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by 
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ABSTRACT 

This paper considers the solution of Markov Decision Problems, the 

parameters of which can only be obtained via approximating schemes, or in 

which it is computationally preferable to approximate the parameters rather 

than employing exact algorithms for their computation. 

Various models are presented in which this situation occurs. Further­

more, it is shown that a modified value-iteration method may be employed 

both for the discounted and for the undiscounted version of the model, in 

order to solve the optimality equation and to find optimal policies. In 

both cases the convergence rate is shown to be geometric. 

As a side result, we characterize the asymptotic behaviour of backward 

products of a geometrically convergent sequence of Markov matrices. 
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rates. 
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I. INTRODUCTION AND SUMMARY 

This paper considers the solution of Markov Decision Problems (MDP's) 

the parameters of which can only be obtained via approximating schemes or 

in which it 1.s computationally preferable to approximate the parameters 

rather than employing exact algorithms for their computation. Let Q = {!, .•. 

..• ,N} denote the state space of the MDP. K(i) represents the finite set of 

alternatives in state i, which is embedded in a super set K(i), i.e. 
k k K(i) ~ K(i), i E Q. q. denotes the one-step expected reward and P .. the 
]. l.J 

transition probability to state j when alternative k E K(i) is chosen in 

state i. Note that PfJ· ~ 0 and E. P~. = l(i E Q; k E K(i)). Now, suppose 
k J l.J 

that the parameters qt, P .. and the sets K(i) (i E Q; k E K(i)) are unknown 
J. l.J 

in advance, but that instead one can compute sequences 

(I.I) 
00 

{K(i,n)}n=I + K(i); i E Q where K(i,n) ~ K(i), 1..e. 

K(i ,n) = K(i) for all n sufficiently large. 

(I. 2) 

(I. 3) 
k oo k 

{P .. (n)} I + P .. ; where 
l.J n= l.J 

k 
0 and I k P .. (n) ~ P .. (n) = I . 

l.J lJ ' 
J 

i,j E Q; k E K(i) 

This situation occurs in a large number of applications, as is illustrated 

by the following examples: 

EXAMPLE I. MDP's in which e.g. the one-step rewards q~ appear as the optimal 
]. 

values of underlying optimization problems. As an example, consider a re-

source or inventory system which serves to supply (say) n simultaneous users. 

At each period of time, one has to decide upon the amount to ·be withdrawn 

from the system, as well as upon the optimal way to allocate this amount 

among then users. With i representing the inventory level (in the resource 

system) and k the amount to be withdrawn from the latter, the one-step net 
k benefit q. may be obtained by subtracting a holding cost function h(i) and 
]. 
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a transfer cost T(k) from the net benefit to the entire system that is 

associated with an optimal allocation of k units among the users. The latter 
k may e.g. be computed by solving a mathematical program so that q. could e.g. 
l. 

have the following structure 

( 1.4) 
k qi= -h(i) - T(k) + max c(x) 

s.t. x EX 

f(x) ~ k 

X ~ 0 

where x. (i = I, ... ,n) represents the amount allocated to the i-th user, 
l. 

and where the constraints x EX describe the restrictions imposed by the 

other resources and by the technological structure. There are various rea­

sons for avoiding the computation of all of the q~ (i E Q, k E K(i)) prior 
l. 

to solving the MDP: 

(a) in many applications, exact solution methods for the mathematical pro­

gram in (I .4) are either non-available or hardly feasible, i.e. one 

needs or prefers to employ an approximation method, like a Lagrangean 

technique, a gradient projection method, or a reduced gradient method. 

Rather than first solving the I:=l IIK(i)II mathematical programs with 
k these approximation methods and next using £-approximations for the q. 
l. 

when solving the MDP - in case a good stopping criterion for the mathe-

matical programs is at all available - one would prefer to use the 

approximating schemes for the q~, in a method which simultaneously solves 

the MDP. 

(b) For the actions that turn out to be suboptimal which in general repre­

sents the vast majority of the total number of I~=l IIK(i)II actions, 

there is no need to do the computational effort of calculating the 

associated one-step expected rewards precisely. 

In any method which generates approximating schemes for the numbers 

{q~ Ii E Q, k E K(i)} and simultaneously solves the MDP, one could stop the 
l. 

schemes associated with those actions that a test procedure detects to be 

suboptimal. 

Suboptimality tests of this kind have been derived in connection with 

the value-iteration method both for the discounted and for the undiscounted 
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version of the model. With respect to the former we refer to GRINOLD [12], 

HASTINGS and MELLO [14], MACQUEEN [19] and PORTEUS [23] and as far as the 

latter is concerned, a devise for temporary elimination of suboptimal 

actions was proposed by HASTINGS [19], which although originally stated for 

the unichain case may be applied to the general multichain model (cf. remark 

4 in FEDERGRUEN, SCHWEITZER and TIJ11S [JO]). For the unichain undiscounted 

case, a test for permanent elimination of actions was in addition devised 

by FEDERGRUEN, SCHWEITZER and TIJMS [10]. All of these elimination procedures 

can be adapted straightforwardly for the case where rather than applying 

value-iteration to a MOP with exact knowledge of the expected rewards, 

one would use upper and lower bounds that ultimately converge to the latter. 

Note that most of the approximation techniques mentioned above for 

solving the mathematical programs in (1.4) have the special feature that 

whenever convergence occurs, the rate of convergence is at least geometric, 

where a vector sequence {x(n)}:=l is said to converge to x*, geometrically 

if there exist numbers K > O, and O:,; >i. < I such that 

( I , 5) n = 0,1, ... 

(cf. e.g. sections II .5 and 11.7 in LUENBERGER [18], as well as a recent 

survey on the subject by GOFFIN [II]; the occurrence or non-occurrence of 
N geometric convergence is independent of the choice of norm on E ). As exam-

ples of the above described model we refer to RUSSEL [24], VERKHOVSKY [31] 

and VERKHOVSKY and SPIVAK [32]. 

