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ABSTRACT 

A class of production planning problems is considered in which known demands 

have to be satisfied over a finite interval at minimum total costs. For each 

period, production and storage cost functions are specified. The production 

costs may include set-up costs and the production levels may be subject to 

capacity limits. The computational complexity of the problems in this class 

is investigated. Several algorithms proposed for their solution are described 

and analyzed. It is also shown that some special cases are NP-hard and hence 

unlikely to be solvable in polynomial time. 

KEY WORDS & PHRASES: production planning, demand, production cost, storage 

cost, set-up cost, capacity limit, dynamic programming, polynomial algorithm, 

pseudopolynomial algorithm, NP-hardness. 
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1. INTRODUCTION 

We consider a class of production planning problems, in which a facility 

manufactures a single product to satisfy known demands over a finite plan­

ning interval of n periods. For each period, production and storage cost 

functions are specified. The production cost functions may include set-up 

costs and the amount produced in each period may be subject to a capacity 

limit. The problem is that of determining the amounts to be produced in 

each period in order to supply each demand on time (no backlogging) and to 

minimize the total costs of production and storage. 
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In this paper we investigate the computational complexity of these 

problems for various types of cost functions, set-up costs and capacity 

limits. As a first step, we consider in Section 2 the standard dynamic pro­

gramming approach for the most general problem in the class. Its running 

time is O(R C) or O(nR2), where R is the total demand and C is the total n n n n n 
capacity over the entire interval. This algorithm could be called "pseudo-

polynomial" in the sense that its running time is exponential in the size 

of a problem instance under a binary representation of the numerical data, 

but polynomial in the data themselves. We also establish NP-hardness for 

the problem, even for the special case in which all demands are equal, all 

storage costs are zero, and the production cost functions can be interpreted 

as being either concave with arbitrary capacity limits or convex with addi­

tional unit set-up costs. Hence, it is very unlikely that these restricted 

versions of the problem allow solution in truly polynomial time. 

In Section 3 we consider problems with concave cost functions. We 

recall results of Wagner and Whitin [24] and Florian and Klein [5], who 

characterized the structure of optimal production plans and presented poly­

nomial algorithms for the special cases of infinite and equal capacities. 

These algorithms can be implemented to run in O(n2 ) and O(n4 ) time, respec­

tively. Further, we discuss some enumerative methods for the case of arbi­

trary capacities, as possible alternatives to the general dynamic program~ 

ming approach. 

In Section 4 we turn to problems with convex cost functions. For the 

case that no additional set-up costs are specified, results of Johnson [10] 

and Veinott [23] yield a simple pseudopolynomial algorithm, which runs in 
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O(nR) time. It remains an open question whether a strictly polynomial algo­
n 

rithm exists. 

Finally, all results are summarized in Section 5. 

2. GENERAL CASE 

We start by introducing some notation. For period i (i = 1, ..• ,n), let r. 
l. 

be the demand, b. the production set-up cost, c. 
l. l. 

limit and x. the production amount, and let R. = 
. l. l. 

X. = \~ 1 x .. The cost of producing an amount x. 
l. lJ= J l. 

P . (x. ) , with p. (0) = 0 and p. (x) = b. +p ! (x) for 
l. l. l. l. l. l. . 

tinuous and nondecreasing function with p~ (0) = 
l. 

the production capacity 

L~=l rj, Ci= L~=l cj and 

in period i is given by 

x > 0, where p~ is a con-
1. 

0. The cost of storing an 

inventory I. = X.-R. from period i to period i+l is given by h. (I.), where 
l. l. l. l. l. 

h. is a continuous and nondecreasing function with h. (0) 2 0. 
l. l. 

The production planning problem is that of determining amounts x 1 , ••• , 

x that minimize the total costs of production and storage: 
n 

(1) I~ l (p . ( x. ) +h. ( I . ) ) , 
1.= l. l. l. l. 

subject to the conditions of satisfying each demand on time and observing 

the capacity limits: 

(2) 

(3) 

(4) 

I. 2 0 
l. 

I 
n 

o, 

0 ~ X. $ C, 
l. l. 

(i = 1, ... ,n-1), 

(i = 1, ... ,n). 

Note that (2) and (3) correspond to flow conservation equations on an appro­

priately defined network. Feasibility is assured by the assumption that 

R. ~ C. (i = 1, ••• ,n). A positive initial inventory I 0 could be handled by 
l. l. 

appending a period O in which x 0 = I 0 is produced at suitably small costs. 

