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ACT

A non-linear vector iterative scheme of linear fractional form is

gated., Explicit expressions are given for each vector iterate and
imiting vector. These equations arise in the bottleneck analysis o

1 networks of queues.
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. INTRODUCTION

The following finite difference scheme arose in a closed network of

ueues (see Appendix):

m
1 1 .
1) yi(k+l) = ai[E-+ yi(k)]/ .Z] aj[i-+ yj(k)] 1<i<m; k=1,2,3,
m
2) y. (1) = a;/ jzl a 1 <i<m;

here m > 2 and every a, > 0. For each k, the y's are strictly positive
nd sum to unity. Show that lim yi(k) exists for each i and find its valt

—>00
. . ? m .
ive an expression for yi(k) if {ai}i=] are distinct.

!. SOLUTION

With the notation

‘he first few iterates of (1) yield, after clearing fractions, the express

yi(l) = ai/b] 1 <i<m
y,(2) = [ajb) + (ai)zj/t(bl)2 +b,] l <ic<m
2
(b,)“+b
: 7 2 2 4by (a4 (a))°
yi(3) = 5 1 £1i <m.
(b]) +b2
5 b+ bb, + by

'his suggest the general form

k . k
, _ j
3) yi(k) jzl c(k)j(ai) / jzl C(k)jbj

there the c's are independent of i. Insertion of (3) into (1) yields

v

[ e Bl

4) e(k+l) | =% c(k).b. K
j=1 J ]




c(k+1). = c(k). 2 <73 <
(etD) 5 = (), j
vhich implies
5 k). =d, . 1 <3 <
(5) cl); = dy s j
and the recursion formula

1 k
(6) d, =1 jZ1 dk_jbj k=1,2,

7ith initial condition

(7) d0 = c(l)1 =1,
Je may solve for {dk};=0 via generating function
* - k o
(8) B (z) = ) =z by, = '2 (a;2)/(1-a;2)
=1 i=1
D*(z) = z zkdk
=0

7ith D7 (0) = dy = 1.

From (6) one obtains

* © © k
e A2y ke = ] &Y e
k=1 k=1 j=1 ]
v il k'J)
= Y b2 { ) a .z B
i=1 J \k=j k-]
* m
d * _ B (z) _ _
iz 1n D (z) = S = Z ai/(l aiz).

[ntegrate upwards from z = 0 to obtain

m
(9) D*(z) =1/ T (1-a;z).
i=1 1

[n a similar fashion, we write (3) as

(10) y; (k) = Fk(ai)/Gk




nd may solve for F, and G, via generating functions as follc

k k
; iy j
F, (a) = c(k).(a)” = d, .(a)
A = R =1
11) F*(z,a) = z z (a) = z 2 zd .(a)
k=1 k k=1 j=1 k=]
o . © . *
-V (and § a 2K -2z>(2)
=1 K= k-] l-az
k k
6 = L c095b5 = ] by
12) G*(z) = z szk = B*(z)D*(z)
k=1
_ I' Iil alz -I 1
Lz 13zl B )

. . m
Let us first treat the special case where {ai}i_1 are d:

:*(z) has a double pole at each (aj)_l, and the following pa:

:xpansion:
m H, Q.
* |- 1 1 -I
13) G (z) = ) +
i=1 I-(I—a.z)z (1 aiz)J
there t
) m
Hi = lim (l—a.z)zG*(z) =1/ N (l-a./a.)
z>1/a. L i=1 31
1 j#i
( 2 a./a; z Hi
Q. = H. —1 + ""'_"" '7 > + — ®
1 1\ j#i 1 aj ai. j#i 1 aj al

'his implies
2 ‘ k
14) Gy izl [(k+DH; + Q;1(a,) k

1,2,...

yimilarly, from (11) follows

'15) F (z,a.) = 1
1 m
(I—aiz) m (l—ajz)

j=1
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-
IA
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ith a double pole at z = l/ai and a simple pole at all other l/aj. A partial

raction expansion yields

« H; Ry T By
16) F(z,a;) = Ay s ey
(l—aiz) i J=1 ]
here j#i
(a./a.)H
Bi' = lim (l1-a.z) F*(z,ai) = —Téz—%z—i
J z>1/a. J i’ %3
j
* m
R; = F (0,ap-Bi= [ By, =-(a;+ ] B
j=1 j#i
j#i
'his implies
m m
k k k
17) F (a;) = kH; ()" - (jzl Bij)(ai) + jzl By (ay) k=1,2,3,...
j#i j#i