EXAMPLE 2. MDP's are generally used for describing dynamic systems which 

have to be controlled on a periodic basis and the design of which is assumed 

to be given .. In many applications, however, one faces the problem of simul­

taneously having to make a one-time decision with respect to one or more 

design parameters as well as finding an optimal policy for operating the 

system, once the construction is complete. Usually both the laws of motion 

and the operating characteristics of the system are heavily affected by the 

choice of the design parameters. In mathematical terms, the problem amounts 

to solving 
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(I .6) 
N 

min[. I pi (a)V i (a) + cp (a)] 
ClEA i= I 

where a represents a scalar or vector of design parameters, to be chosen 

out of a set A of feasible choices. p.(a) represents the probability of 
l. 

starting the operation of the system in state i. In the discounted version 

* of the model, V.(a) would represent the minimal expected total discounted 
l. 

* operating costs, when the initial state of the system is i, and cp(a) the 

design costs when choosing a= a*. Similarly, in the undiscounted version 

of the model, V.(a*) would denote the minimal long run average operating 
l. 

costs when starting in state i, and cp(a*) the depreciation and interest costs 

of the investment that is needed to implement the design parameters a*. Note 

that the one-step rewards and transition probabilities in the MDP depend 

upon a, i.e. 

(I. 7) qk. def qk ("'). 
• u, ' l. l. 

k def k 
P .. = P .. (a); 

l.J l.J 
i,J E Q; k E K(i) 

The optimization problem in (1.6) may be considered as a constrained minimi­

zation problem with resepct to a, Note that the optimal value of a MDP is 

not necessarily differentiable with respect to its parameters, and even if 

it is, the derivatives are extremely costly to compute, 

As a consequence, one will have to confine oneself to direct search 

methods - like the Fibonacci method or the simplex method (cf. MURRAY [21]). 

Note that each evaluation of the objective function in (1.6) or its gradient 

with respect to a, requires the solution of a MDP which is extremely expen­

sive. On the other hand, in most direct search methods, one is, at each step 

of the algorithm merely interested in the relative order of the values of 

the objective function in a number of points, i.e. one can quit calculating 

the component V.(a) for some trial point a, as soon as it becomes clear 
l. 

that a is suboptimal. We recall that when solving the MDP via value-itera-

tion, both in the discounted model (cf. MACQUEEN [19], PORTEUS [23]) and in 

the undiscounted unichain case (cf. ODONI [22]) an upper bound on V.(a) may 
l. 

be calculated that converges to V.(a) as the number of iterations tends to 
l. 

infinity. Hence, suboptimality of any point a may be detected after a finite 

number of steps, after which the search procedure may be contin¥ed by start­

ing the evaluation of the objective function in (1.6) for a different choice 

of a. 
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The above 

lem ( I .6) by a 

considerations lead to a proposal for solving the entire prob­

single value-iteration scheme in which the parameters q~(-) 
l. k and P .. ( •) are 

l.J 
adapted in accordance with the search procedure, and ultimate-

ly converge to the parameter values corresponding with the optimal value 

of a. 

Note that most direct search methods have the property of locating the 

optimum at a geometric rate, so that in general the approximations for the 

parameters q~(-) and P~.(-) will converge to the desired values at a geo-
1. l.J 

metric rate as well (cf. the proposition on p. 130 in LUENBERGER [18]). 

For a more detailed description of the proposal method we refer to 
the appendix. 
EXAMPLE 3. Solving nested sequences of (piecewise linear) functional equa-

tions where each functional (vector)-equation has the structure of the opti­

mality equation of an undiscounted MDP or Markov Renewal Program. 

(1.8) x(O). = 
l. 

x(m). = 
l. 

max la~(O) + l P~. x(O).J, 
kEKU(i) 1 J l.J J 

k · k 
x(r). = max [a.(r) +IP .. x(r) .], 

1 kEKr(i) 1 J l.J J 

i E Q 

i E Q 

i E Q 

where Kr (i) £ ••• ~ rfl(i) £ KO (i) and where the quantities a~ (m) and the sets 
l. 

Km(i) both depend upon x(O), .•. ,x(m-1) i.e. upon the solution of the first 

m functional equations in the sequence (1.7). A sequence of nested equations 

of this type occurs e.g. when trying to find the maximal gain rate vector 

or some of the higher terms in the Laurent series expansion of the maximal 

total discounted return vector in powers of the interest rate; and according­

ly, when trying to locate maximal gain policies or policies that are optimal 

under more selective (sensitive discounted or average overtaking) optimality 

criteria (cf. VEINOTT [30], MILLER and VEINOTT l20], DENARDO LS]). For a 
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more detailed specification of the sequence (1.7) and for a characteriza­

tion of the solution set, we refer to FEDERGRUEN and SCHWEITZER [9]. 

In view of the dependence of the sets Km(i) and the quantities a~(m) 
]_ 

on the solution to the previous m equations in (1.7), one conceivable way 

of solving the m+l-st equation, is by computing these sets and quantities 

beforehand with the help of an exact solution method (Linear Programming, 

or the Policy Iteration Algorithm, cf. DENARDO [5] and VEINOTT [30]). How­

ever, when the state space becomes large, exact solution methods become 

infeasible, and a successive approximation method is needed to solve the 

entire system; moreover exact decomposition methods like Denardo's LP-method 

(cf. [5]) may be unstable under numerical errors, since an inexact solution 

to one LP may render the subsequent LP' s infeasible (cf. [9 ]) . Such a successive 

approximation method was recently obtained by the authors in [9], where a 

sequence of value-iteration schemes is simultaneously generated in order to 

solve the entire system of equations (1.7). The schemes that aim at finding 

a solution to the m+l-st equation, have a~(m) and the sets Km(i) replaced by 
]_ 

approximating sequences {at(m)[n]}~=I and {Km(i)[n]}~=I which are distil-

led from the schemes that aim at finding a solution to the previous equa­

tions, and which have the property of converging to the correct quantities 

and sets. 

All of the schemes involved may be interpreted as value-iteration 

schemes for undiscounted MDP's, the parameters of which are replaced by 

approximating sequences. 
k °" 

Moreover, here again, the sequences {ai (m)[n]}n=I 

may be constructed in such a way that 

( I • 9) 
k 

a. (m), 
]_ 

geometrically as n ➔ 00 ; i E Q, k E KO(i) 

m = 0, ... ,r • 

and the successive approximation method can be shown to converge to a solu­

tion of the entire system (1.7) at a geometric rate as well. 