Zangwill [25] has shown that the final inventory I can be assumed to be 
n 

equal to zero without loss of generality. Under the assumptions that all r. 
l. 

and c. are integers and that all p! and h. are linear functions between 
l. l. 1.. 

successive integer values of the argument, we may restrict our attention to 

integer valued x 1 , .•• ,xn. In analyzing the complexity of problems and alga-
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rithms, we assume that any P. (x) and any h. (I) can be evaluated in unit 
- l. l. 

time. 

The standard way to solve problems of this type is by means of dynamic 

programming. Let D. (X) be the cost of an optimal production plan over pe-
1. 

riods 1, ..... ,i subject to X. = X, le·t X. be the set of feasible cumulative 
l. =i. 

production levels in period i, and let X. (X) be the set of feasible produc­
=i. 

tion amounts in period i subject to X. = X. It is clear that 
l. 

(5) 

D. (X) 
l. 

(X = 0), 

(X -/- 0) , 

f min (X){D. 1 (X-x)+p. (x)}+h. (X-R,) 
XEX. 1.- l. l. l. 

=, l 
00 

=i 

(X E K.) } 
-i (. > 

(X r/. X. ) 1 
-

=i 

1) • 

The cost of an optimal production plan over the entire interval is equal to 

D (R ), which is calculated according to the above forward recursion; the 
n n 

corresponding values of x 1 , ... ,xn are obtained by standard backtracing tech-

niques. A backward recursion could be formulated just as easily. 

To estimate the running time of the dynamic programming algorithm, we 

note that X. c {R.,R.+1, ... ,R} and X. (X) c {0,1, ... ,c.L Hence, for fixed 
=i.- l. l. n =i. - l. 

i, all D. (X) are determined in O(R c.) time. It follows that the complete 
i n l. 

recursion requires O(R C) time. If no capacity limits are specified, we 
n n 

have X. (X) c: { 0, 1, ... , R -R. 1 }, and an O (nR2 ) running time results. 
=i. -· n 1.- n 

Thus, dynamic programming provides an exponential algorithm: its run-

ning time is: an exponential function of the size of a problem instance, as 

long as the numerical data are represented in a reasonable way, e.g., in a 

binary or decimal encoding. However, the algorithm could be called pseudo­

polynomial in the sense that its running time is bounded by a polynomial 

function of the data themselves [6;18]. We shall now present strong circum­

stantial evidence that a truly polynomial algorithm for the production plan­

ning problem will probably never be found. 

More specifically, we will show that the problem is NP-hard, even in 

the simple case of equal demands and zero storage costs. This results signi­

fies that a polynomial algorithm for the problem could be used to construct 

similar algorithms for all NP-complete problems [11;12]. NP-complete problems 
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are characterized by the following properties: 

(a) none of them is known to be solvable in polynomial time; 

(b) if any of them is solvable in polynomial time, then all of them are. 

Many notorious combinatorial problems have been shown to be NP-complete and 

the existence of a polynomial algorithm for one (and thus for all) of them 

is generally considered to be extremely unlikely. 

The following problem has been shown to be NP-complete [11]: 

KNAPSACK: Given positive integers a 1 , ••• ,at,A, does there exist a 

subset Sc T = {1, ••• ,t} such that l· Sa. = A? 
J.€ ]. 

NP-hardness cf our problem will be established by proving that KNAPSACK is 

reducible to it, i.e., that for any instance of KNAPSACK an instance of the 

production planning problem can be constructed in polynomial time such that 

finding an optimal production plan also resolves KNAPSACK. 

Given any instance of KNAPSACK, we define the following instance of the 

simplified production planning problem, where, for notational convenience, 

the periods are numbered from Oto n: 

n = t; 

r. = A 
]. 

bO = 1, co 

b. 1, = c. 
]. ]. 

h. (I) = 0 
]. 

= tA, p0 (0) = 0, Po (x) = 1 

pi (0) o, p. (x) 1 .,.. ai, = = 
]. 

(i = o, ••• ,t); 

(0 < X ~ co); 
a.-1 

]. 
(0 ~ C.) (i 1, ••• ,t); + --x < X = a. J.. 

]. 

