procedure is O(mn +n K).

Since it is possible to implement the search tree in O(n) space, O(mn) space

is sufficient overall.

Suppose Sis induced by an undirected m-edge n-vertex graph G with edge set

S. S. denotes the set of edges incident to vertex j and A. denotes the set
J J

of vertices adjacent to vertex j. Then each packing IE Sis an independent

or stable set of vertices of G, or, equivalently, a clique of the comple-
-mentary graph G. It was in this context that the Paull-Unger procedure and

the improvements of Tsukiyama et al. were originally proposed.

8

For the graph problem, it is natural for the sets A. to be given as
J

input in the form of ordered lists. Under this assumption, and noting that

l;=1 1Ajl = 2m, one can reduce the time bound to O(mnK) and the space bound

to O(m+n), as shown in [8].

5. 2. CompletE~ k-parti te subgraphs

Let G be an undirected graph with vertex set V = {v1 , ... ,vn} and edge set

S with Isl = m. A complete k-partite subgraph of G is defined by a collec

tion {v1 , ... ,,vk} of pairwise disjoint subsets of V such that {vi,vj} ES

for v. EV, v. E Vh, if and only if gt h. Note that an independent set
l. g J

of vertices defines a complete 1-partite subgraph and that a complete k'-

partite subgraph is also a complete k-partite subgraph fork= k'+l, ... ,n.

The complete k-partite subgraphs of G correspond to the independent

sets of the Jfollowing independence system. Let E = V and let I E I if there

exists a partition P(I) = {v1 , ... ,vk} of I (i.e., U~=l Vh = I and Vgnvh = 0
for 1:;; g < h:;; k) that defines a complete k-partite graph on I. We will

show how to qenerate all maximal complete k-partite subgraphs of Gin poly

nomial time.

Again consider the "Iu{j} problem". Let P(I) = {v1 , ... ,vk,} with Vh t 0

(h = 1 , .•• , k ") and k ' :;; k.

First, suppose that {v. ,v.} E S for all v. E I. If k' < k, then the
l. J l.

single independent set I' that is maximal within Iu{v.} is IU{v.} itself,
J J

with P(Iu{v.}) = P(I)u{v.}. If k' k, then there are k+l sets I', for
J J

which P(I') is obtained by deleting any one of the members of P(I)u{v.}.
J

Suppose now that {v.,v.} ES only for all v. E Vh' ~ Vh (h = 1, ••. ,k'),
l. J l.

where vh = 0 for h = 1, •.• ,a, 0 c Vh c vh for h = a+l, ••. ,b and vh = vh for

h = b+l, .•• ,k', with 0:;; a:;; b:;; k' and b > 0. In this case, b+l independent

sets I' that are maximal within Iu{v.} are defined by P(I') = P(I) and P(I')
J

= {v1, ... ,vh--l'(Vh-vh)u{v/,v11+1 , ••• ,vb,vb+l'"""'vk,} for h = 1, •.• ,b. In the

special case that a= 0, even more sets I' may exist. If k' < k, then the

single additional set I' is defined by P(I') = {v1,. .. ,vb,Vb+l'"""'Vk 1 ,{vj}}.

If k' = k, then there are k-b additional sets I', for which P(I') is obtained

by deleting any one of the sets Vb+1 , •.• ,vk' from {v1, ... ,vb,vb+l'"""'Vk''

{v.}}. (Note that these sets are not maximal in the case that a> 0.)
J

9

Since K' = O(k) and independence testing requires O(m) time, the over

all running time of the procedure is O(n2mkK).

5.3. Knapsack problems

Next consider the knapsack inequality l~=l
where a 1 ~ a 2 ~ .•. ~an> O. The feasible

a.x. $ b, x. E {0,1} {j = 1, ••• ,n),
J J J

solutions to this inequality cor-

respond in a natural way to the independent sets of an independence system

with E = {1, ..• ,n} and IE 1 if 1. I aJ. $ b. We are interested in generating
.)€

all maximal feasible solutions.