In the classical case where all of the parameters and action sets of 

the MDP are perfectly known and available, the following value-iteration 

scheme has proven to be extremely useful, both for the discounted and the 

undiscounted model: 



(1. 9) v(n+1). = Qv(n).; 
1 1 

1 E ~; n = 0,J, .•. 

[ k + N k J · n d O Q < 1 . The where Qxi = maxkEK(i) qi SLj=I Pij xj, 1 E "; an < µ _ case 

e < I corresponds with the discounted model where a discount factor Sis 

applied whereas the case S = I corresponds with the undiscounted model. 
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The literature on the asymptotic behaviour of (1.9) for the discounted 

model goes back to SHAPLEY [29]. Using contraction mapping arguments, one 

can show that convergence is guaranteed at a geometric rate (cf. DENARDO [4]). 

For the undiscounted model, convergence of value-iteration was first 

studied by WHITE [33], BROWN [2], SCHWEITZER [25] and LANERY [17]. BROWN [2] 
*}00 * showed e.g. that {v(n) - ng n=l is always bounded, where g represents the 

maximal gain rate vector. In [27] the authors derived the necessary and suf-

*f N ficient condition for {v(n) - ng n=l to converge for aZZ v(O) EE , and in 

[28] we showed that the rate of convergence is geometric, whenever con­

vergence occurs. Finally SCHWEITZER [26] proposed a data-transformation which 

enforces convergence of the value-iteration method for every possible choice 

of v(O) E EN. For a survey on the subject we refer to [8]. In case only 

approximations of the parameters and action sets are available, it seems 

natural to consider the following iterative scheme: 

(1.10) 

where 

( I. 11) 

x(n+I). 
1 

Q(n)x. 
1 

Q(n)x(n).; 
1 

1 E ~; n = 0,1, •.• 

max [q~ (n) + S 
kEK(i,n) 1 

N 

I 
j=1 

k 
P .. (n)x.], 

1J J 

and with x(O) E EN arbitrarily chosen. That is, we modify the classical 

value iteration method merely in the sense that at each iteration, the un­

known data of the problem are replaced by their current guesses. 

For the discounted version of the model, geometric convergence of 
00 

{x(n)}n=I can easily be obtained, as is briefly shown in section 3. No 

assumptions are made with respect to the chain and periodicity structure or 

with respect to the type of convergence in (1.2) and (I .3). For the undis­

counted version, we henceforth assume: 
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(H) geometriaaZZy; i E Q, k E K(i), 

k 00 k 
{P .. (n) } I ➔ P •. , 

l.J n= l.J 
geometrically; i E Q, k E K(i) 

which was satisfied in all of our examples. In section 4, we describe the 
00 

asymptotic behaviour of the sequence {x(n)}n=l showing the interdependence 
00 

with the behaviour of the stationa.ry scheme {v(n)}n=l. As a side result we 

obtain in section 5 the asymptotic behaviour of backwards products of a 

geometrically convergent sequence of Markov chains. The appendix, finally, 

specifies our algorithm for the models, mentioned in example 2. First how­

ever we give in section 2, some notation and preliminaries. 

2. NOTATION AND PRELIMINARIES 

A (stationary, pure) policy f is a vector [f(l), ••. ,f(N)] with f(i) E 

K(i). With each policy f, we associate a transition probability matrix (tpm) 

P(f); a reward vector q(f) as well as their approximating sequences 
00 00 

{P(f;n)}n=l and {q(f;n)}n=l: 

(2. I) P(f) .. = P:~i\ P(f,n) .. = P:~i)(n); i,j E Q• n = I, 2, ... 
l.J l.J l.J l.J 

, 

q(f). = f(i) q(f,n). = f(i) ( ) i Q• n = I, 2, ... qi ; E 
l. l. qi n; , 

The stochastic matrix II(f) denot.es the Cesaro-limit of the sequence Pn(f) 
n 00 n {P (f)}n=l' with P (f) then-th power of P(f). We recall 

(2.2) lim Pn(f) = II(f) if and only if P(f) is aperiodic 
n➔oo 

Let R(f) = {j I IT(f) .. > O} represent the set of recurrent states under P(f). 
JJ 

In the discounted version of the model, with discount factor O < S < I 

we associate with each policy f E X~= 1K(i), the total discounted return 

vector 

00 

v(f,S) = l SnPn(f)q(f) = [I - SP(f)]- 1q(f) 
n=O 



* The total maximal discounted return vector v, defined by 

* v. = 
i 

max v(f ,S).; 
fEX.K(i) i 

i 

i E Q 

is the unique solution to the functional equation 

(2. 3) 
k I k 

i v. = max [q. + s p .. v. ], E Q 
i kEK(i) i iJ J 

J 

and a policy f is optimal if and only if it achieves the maximum on 

right hand side of (2.3) for all i E Q (cf. JEWELL [16]). Note that 

one of the Q(n)-operators satisfies the property: 

9 

the 

each 

(2.4.a) S[x-y] . ~ [Q(n)x - Q(n)y] . ~ [Q(n)x - Q(n)y] ~ S[x-y] 
min min max max 

so that 

(2.4.b) II Q (n)x - Q(n)yll ~ SIi x-yll 

N 
where for all x EE, x = max. x.; x. = min. x. and llxll = maxlxl .• In max i i min i i i 
the undiscounted model, we associate with each policy f E X.K(i), the gain 

i 

rate vector 

g(f) = TI(f)q(f) 
• I n 

= li.m n+l l 
n-+oo l=O 

* Let the maximal gain rate vector be denoted by g : 

(2.5) max 
fEX.K(i) 

i 

g(f)., 
i 

i Erl. 