(I 2: 0) (i = 0, ••. , t) • 

The production cost functions are illustrated in Figure 1. We claim that 

KNAPSACK has a solution if and only if there exists a feasible production 

plan with total costs at most equal to A+l. 

Since x0 > 0 in any feasible plan and p0 (x) is constant for O < x ~ tA, 

we may assume that the production in period O is at capacity and supplies 

the demands in periods O, ••• ,t-1. The production in periods 1, ••• ,t has to 

supply the demand in period t only. Therefore, we may restrict our attention 

to production plans defined by 

0 ~ x .. ~ a. 
]. ]. 

(i € T) • 



p.(x.) 
..{, 

0 tA X 0 

(i = 0) (i = 1, ... ,t) 
Figure 1 The production cost functions in the reduction. 

Since for all i ET 

p. (X) = X 
1 

for x = 0 and x = 

p. (x) > x for O < x < a., 
1 1 

the total costs of such a plan are at least equal to A+l: 

a. X 
..{, 

5 

Moreover, they are exactly equal to A+l if and only if x. E {O,a.} for all 
1 1 

i ET, i.e., if and only if there exists a subset Sc T such that 

a. =A.This establishes the desired result. 
1 

We have already noted that our NP-hardness proof applies to the case 

of equal demands and zero storage costs. Moreover, the production cost 

functions involved are both concave and convex, with additional unit set­

up costs and arbitrary capacity limits. It is easily seen that concave 

cost functions can be adapted to incorporate set-up costs, in such a way 

that they still are linear between successive integer points. Similarly, 

convex cost functions can be adapted to effectuate capacity limits. Hence, 

the following restricted versions of the production planning problem are 

NP-hard: 

arbitrary cost functions, no set-up costs, no capacity limits; 
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concave cost functions, no set-up costs, arbitrary capacity limits; 

convex cost functions, unit set-up costs, no capacity limits. 

This leaves only a few possibilities for truly polynomial algorithms. These 

will be considered in Sections 3 and 4. 

3. CONCAVE COSTS 

Let us assume that all p. and h. are concave functions, possibly including 
i i 

set-up costs. Wagner and Whitin [24] studied the case in which no capacity 

limits are specified; their characterization of the structure of optimal 

production plans immediately yielded an O(n2 ) algorithm. Florian and Klein 

[5] characterized the structure of optimal production plans for the case of 

arbitrary capacities and obtained an O(n4) algorithm for the special case 

of equal capacities. These results are summarized below. It should also be 

mentioned that for the related problem in which upper bounds on inventory 
3 rather than on production are specified, Love [19] developed an O(n) algo-

rithm. 

Recall the formulation of the problem in Section 2. The constraints 

(2)-(4) define a closed bounded convex set. The objective function (1) is 

concave and hence its minimum value is achieved at one of the extreme points 

of this set. The special structure of the set allows a simple characteriza­

tion of the production plans corresponding to its extreme points. It was 

shown in [5] that such plans consist of a sequence of subplans in which 

(a) the inventory is strictly positive in every period, except the last, 

where it is zero, and 

(b) the production is either zero or at full capacity in every period, 

except for at most one period, which will be called the fractional 

period. 

Thus, we are led to consider ½n(n+1) subproblems Ptm (0 ~ t < m ~ n) in 

which our objective is to minimize 

subject to 

I = 0, 
m 



I > 0 
i 

( i = £+ 1 , ... , m-1) , 

0 S X, SC, (i = £+1, •.• ,m), 
1. 1. 

0 < x < c for at most one f (£+1 sf s m). 
f f 

* Let Elm be the optimal solution value to problem Pim and Dm the cost of an 

optimal production plan over periods 1, ••. ,m. Given ½n(n+1) values Elm 

* 
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(0 s .Q, < m ~; n), we solve the original problem by calculating D as follows: 
n 

* DO = 0,, 

* * Dm minOs£<m{D.Q,+E£m} (m = 1, ... ,n). 

This recursion can be carried out in O(n2 ) time. 

In the case that c = 00 (i = 1, ... ,n), an optimal solution to problem 
i 

Pim is clearly given by x.Q,+l = Rm-Rt' xi= 0 (i = £+2, .•. ,m), so that 

Elm = p £+1 (Rm-Rf) + r:=£+1 hi (Rm-Ri) 

(cf. [24]). All Elm can be determined in O(n2 ) time. It follows that the 

bl . 1 d ' ( 2 ) ' original pro em 1.s so ve 1.n On time. 