Consider the Iu{j} problem and assume that Iu{j} i 1 .• Feasibility is
J

restored by removing any element h from IU{j}. Thus K' $ j, and the Iu{j}

problem can be solved in O(n) time.

For a given IE Ij-l' define m(h) = max{ili < h, ii I}; let amax{ 0} = ~.
A set I'= (I-{h})u{j} (h EI) passes the maximality test if and only if

l• I' a.+ a (') > b, and it passes the lexicography test if and only if
iE i m J

l, a. - a + a (h) > b. Moreover, for all I' arising from IU{j}, these
iEI i n m

tests can be carried out in O(n) time altogether. It follows that the over-

all running time of the procedure is O(n2K).

The unbounded knapsack inequality, in which the x. are allowed to take
J

on any nonnegative integer value, is reducible to the 0-1 case by introduc-

ing 2a.,4a., .•• ,2ka. into the problem in addition to a., where k is the
J J J k+l J

smallest integer such that 2 a. > b. Then E contains O(n log b) elements,
J

and the algorithm is still strictly polynomial.

5.4. On-time sets of jobs

Suppose there are n jobs to be processed, one at a time, by a single machine

starting at time 0. Joo j requires an uninterrupted processing time of p.
J

units and has a deadlined .. Let E = {1, ..• ,n} and let IE 1 if all the
J

jobs in I can be scheduled for completion by their deadlines. It is well

known that such a schedule exists if and only if the jobs in I are all com

pleted on time when sequenced in order of nondecreasing deadlines. Hereafter,

assume d 1 $ d 2 $ ••• ~ dn.

Again consider the IU{j} problem and assume that Iu{j} i Ij. In this

10

case, we have I. Ip. + p. > d .. Independence is restored by removing job
l.E l. J J

j from Iu{j} or by removing some jobs from I such that job j, which can be

assumed to r1emain in the last position, is completed on time. It follows

that solving the Iu{j} problem is equivalent to finding all maximal subsets

H c I such that ". · p. :::; d .-p., which can be accomplished by applying the
- Li.EH l. J -J

knapsack procedure of Section 5.3. By Theorem 3, the number of maximal sub-

sets H does not exceed K-1. Hence the Iu{ j} problem can be solved in O (n2K)

time.

Since maximality and lexicography tests require O(n) time, it follows

that the overall running time of the procedure is O(n3K2).

5.5. Inequality systems

The problems considered in Sections 5.1, 5.3 and 5.4 can all be viewed as

special instances of the general problem of finding all maximal feasible so

lutions to an inequality system of the form Ax:::; b, x. E {0,1} (j = 1, ••• ,n),
J

where the mxn-matrix A = (a ..) and the m-vector b = (b.) have nonnegative
l. J l.

components.

For example, given a set S = {1, ... ,m} and a family S = {s 1 , ... ,sn}

of subsets of s, define a .. = 1 if i ES., a .. = 0 otherwise. In the case
l.J J l.J

that b. = 1 (i = 1, ... ,m), the maximal feasible solutions correspond to the
l.

maximal packings in S; they can be generated in polynomial time, as has been

shown in Section 5.1. In the case that b. = I~ 1 a .. - 1 (i = 1, ... ,m), the
l. J= l]

maximal feasible solutions correspond to the complements of the minimal cov-

erings of S. we have not been able to devise a polynomial-time algorithm for

this problem. Nor have we been able to obtain an NP-hardness result similar

to Theorem 1 for this case or even for a general inequality system, although

we conjecture that no polynomial-time algorithm exists unless P = NP.
For the scheduling problem discussed in Section 5.4, we have m = n,

a .. = pj if i ;:,: j' a,. = 0 otherwise, and b. = d, (cf. [4 J) • The same tech-
1.J l.J l. l.

nique as above can be applied to a slightly wider class of inequality sys-

terns, where bis an arbitrary m-vector and A is an mxn-matrix such that

(i) a,.> 0 implies a .. , > 0 for all j' < j, and
1.J 1.J

(ii) the strictly positive entries in each column are equal.