Insertion of (14) and (17) into (10) produces an explicit expression

or each y.(k). For the asymptotic behavior, let
Yi

18) a = max a,
m 1<i<m

nd let i, be the unique index with aj, = a

0 max’
ut
F, (a.) ~k H. (a )k a. = a
k1 iO max i max
~ B.. (a )k a. # a
ii " “max i max
G ~ k H. (a )k
k ip max
nto (10) to conclude
19) yi(k) > 1 a; =a
> 0 as k—1 a. # a .
i max

Returning now to the general case, retain the definition (18) and let
. e . . m *
> 1 . 1. . i i
denote the multiplicity of a . in {al}1=1 Then (12) implies G (z)

as a pole of order p+l at z = l/amax’ and




~ P k
20) Gk R k (amax)
there
p+l _* m
‘21) R = lim (l-amax z) G(z) =p/ .ﬂ (l_ai/amax)‘
z>1/a . i=1
max a.<a
i “max

jimilarly, (15) implies F*(z,ai) has a pole at z = l/amax’ of order p+1 if

o= a . and of order p if a; <a .- Consequently
, - P k
22) Fk(amax) Sk (amax)
there
. . +1
'23) s= lim (l-a__ 2)P F*(z,amax) = R/p.
z>1/a
max
'y N p-1 k .
[24) Fk(ai) Tik (amax) if a; < 8 nax

/here Ti is independent of k. Insertion of (20-24) into (10) now leads to

'25) y. (k) »-l if a. = a (there are p such i's)
i P i max
- 0 as k_] if a, < amax'

'his completes the proof that lim y.(k) exists.
ko "1

. APPENDIX: DERIVATION OF THE FINITE-DIFFERENCE EQUATION [1,2,3,]

Consider a closed network of queues with m servers and k > 1 customers.
iach customer has a mean service time Si at server i, and when this service
;g completed he has probability pij of going next to server j. Here Pij > 0,
iE pij = 1 and (pi,j) is assumed to be an irreducible Markov chain with a
inique equilibrium distibution [wi] satisfying P = T, Z?zl m, =1 and m. > 0
‘or all i =1,...,m.

The steady-state quantities of interest are Ai(k) = throughout at server
. (customers served per unit time), Ni(k) = mean number of customers in ser-—
rice or on queue at server i, and Wi(k) = mean waiting time (queueing plus
service) experienced by customers at server i. These satisfy the three sets

»f equations




A-1) Ni(k) = Ai(k)wi(k) 1 <1 <m
/ [ ¥ 1
‘A-2 A.(k) = km. . W.(k ] £1i<m
A-2) $00 = b/ | 1wy 000
‘A-3) Wi(k) = si+SiNi(k—1) 1 <1i<m; k=21
7rith the understanding
‘A-4) Ni(O) =0 1 <£3i<nmn

:quation (A-1) is Little's formula applied to server i. Equation (A-2) says
‘hat each of the k customers has a mean time between visits to server i of

:n,w(k))/ni. Together these two equations show
‘A-5) L N (k) = k.

‘quation (A-3) expresses the waiting time Wi as the sum of the service time
;i and queueing time ﬁisi where ﬁi is the mean number of customers on queue
shen a customer arrives. First—come first-served queue discipline and expo-
lentially-distributed service times (with mean Si) are assumed; with the
ipproximation ﬁi = Ni(k—l), equation (A-3) is obtained.[3]

If Ai is eliminated via (A-2) and then Wi is eliminated via (A-3), the

‘ollowing equations for N, are obtained:

kﬂiSi[l+Ni(k—l)]
A-6) N, (k) = I
.S.L1+N. (k-1
jzan SE1N (km1) ]

IA
"
IA
B

.etting a; = “isi > 0 and yi(k) = Ni(k)/k, (A-6) reduces to (1) with boundary
ronditions (2).
The variable yi(k) is the fraction of the K customers who are located
m

it server i. These satisfy I yi(k) = 1 due to (A-5). The asymptotic result
1=

1
(25) says that as the number of customers becomes very large, almost all of
chem queue up at the set of most—heavily congested servers, who ''pace" the

cest of the system.
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