We refer e.g. to [6] for the existence of policies f which attain the N 

maxima in (2.5) simultaneously. Such policies are called ma.ximaZ gain. In 

the undisaounted model, the following optimality equation arises: 

(2 .6) 

where 

* v.+g.=Tv.; i i i 
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(2. 7) 

with L(i) 

Tx. = 
l. 

max 
kEL(i) 

* = {k E K(i) I g. 
l. 

l. E Q 

(c.f. e.g. [6]). Let V = {v E EN Iv satisfies (2.6)}. Fix a solution v EV, 

and define 

(2. 8) b(vl k * I k = q. - gi + P .. v. - vi; l. E Q• k E K(i), 
l. l. l.J J ' j 

(2.9) L(i,v) {k E L(i) I b (v)~ 0 
l = = max b(v).}; l. E Q 

l. lEL(i) l. 

A policy f 1.s maximal gain if and only if (cf. DENARDO [5]) 

(2. IO.a) f(i) E L(i), l. E Q; 

(2.10.b) f(i) E L(i,v), 1. E R(f) 

In particular we have for any v EV, that s*(v) def XN L(i,v) 1.s a subset 
i=l 

of the set of maximal gain policies. Finally, we define for any solution 

v EV, the operator U(v) by: 

(2.lI) U(v)x. = 
l. 

max 
kEL(i,v) 

n: p~. x. J' 
J l.J J 

N 
l. E Q; X E E • 

3. THE DISCOUNTED MODEL 

In this section, we consider the iterative scheme (1 .IO) with S < 1 

00 * * THEOREM I. {x (n)} n= 1 -+ v , geometricaUy., where v is the unique so Zution 

to (2. 3). 

PROOF. Let M be such that lq~(n) I ~ M for all i Erl, k E K(i), n = 1,2, ••. 
1. \'n-1 l n 

where M < 00 :follows from (1.2). Verify that llx(n)II ~ M lf=O S + /3 llx(O)II ~ 

M(l-S)-l + llx(O)II for all n ~ 1, and conclude that {x(n)}~=l is a bounded 
00 0:, 

sequence. Let {x(~)}k=l and {x(~)}k=l be two convergent subsequences with 

resp. limit vectors v0 and v00 • It is no restriction to assume that ~ > ~ 

for all k ~ I . 
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Apply (2.4.b) repeatedly to conclude that 

(3. 1) k=l,2, •.• 

Let k tend to infinit~ noting that the second factor to the right of (3.1) 

is bounded, to conclude that II v6-v00 ii = O. 
00 

Hence {x(n)}n=l converges and its limit vector satisfies the optimality 

equation (2.3), which implies lim x(n) =..:.Finally to show that the rate n~ 
of convergence is geometric, replace mk in (3.1) by a fixed integer m, and 

let k tend to infinity so as to conclude that 

(3. 2) □ 

The set of all optimal policies can be obtained in 

stationary model (cf. [8], section 3). In case the 

the same way as in the 
k k parameters q. and P .. 
1. * 1.J 

are approached from below and from above, all of the bounds on v, stopping 

criteria for £-approximations or £-optimal policies, as well as tests for 

eliminating suboptimal actions, that were found for the stationary model, 

can be adapted in a straightforward manner. 

4. THE UNDISCOUNTED MODEL 

00 

The characterization of the asymptotic behaviour of {x(n)}n=l in the 

undisaounted model is more complicated, since the Q-operator loses its 

contraction-properties (cf. e.g. (2.5.b)) when S = 1. In fact, the easily 
N verified property Q(x + c _ _!_) = Qx + c.!_ for all x E E and scalars c (with .!_ 

the N-vector of ones), shows that the Q-operator is not a contraction 
N mapping on E, nor a J-step contraction mapping for any J ~ 1 (cf. DENARDO 

[4] and [10]). In a sequence of papers (cf. [8], [27], [28]) the authors 
00 

described the asymptotic behaviour of {v(n)}n=l (cf. (1.9)) to which the 

sequence {x(n)}:=l reduces in the stationa.ry case where there is perfect 

knowledge of the parameters and action sets in the model. The following 

theorem extends the theory to the non-stationary case under consideration. 

First however we need the following definitions. 

Let K > 0 and O ~A< 1 be such that (cf. assumption (H)): 
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( 4. I) k k IP .. (n) - P .. I ~ 
l.J 1.J 

n = 0,1, ... 

i,j E ~ and k E K(i) 

For each n = 1,2, ... and E ~ O, let 

(4. 2) S(n,E) = {f E X~=I K(i) I q(f,n) + P(f,n)x(n) 2: x(n+I) - El} 

be the set of policies that come within E of attaining the maxima at the 

n+l-st iteration of the scheme (1.10). We use S(n) as a shorthand notation 

for S (n,O). 

A randomized (stationary)policy f 1.s specified by the tableau [fik] 

satisfying fik 2: 0 and IkEK(i) fik = 1 (i Ea, k E K(i)) such that fik de­

notes the probability with which the k-th alternative is chosen when enter­

ing state i. Thus, the pure policies share the special characteristic of 

having all of the numbers fik equal to O or I. Next let R* = {i E ~ I i E R(f) 

for some randomized maximal gain policy f}. We recall from lennna 2.1. part 

(b) of [27] that 

( 4. 3) {f If 1.s maximal gain and R(f) * = R} 'f 0. 

Finally it was pointed out 1.n [27] that the integer 

(4.4) .1* = min{J 2: I I P(f)J 1.s aperiodic for some randomized maximal 

gain policy f with R(f) = R*} 

plays a crucial part in the description of the asymptotic behaviour of 

{v(n)}:=I' the sequence of iterates in the stationary model. In addition, 

a number of alternative characterizations, as well as a finite algorithm 

for the computation of J* were given in [27]. The following theorem shows 

that most of the results with respect to the asymptotic behaviour of value 

iteration may be extended to the non-stationary model. 
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THEOREM 2. 
* 00 (a) {x(n) -· ng }n=I is bounded and S(n) ~ XiL(i) for aU n sufficiently 

large; 

* (b) r· lim [x(n) - ng J exists, "let v be this "limit vector. Then v E V 
J n-t<>e 

(c) 

(d) 

* and x(n) - ng - v ➔ 0 geometrically as n ➔ 00 ; 

If lim [Qny 
n_-t<>O 

- ng*] exists for every y E EN, then lim n-t<>e 
* [x(n) - ng] 

exists for 

Sufficient 

N 
every x(O) EE . 

conditions for the existence of lim 
N every :x:(O) EE are: 

n-t<>e 
* [x(n) - ng J for 

(I) every pure (maximal gain) policy f., has an aperiodic tpm. 