In this case, the Iu{j} problem with Iu{j} i I. can be solved by applying
J

11

the

the

Any

knapsack procedure of Section 5.3 to the most violated constraint, i.e.,

constraint h for which}:. I a.+ a. - bh= max1< < {}:. Ia.+ a . - b }. l.E hl. hJ _g_m l.E gi gJ g
maximal subset of Iu{j} that satisfies constraint h will then satisfy

the remaininq constraints as well.

The reader may be able to construct other examples in which a certain

property of li permits one to restrict attention to a single constraint when

independence has to be restored. In each such case, the knapsack procedure

can be appliE~d to solve the Iu { j} problem in polynomial time.

5. 6. Facet gEmeration

Consider the convex hull P of all 0-1 vectors x satisfying the general in

equality system Ax:<;; b, where A~ 0. Balas and Zemel [1] have established

a correspondence between the facets of P and the minimal covers of A, i.e.

the minimal feasible solutions to Axt b. Such covers are in one-one cor

respondence to the maximal feasible solutions to Ax' i b' , where b: =
l.

f l a .. - b. - 1 (i = 1, ••• ,rn) , under the assumption that all data are
J= l.J l.

integers.

Thus, in order to generate the facets of P, it suffices to generate

the K maximal feasible solutions to Ax' i b'. This inequality system can

be considered as the disjunction of m knapsack inequalities I~ 1 a .. x~ :::; b!
J = l.J J l.

(i = 1, ••• ,m), the i-th such inequality having K. maximal feasible solutions.
l.

In the case that m = 1, the procedure of Section 5.3 can be applied to yield

all minimal covers in polynomial time. In the general case, the following

procedure may have some practical value, even though it is not polynomial

in K.

A maximal feasible solution to the entire system has to be feasible

and maximal with respect to at least one of the separate inequalities. The

procedure of Section 5.3 is now applied to each of these inequalities in

turn. However, a maximal feasible solution to inequality i is accepted as

a maximal feasible solution to Ax' i b' only if it is

infeasible for each of the inequalities 1, .•. ,i-1, and

infeasible or maximal feasible for each of the inequalities i+l, .•. ,m.

It is not hard to see that this procedure generates all minimal covers with

out duplication.

12

2 For inequality i, application of the knapsack procedure requires O(n K.)
1

time, and conditions (i) and (ii) can be checked in O(mn) time for any can-

didate solution, or in O(mnK.) time altogether. It follows that the overall
1

running time of the procedure is O((mn+n2)LK,). Unfortunately, there exist
1

inequality systems for which LKi is exponentially related to K. For example,

in

we

the simple case
n have K. = (.)

·that m = n-1, a .. = 1, b'. = i (i = 1, ..• ,m,
1] 1

1 1
(i = 1, .•. ,m), lK, = 2n-1, and K = n.

1

For some special cases, truly polynomial-time algorithms

j = 1, ... ,n),

can still be

obtained. For example, suppose A is such that the entries in each row are

monotone nonincreasing. If Iu{j} i. I, then removal of any element from Iu{j}

restores feasibility, so that K' ~ n.

In analogy to the above approach, one might view a qeneral inequality

system Ax~ bas the conjunction of m knapsack inequalities. In this case,

however, a maximal feasible solution to the entire system can be feasible

but nonrnaximal with respect to each of the separate inequalities. It seems

hard to make any significant progress beyond the special cases discussed

in Section 5.5.