In the case that ci = c (i = 1, •.. ,n), problem Pim can be solved in 

the following way (cf. [5]). For notational convenience, we assume that 

.Q, = 0. Dividing total demand by the capacity, we find R = kc+E, where k 
m 

is the numbE~r of periods in which the production, will be at capacity and 

E (0 s E < c) is the amount to be produced in the fractional period. In 

order to apply the dynamic programming recursion (5), we observe that the 

sets~ of feasible ~umulative production levels in period i are given by 

= {xix E {0,E,c,c+E, ... ,kc,kc+E}, R. < X sic} 
1. 

X {R }, 
=tn m 

( i = 1 , . . . , m-1 ) , 

and the sets X. (X) of feasible production amounts in period i subject to 
=.i. 

X. = X by 
1. 

X,(jc) = {0,c}, X.(jc+E) = {0,E,c} (j = 0, .•• ,k; i = 1, .•. ,m). 
=.i. 9. 

We solve PO by calculating EO = D (R). 
m m m m 
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With respect to the running time of the algorithm, we note that 

I,!: I = O(i) and Ix. (X) I :S 3 (XE X.). Hence, for fixed i, all D. (X) are de-
.L =.i.. =.i.. l. 

termined in O(i) time. It follows that E0 is found in O(m2) time and that 
4 m 

the original problem is solved in O(n) time. 

In the case that the c. need not be equal, the problem is NP-hard. The 
l. 

general dynamic programming approach solves the problem in O(R C) time. 
n n 

The question arises, however, if the available information on the structure 

of optimal production plans is useful in deriving an efficient algorithm. 

We can solve problem Pom by successively fixing the period f that is allowed 

to be fractional. Let P6!) denote the subproblem under the additional re­

striction that xi E {O,ci} (i =/- f), and let Eci!) be the optimal solution 

value to this problem. The sets of feasible cumulative production levels 

for Pci!) satisfy the following restrictions: 

~ = {O}, 

~ = {xix E { X' , X '+c . I X ' E X. l}, 
l. =.i..-

max{R.+1,R -(c -c.)} $ X $ R } (i = 1, ••• , f-1) , 
J. m m J. m 

~ = {xix E {x• ,X'-c. Ix• E ~+1}, l. 

R.+1 $ X $ c.} 
l. l. 

(i = f, ••• ,m) , 

X = =m 
{R 

m 
}. 

Thus, we generate the sets ~,!i,···,~-l according to a forward recursion 

and the sets X ,X 1 , ••• ,& according to a backward recursion. Consider-=m ==m- ~.L 

ing ~-lx~ we need only retain those pairs (Xf-l'Xf) for which 

0 :S Xf-Xf-l :S cf. Therefore, we may subsequently carry out a backward and a 

forward recursion to reduce the size of X. for i < f-1 and i > f respective-
=.i.. 

ly even further. Defining the sets of feasible production amounts by 

~(X) = {O,ci} (i = 1, ••• ,f-1,f+l, ••• ,m), ~(X) = {0,1, ••• ,cf}, 

we solve P0(f) by calculating E0(f) = D (R) according to the recursion (5). 
m m m m 

With respect to the running time, we note that IX. I :SR, Ix. (X) I = 2 
=.i.. m =.i.. 

(i =/- f) and l~I = cf+l. Hence, Eci!) is determined in O(mRm+Rmcf) time. It 

follows that E0 = minl<f< {E0(f)} is found in O(m2R +R c) time and that m _ -ID m m mm 
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solved.in O(n4R +n2R C) time. In terms of worst-
n n n 

the original problem is 

case running time, this approach is inferior to standard dynamic programming. 

Some limited computational experience suggests that it is not likely to be 

a practical alternative, unless R and C are particularly large and the 
n n 

reduction achieved in the size of the sets~ becomes really significant. 

Although practical experience has confirmed that polynomial algorithms 

are properly referred to as "good" ones, a similar statement would not be 

correct for pseudopolynomial algorithms. In particular, tree search methods 

with an exponential worst-case running time may be competitive under certain 

circumstances. For example, the KNAPSACK problem of Section 2 can be solved 

by dynamic programming in O(tA) time [2], but for large values of A branch­

and-bound tends to be more efficient [20]. Methods of the latter type are 

usually evaluated on an empirical basis by comparing their average perfor­

mance on a "reasonable" set of test problems. The formal analysis of ex­

pected behavior of tree search algorithms requires the specification of a 

probability distribution over the class of all problem instances and appears 

to be technically complicated; see [13] for some results. 