(2) J* = I. 

(e) lim lim [Q(n+m) ... Q(n)x - ng*] exists for every x(O) E EN if and n-t<>e ID-t<Xl 

only if J* = I. Moreover., if this condition holds 

lim lim [Q(n+m) ... Q(n)x - mg*]= lim cf1x. - mg* EV n-t<>e ffi-t<Xl ID-t<Xl 

where the outer "limit is approached geometricaUy as weU. 

(f) lim [x(nJ*+r) - (nJ*+r)g*J exists for every x(O) E EN and 
n-t<>e 

r = l, ... ,J*; moreover, the "limit is approached geometrically. 

(g) If v = lim x(n) - ng * exists for some x(O) E EN, then lim S (n, s ) = n-t<>e n-t<>e n 
s*(v), provided that {sn}:=I + 0, where the rate of convergence of sn 

is sfow1er than geometric., i.e. lim s >,_ -n = 00 for aU O :', ;\ < I. Take n-t<>e n 
e.g. s = n-l (or the reciprocal, of any positive polynomial, inn). 

n 

0 * 0 PROOF. First fix v EV and let. e(n) = x(n) - ng - v . Let n0 2 I be such 

that K(i,n) = K(i) for all n 2 n0 • 

(a) The proof of this part is related to the one given in th. 5.1 of [27]. 

Fix f E s*(vO) (cf. (2.8)). Then 1.n view of L(i,vO) £ L(i), i E ~: 

(4.5) x(n+I). - (n+l)g~ - v? 2 1. 1. 1. 
\ * 0 q(f;n). + l P(f;n) .. {x(n). - ng. - v.} 

1. j 1.J . J J J 

\ * 0 - q ( f ) . + l [ P ( f ; n) . . - P ( f ) . . ] [ ng . + v . ] 
1. J l.J l.J J J 

i.e. 
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(4.6) e(n+l). 
i 

n n * 0 ;::: -KA. - NKA (nil g II +II v II ) + e (n) . . min 

By iterating (4.6) n times, we obtain for all i E Q: 

(4. 7) 
0 e(n+l). ;::: -K(l+Nllv II) 

i 

n 

I 
l=n 

0 

;>,..t- KNllg*II I l;>,..t + e(n0 ) . 
l=n min 

0 

KNII g *11 ;>,_ 
+ e(no) . 

(1 _ ;>,_) 2 min 

00 

To show that {e(n)}n=l is bounded from above as well, let 

k I k a. = P .. i iJ 
J 

and note ma~EK(i) 

(4.8) e(n+l). = 
i 

* * K(i) g. - gi; i E Q, k E 
J 

k 
0. Finally (4.5) and (2.8) to a. = use 

i 

max 
kEK(i) 

{na~ + b(vO)~ + l P~.(n)e(n). 
i i iJ J 

J 

conclude: 

\ k k O * k k + l [P .. (n) - P .. J (v. + ng.) + q. (n) - q.} 
iJ iJ J J i i 

J 

::; max 
kEK(i) 

k Next use a. < 0 fork E K(i)\L(i), i E Q to conclude that there exists 
i 

an integer n 1 ;::: n0 such that for all n;::: n 1 the first term to the 

right of the inequality (4.8) is achieved fork E L(i) and hence vanish­

es (cf. (2.8) and (2.9)). By iterating (4.8) one concludes that for 

all n ;::: n 1: 



(4.9) e (n+I) 
max 

n 
s e(nl) + K(Nllv011+1) I 

max l=n 

15 

0 

0 * 2 :;; e(n) + K(Nllv 11+1)/(I-;\) + NKllg 11)-/(1->.) 
I max 

(4.9) together with (4.7) prove the first assertion in this part. The 

fact that S(n,O) ~ X.L(i) for all n sufficiently large, then follows 
1 

by considering the equality part in (4.8) and by noting, with the help 

of assumption (H), that both the left side and all of the terms within 

accolades to its right are bounded, with only the term [na~] as a pos-
1 

sible exception. 

* (b) Subtract (n+l)g. from both sides of the equality (1.10) to get: 
1 

* x(n+I). - (n+l)g. = 
1 1 

k * \' max [qi - gi + l 
kEK(i,n) j 

k + na. + n 
1 

l (P~. (n) 
1J 

J 

k 
P .. (n) (x(n) 

1J 

k * p .. )g. J 
1J J 

* ng.) 
J 

Next use the second assertion in part (a) to conclude for all n suffi­

ciently large: 

(4. 10) * x(n+I). - (n+l)g. = 
1 1 

max 
kEL(i) 

[ k * ,· k q. - g. + l P .. (n)(x(n). 
1 1 1J J j 

+ n l (P~. (n) 
1J 

k * P •• )g.], 
1J J 

i E r2 

J 

* ng.) 
J 

Finally, use assumption (H) and let n tend to infinity, to verify that 

v = lim x(n) - ng* EV. n-+«> 

00 

We next prove the geometric rate of convergence of {e(n)}n=I towards 

O. It follows from the second assertion in part (a), that for all n suffi­

ciently large, 

(4.11) e(n+I). = 
1 

max 
kEL(i) 

k k \' k {(q(n). - q.) + l P •• (n)e(n). 
1 1 1J J j 

\' k k * k + l (P .. (n) - P .. ) (ng. + v.) + b (v).} 
1J 1J J J 1 

J 
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Since all other terms in (4.11) approach Oas n + 00 , the last term must 

vanish for n sufficiently large, i.e. for large n (4.11) implies, in view 
00 

of the boundedness of {e(n)}n=l and (2.11), 

( 4. 1 2) Ue(n+l) - U(v)e(n)U 

for certain positive constants A1 and A2 . Note as a special case of (2.4.b) 

that IIU(v)x - U(v)yll :::;; llx-yll for all x,y E EN, and use this inequality to 

conclude: 

(4.13) 
m 

II e(n+m) - U(v)me(n)II :::;; l 
k=l 

m 

m-k m-k+l IIU(v) e(n+k) - U(v) e(n+k-1)11 

:::;; l lle(n+k) - U(v)e(n+k-1)11 
k=l 

00 

I (Al + A/.-) AR.. = 
R..=n 

for any m ~ 1 and all large n. 