5.7. Matroid intersections

A matroid M = (E,J) is an independence system with the additional property

that all maximal independent sets have the same cardinality [3]. Given m

matroids M. = (E,J.) (i = 1, ••. ,m) with E = {1, ..• ,n}, their intersection
1 1

(E,I) is an independence system defined by I;= n~ 1 J .• We are interested
1= 1

in generating all maximal independent sets in (E,I), assuming that indepen-

dence testing in M. requires time c. (i = 1, ••• ,m).
1 1

Consider the Iu{j} problem. If Iu{j} i. I., then addition of j must
J

have destr.oyed independence in some of them matroids, say, in M1 , ... ,MJI,.

Each of these matroids M. contains a unique minimal dependent set of circuit
1

C., and independence in M. is restored by removing any one element from C .•
1 1 1

It follows that, in order to solve the Iu{j} problem, it is necessary
JI,

to find all minimal subsets of U. 1 C. that contain at least one element
1= 1

from each circuit, i.e., all minimal coverings of (c1 , ... ,CJI,). In view of

our remark in Section 5.5, we settle for a brute force approach: consider

all nm possible solutions. This yields an overall running time of

O(nm+2Klci)' which is, at least, polynomial for fixed m.

For certain special cases, e.g. the generation of all spanning trees

[7], the special structure of the system can be exploited and significant

improvements made.

13

14

6. AN ENUMERATION PROCEDURE OF READ

we conclude by noting a relationship between our techniques and those pro

posed by Read [6] for the enumeration of graphs, digraphs, and other com

binatorial configurations. We restate the essential features of Read's pro

cedure in our terms, as follows.

The family I. is to be obtained from the family I. 1 by applying an
J]-

augmentation operation to each set in I. 1 . These sets are Processed in a
J- -

canonical linear order"<" and the augmentation routine produces sets I'

from each IE I. 1 in this
J-

the first set in I. 1 which
J-

operation. Suppose that the

same order. For each I' EI., let f(I') denote
J

produces I' when subjected to the augmentation

canonical order is weakly monotonic in the sense

that for all I' ,I" E 1., I' < I" implies f(I') ~ f(I"). Then it is simple
J

to avoid duplications: when applying the augmentation operation, retain the

next set produced only if it follows the member of I. that has been obtained
J

lastly.

We have been unable to devise a weakly monotonic ordering for the prob

blems considered in this paper. The lexicography test of Tsukiyama et al. is,

in effect, an alternative to Read's technique for eliminating duplications

and amounts to an analysis of the inverse of the augmentation operation.

15

ACKNOWLEDGMENTS

This research was partially supported by NSF grant MCS76-17605 and by the

Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

REFERENCES

1. E. BALAS, E. ZEMEL (1975) All the facets of zero-one programming

polytopes with positive coefficients. Management Sciences Research

Report 374, Carnegie-Mellon University.

2. S.A. COOK (1971) The complexity of theorem-proving procedures. Proc.

3rd Annual ACM Symp. Theory Comput., 151-158.

3. E.L. LAWLER (1976) Combinatorial Optimization: Networks and Matroids.

Holt, Rinehart and Winston, New York.

4. E.L. LAWLER, J.M. MOORE (1969) A functional equation and its applica

tion to resource allocation and sequencing problems. Management Sci •

.!§_,77-84.

5. M.C. PAULL, S.H. UNGER (1959) Minimizing the number of states in incom

pletely specified sequential switching functions. IRE Trans. Electron.

Comput. EC-~,356-367.

6. R.C. READ (1978) Every one a winner, or how to avoid isomorphism search

when cataloguing combinatorial configurations. Ann. Discrete Math.~,

107-120.

7. R.C. READ, R.E. TARJAN (1975) Bounds on backtrack algorithms for list

ing cycles, paths, and spanning trees. Networks ~,237-252.

8. S. TSUKIYAMA, M. IDE, M. ARIYOSHI, I. SHIRAWAKA (1977) A new algorithm

for generating all the maximal independent sets. SIAM J. Comput • .§_,505-

517.