Observe that the U(v)-operator has all of the properties of the T­

operator, and hence it follows from th. 5.1. part (d) in [27] that there 

exists a number J~ 1 such that for all x E EN (in fact, a close inspection 
.... 

of [27] shows that J may be taken to be equal to J*): 

(4.14) U(v) 00x = lim U(v)mJx exists. 
m➔co 

Moreover, it then follows from th. 6.1. part (b) in [28] that there exists 

a number O:::;; r < 1 such that for all x E EN and n ~ 1: 

(4.15) 
nJ co 

IIU(v) x - U(v) xU :::;; 
n co r llx-U(v) xii 

Next we replace m by mJ in (4.13) and let m tend to infinity, to conclude 



17 

(4.16) 

and all large n. Finally use (4.13), (4.lS) and (4.16), with n replaced by 

n +rand m = nJ to obtain for all r = O, ..• ,J-1 and large n: 

A 

(4.17) lle(n(J+l) + r)II ~ lle(n(J+l) + r) - U(v)nJe(n+r)II 

nJ oo oo 
+ IIU(v) e(n+r) - U(v) e(n+r)II + IIU(v) e(n+r)II 

n 1 +>.. n . II oo Since n>.. < (-2-) for large n, and since e(n+r) - U(v) e(n+r) II ~ 

lle(n+r)II + IIU(v)00 e(n+r)II ~ AS for some constant AS> 0 (cf. (4.16)) 

n 2: 1, this shows that lle(n)II goes to zero as least as fast as A6 p 

where 

A 

p = J+l/max(r, 1;") < 1 

and A6 =AS+ (A3 + JA4) + (l->..)- 1 (A1 + JA2 + (l->..)- 1A2). 

and all 
n 

(c) Let y(n) = x(n) - ng*. Use (4.10) and the boundedness of {y(n)}:=l (cf. 

(part (a)) to observe that there exist constants B1,B2 > 0 such that for all 

n sufficiently large: 

(4.18) y(n+l) 

y (n+l) 

where the T-operator was defined in (2.7). Use the monotonicity property 

of the T-operator, while iterating the inequalities in (4.18) and conclude 

for all n sufficiently large and m 2: I: 

(4.19) 
n+m-1 

lly(n+m) - [Tmy(n) - mg*JII ~ L 
l=n 
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For each x E EN, let L(x) = lim r11x - mg*. Fix n sufficiently large for m-+oo 
00 

(4.19) to hold; in view of the boundedness of {y(n)}n=l take a subsequence 

{y(n+~)}~=l which converges to a limit point c (say). Replace m by~ in 

(4.19) and let k tend to infinity, 1n order to conclude: 

(4.20) 

Hence we obtain for any pair c, c' of limit points of {y(n)}:=l: II c-c'II ::::; 

2An{B 1(I-A)-l + B2n(l-A)-l + B2A(l-A)- 2} and finally let n tend to infinity, 
00 

to conclude that all limit points of the sequence {y(n) }n=I coincide, i.e. 

lim x(n) - ng* exists for every x(O) E EN. 
n-+oo 

(d) Part (d) follows by combining part (c) with th. 5.1. part (d) and th. 

5.5 (IV) and (V) in [27]. 

N (e) In view of part (d), we first prove the "only if" part. Fix x E E . In 
m * 00 m * view of the sequence {Q x - mg }m=I being bounded, let R = supmllQ x - mg II. 

We first show by complete induction with respect tom that for all n 2::: n0 
and m 2::: I: 

n+m-1 
KA k (NR+ I) 

m-1 
kAn+kllg*II (4.21) Q(m+n-1) ... Q(n)x. m I NK I ::::; Q x. + + 

1 1 k=n k=O 

n+m-1 
KA k (NR+ I) 

m-1 
kAn+kllg*II Q(m+n-1) ... Q(n)x. 

m I NK I 2::: Q x. - -
1 1 

k=n k=O 

+ L· P~.(n)x.}::::; k 
Note that for m = I, Q(n)x. = max. K(.) {q. (n) 

k k 1k kE 1 1 J 1] t1 
::::; Qx. + KA n + KA NR, thus prov-

1 
Qx. + liq. - q. (n)II + ii}:. (P .. (n) - P~.)x.11 

1 1 1 J 1] 1] J 
ing the first inequality in (4.21) form= I, the proof of the second in-

equality being analogous. Next, assume (4.21) holds for some integer m, 

and observe that in view of the monotonicity of the Q(m+n)-operator, 

Q(m+n) ... Q(n)x. 
1 

n+m-1 
I k;\.k(NR+I) + 

k=n 

m-1 
+ NK I kAn+kug*II ::::; 

k=O 
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, k k * + mll l (P .. (n+m) - P .. ) g. II + 
j 1] 1] J 

n+m-1 m-1 
l K>..k(NR+l) + NK l kAn+kng*II 

k=n k=O 

which proves the first inequality in (4.21) for m+l, the proof of the 

second inequality being analogous. 

Now, in case J* ~ 2, it follows from theorem 5.3 in [27] that there 

exists a vector y N ~ *oo E E , for which two subsequences {Q y - r1\.g }k=l and 
rk *}oo 

{Q y - rkg k=l converge to two distinct limit points c and c' (say). Fix 
. k=l 
1 and suppose C. < C ! . 

1 1 

In view of (4.21) it then follows that for all k and n sufficiently 

large: 

2/3 c. + 1/3 
1 c!' 

1 

+ 2/3 c'. 
1. 

whereas 

* 00 thus showing that for all n sufficiently large, {Q(m+n-1) .•. Q(n)y - mg }m=I 

fails to converge. To prove the "if" part of the first assertion, as well 

* as the second assertion, subtract mg. from both sides of both inequalities 
1 

in (4.21) and let n tend to infinity, invoking part (d). 

(f) Fix an integer J ~ 2, and observe that 

(4.22) Q1x. {q~ + ~t; = max I p .. x.} where 
1 f;EK(i) 1 . 1J J 

J 

~ I J I I J K(i) = {(f , •.• ,f) f , ... ,f E X.K(i)} 
1 

~t; I I 2 1 J-1 J q. = q(f ). + P(f )q(f ). + .•• +P(f ) ... P(f )q(f )., 
1 1 1 1 

~t; 
P •• 

1J 

I J 
= p (f ) .•• p (f ) .. ; 

1J 

i E ~, s = (f 1, .•. ,fJ) E K(i) 

::::; i ,j ::::; N and s 1 J ~ 
= (f , ... , f ) E K(i). 



20 

Let Q = Q3, and define a related "J-step MDP", denoted by a tilde, with n 

as its state space, K(i) as 
~t; 
qi as the one-step expected 

the (finite) set of alternatives in state i En, 

reward and P~. as the transition probability to 
~ l.J 

state j, when alternative f; E K(i) is chosen when entering state i. Observe 
~ def that for each n ~ I, the operator Q(n) = Q(n+J) ••• Q(n+I) satisfies: 

~ ~f; \ ~t; 
Q(n)x. = max {q.(n) + l P .. (n)x.}, 

1. f;EK(i,n) 1. j l.J J 
(4.23) i E fa 

~ 00 -~ 00 -~ 00 

with {K(i,n)}n=I' {qi(n)}n=I and {Pij(n)}n=I satisfying (1.2) - (1.4) and 

(H). Part 

[27]. 

(f) then follows by applying part (d) and th. 5.1 part (d) in 

(g) Note that for all f E S(n,£) and n sufficiently large (cf. part (a)): n 

(4. 24) q(f). - g~ + I P(f) .. v. - v. = 
l. l. j l.J J l. 

q(f;n). + I P(f;n) .. x(n). 
l. l.J J 

J 

- x(n+I). + B ~ -e + B 
1. n n n 

where 

B = [q(f). - q(f;n).J + I [P(f) .. - P(f;n) .. J[v. + ng~J 
n l. l. l.J l.J J J 

J 

\ * * + l P(f;n) .. [v. - x(n). + ng.J - [v. - x(n+I). + (n+l)g.J. 
j l.J J J J l. l. l. 

Note that as both£ and B tend to Oas n tends to infinity, it follows 
* n n 

that S(n,£) S S (v) for all n sufficiently large. To show the reversed 
n 

inclusion note in analogy to (4.24) that for all f E s*(v) and n suffi-

ciently large: 

q(f;n). + I P(f;n) .. x(n). - x(n+I). = q(f). - g~ + I P(f) .. v. -
l. j l.J J l. l. l. j l.J J 

- v. - B = -B ~ -e 
1. n n n 

where the inequality -B ~ -e for sufficiently large n follows from 
n n 

{B }')0 1 +O, geometrically, in view of part (b) and assumption (H), as well 
n n= 
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00 

as from the restriction on the sequence {E } 1• 0 n n= 

* In the stationary model, it, is known (cf. th. 5.3 in [27]) that J = 

occurs both as a sufficient and a necessary condition for {Qnx - ng*}:=l 
~ N * to converge for al,~ x EE • In the non-stationary model, J = 1, may fail 

to be a necessary condition due· to irregularities appearing in the first 

couple of iterations. This is exhibited by example 4 below. 

EXAMPLE 4. Let the policy space be 0 l a singleton {f}, Q = {1,2}, P(f) = [ 1 0J, 
I * q(f) = 0. Note that J = 2 and V = {c_!_ J c E E }. Next define P(f;l) .. = 

l.J 
(i,j = 1,2) and q(f;n) = 

2 
q(f) = O. Finally let P(f;n) = P(f) for n ~ 2. 

Note that Q(l) maps E into V, so that lim x(n) - ng* exists for every 
n-+<x> 

starting point, in spite of J* = 2. 

Part (e) of the previous theorem shows how, J* = I, reappears as a 

necessary and sufficient condition for convergence in the non-stationary 

model for all possible choices of the scrap value vector. Whereas in the 

stationary model, convergence of {v(n) - ng*}:=l will always occur for some 

v(O) E EN, this property may again be lost in the non-stationary model, as 

is exhibited by example 5 below: 

EXAMPLE 5. Consider the MDP, as specified in example 4, merely changing 
2 . 2 n * oo q(f;l) = [0,1]. Note that Q(l) maps E 1.nto E \V whereas {Q x - ng }n=l = 

n 00 • 2 
{P(f) x}n=l fails to converge for all x EE \V. We conclude that 

{x(n) - ng*}:=l fails to converge for al,l, x(O) E EN. 

* 00 In case of convergence of {x(n) - ng }n=l' g(n) = x(n) - x(n-1) and 

* w(n) = nx(n-1) - (n-l)x(n) will provide two sequences that converge tog, 

and some v EV. We refer to [8], sections 4 and 5 for various techniques 
00 

in the stationary model to avoid the numerical difficulty of {x(n)}n=l 

* diverging linearly with n, as well as for bounds on the components of g 

and v EV, and tests for permanent and temporary elimination of non-optimal 

actions. All of these can be extended in a straightforward manner for the 

non-stationary model, provided upper and lower bounds on the parameter 
k oo k oo 

approximations {qi(n)}n=l and {Pij(n)}n=I (i,j E Q; k E K(i)) are available. 
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We conclude this section by observing that the following data-trans­

formation introduced by SCHWEITZER [26], may be used in order to enforce 

convergence of the value-iteration scheme (1.10) for all starting points 
N * x(O) EE, in case J = I cannot be guaranteed to hold: 

(4. 25) 
~k 
q. (n) 

1. 

~k 
p .. (n) 

1.J 

k = q. (n), 
1. 

i E n, k E K(i) 

k 
= L (P .. (n) - 0 .. ) + 0 .. , 

1.J 1.J 1.J 
i,j En, k E K(i) 

where O < T < I. Note that q~(n) ➔ q~, geometrically (i En, k E K(i)) 
1. 1. 

whereas P~.(n) ➔ T(P~. - o .. ) + o .. def P~., geometrically (i,j E Q; 
1.J 1.J 1.J 1.J 1.J 

k E K(i)). Recall that the transformed MDP with Q and X.K(i) as its state -
1. 

and policy space, and {q~ Ii En, k E K(i)} and {P~. J i,j E Q and k E K(i)} 
1. 1.J . 

as the one-step expected rewards and transition probabilities is equivalent 

to the original one in the sense that it has the same gain rate vector for 

every policy and V = {v E EN I TV E V} as the set of solutions to the optimal­

ity equation (2.6). 

Moreover, in the transformed model, (non-stationary) value-iteration 

is guaranteed to converge since all tpm's P(f), f E X.K(i) have all diagonal 
1. 

elements and are aperiodic as a consequence (cf. part (d) of the previous 

theorem). I 

Finally, a generalization of this data-transformation (cf. SCHWEITZER 

[26]) turns every undiscounted Markov Renewal Program (cf. JEWELL [16], 

DENARDO and FOX [6]) into an equivalent undiscounted MDP in which every 

policy is aperiodic. As a consequence, Markov Renewal Programs can be solved 

via non-stationary value-iteration schemes as well (the latter exhibiting 

all of the nice properties mentioned in theorem 2), whenever only geometric 

approximations for its parameters and action sets are available. 

5. BACKWARDS PRODUCTS OF GEOMETRICALLY CONVERGENT SEQUENCES · 

OF FINITE MARKOV CHAINS 

In this final section, we consider backwards products U(r,k) = P(r+k) ... 

... P(r+l) of a sequence of finite Markov matrices P(n), where 
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(5. I) P(n) ➔ P(oo), geometrically, 

Recent papers (cf. [I] and [3]) have pointed out a number of models in which 

these backward products occur. Moreover they showed that {U(r,k)}00 con­
k=] 

verzes geometrically for all r ~ I, in case P(00 ) is aperiodic and unichained, 
00 

and whatever the rate of convergence of {P(n)}n=I may be. In addition, 

FEDERGRUEN [7] has pointed out that in this case 

(5. 2) lim lim U(r,k) = IT 
r➔oo k➔oo 

where IT= lim P(00)n. Moreover convergence in (5.2) was shown to be at 
n➔oo 

00 

least as fast as the rate of convergence of {P(n)}n=I towards P(00). 

In this section we show as a corollary of theorem 2, that under (5.1) 

these results may be extended to the rrruZticha,in case, i.e. lim lim. 
r➔oo k+oo 

U(r,k) exists if and only if P(00 ) is aperiodic, and the rate of convergence 

in (5.2) is again geometric. Related results for forward products were 

recently obtained in [15]. An example in [7] points out that in case 
00 

{P(n)}n=I approaches P(00 ) at a slower than geometric rate, the limit matrix 

in (5.2) may be different from IT. This shows that in the rrruZticha,in case 

assumption (5.1) plays a crucial role to ensure convergence of the backwards 

products U(r,k) to the correct limit matrix. 

COROLLARY 3. Asswne (5.1) to hold. 

(a) If P(00 ) is aperiodic, then li~➔oo U(r,k) exists, for aZZ r ~ I where 

the rate of convergence is geometric. 

(b) If P(00 ) is aperiodic, then lim lim. U(r,k) = IT where the outer 
r➔oo k+oo 

Zimit is approached geometrically as weZZ 

(c) lim lim. U(r,k) exists if and only if P( 00 ) is aperiodic 
r➔oo k+oo 

(d) If P(oo) has period J ~ 2, (i.e. P(oo)J is aperiodic), then 

li~-to:i U(r,kJ+r) exists for aZZ r ~ I and the rate of convergence is 

geometric. 

PROOF. Consider the MDP which has a single policy f, state space n, P(f) = 

P(00); P(f;n) = P(n) and q(f) = q(f;n) = 0, (n ~ I), and apply the previous 

theorem to this MDP. Choose x(O) as the j-th unit vector (I ~ j ~ N) in EN, 
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i.e. x(O). = o .. (1 ~ i ~ N) to establish the assertions for the j-th 
1 1J 

column of the matrix products. Apply part (b) and (d) of th. 2 to get part 

(a); part (e) of th. 2 to get part (b) and (c); and part (f) of th. 2 to 

get part (d). D 
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APPENDIX 

In this appendix we describe the algorithm, we propose for solving the 

models mentioned in example 2. Assuming that the functions q~(a) and P~.(a) 
1. 1.J 

and $(a) are continuous in a (cf. (1.6) and (1 .7)), the function to be mini-

mized in (1.6) is guaranteed to be continuous in a in the discounted version, 

whereas in the undiscounted version some additional requirements on the 

chain structure of the tpm's of the policies in X.K(i) have to be imposed 
1. 

(continuity is e.g. guaranteed in the unichain case; cf. SCHWEITZER [25a]). 

In the absence of these requirements on the chain structure, V.(a) can still 1. 
be shown to be piecewise continuous, with a finite number of discontinuities, 

and an obvious modification of the below described algorithm can be employed: 

step 0: Initialize MIN 

and e: > 0 

N best := +00 and X € E • Fix a 

step 1: 
. k new \ k new 

x := mink K(.)[q.(a ) + (3 L· P .. (a )x.J, 
€ 1. 1. J 1.J J 

i € n 
and compute lower and upper bounds on V(anew) as a function of x: 
L(anew) ~ V(anew) ~ U(anew) 

step 2: "If" L (anew)+$ (anew) > MIN, "then" {anew is suboptimal; a01d := new 
a 

d h new d · · f · 11 h · d an c oose a accor 1.ng to a spec1. 1.ca y c osen unconstra1.ne 

search procedure; go to step 5} 

step 3: "If" U(anew)-L(anew) < e:, "then" {MIN:= L(anew)+$(anew); abeS t := anew, 
. new . h b h . f old new h i.e. a 1.s t e est parameter c 01.ce so ar; a := a ; c oose 
new a according to the unconstrained search procedure; go to step 5} 

step 4: go back to step 1, and execute the next iteration 

step 5: "if" iia01d-anewll < e: "then" go to "END" "else" go back to step 1, 

and execute the next iteration with the adapted parameters 

"END" Use abeS t as an e:-optimal parameter choice, and ½(U(;best )+L(abeS t )) 

as an e:-approximation of the value of the entire problem. 
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