For the production planning problem with concave costs and arbitrary 

capacities, several tree search methods have been suggested. We mention 

the work of Chen [4] and Lambrecht and Vander Eecken [15] and, in particular, 

the algorithm recently proposed by Baker, Dixon, Magazine and Silver [1]. 

The latter authors considered the special case in which p~ (x) = px, 
l. 

h, (I) = hI (i = 1, ••• ,n). (This problem is NP-hard, even for p = h = 0, 
. l. 

as can be proved by a slight modification of the reduction in Section 2.) 

They found that for each subprobl~m PR,m only the first period can be frac­

tional, so that En = E!t+l). It follows that in this case the above dynam-
Nm Nm 3 

ic programming approach requires only O(n R +nR C) time. 
n n n 

Returning to the case of arbitrary concave costs, we have in fact con-

sidered the possibility of solving a typical subproblem POm by branch-and­

bound. A search tree can be defined in an obvious manner. A node at the 

t-th level (1 $ R, $ m) which represents a subset of solutions with fixed 

x. E {0,c,} (i = 1, ••. ,t-1), has three immediate descendants, corresponding 
l. l. 

to the choices xR, = 0, 0 < xR, < ct, and xR, =ct.If period R, is chosen to 

be fractional, an optimal production plan for periods t, ••• ,m can be quickly 

determined by dynamic programming. Otherwise, a lower bound has to be cal-
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culated for the case that a period i (i < i ~ m) might yet be fractional. 

We have not found a satisfactory solution to this bounding problem, but 

it may be instructive to indicate one approach that will be ineffective in 

general. Suppose that production and storage costs are underestimated by 

linear functions. The optimal solution value to the resulting problem can 

be obtained by a linear cost network flow computation. Alternatively, one 

can associate Lagrangean multipliers with the inequalities I. > 0 
l. 

(i = t+l, ••• ,m~l) and append these to the objective function. For fixed mul-

tiplier values, the resulting Lagrangean problem can be written as that of 

determining values y, = x./c. that minimize a linear function subject to 
l. l. l. 

one linear equality, 0 ~ y. ~ 1 (i = i+l, ••• ,m), and the constraint that 
l. 

all but at most one y. are integer. This is a continuous knapsack problem 
l. 

and its solution belongs to folklore; see [17] for an O(m-t) implementation. 

One can then try to obtain a strong lower bound by searching for feasible 

multiplier values that maximize the solution value [7]. However, the very 

superfluity of the integrality constraints in the Lagrangean problem im­

plies that this approach will do no better than the standard linear program-_ 

ming relaxation obtained by ignoring these constraints in POm [7]. The lat­

ter bound proved to be too weak to generate strong lower bounds and was 

thus disconsidered. 

4. CONVEX COSTS 

Let us now assume that all p. and h. are convex functions. Thus, they do 
l. l. 

not include set-up costs, but they can easily be adapted to enforce capacity 

limits. 

Veinott [23] has shown that an optimal production plan can be obtained 

by satisfying each unit of demand in turn as cheaply as possible. An algo­

rithm based on this rule has O(nR) running time. It generalizes an algo-
n 

rithm due to Johnson [10] for the case of linear storage costs; Johnson's 

method essentially yields an initial solution to a linear transportation 

problem, which also happens to be optimal. As pointed out earlier, the prob­

lem can be formulated as a minimum convex cost network flow problem, and 

Veinott's work can also be interpreted as the use of the "incremental" algo­

rithm [3;8] for solving such problems. 
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Examples can be constructed to show that the above rule cannot be 

stretched to allocate more than one unit of demand at a time. In any case, 

however, the problem is not harder than linear programming [21], and we 

conjecture that it is solvable in strictly polynomial time. Indeed, in the 

case of linear storage costs, generalized sorting techniques (cf. [9]) can 

be applied to yield such an algorithm [14]. In the case of arbitrary con­

vex storage costs, it seems likely that the out-of-kilter method combined 

with scaling techniques [16] solves the problem in polynomial time. 

In the case that additional set-up costs b. are specified, the problem 
l. 

is NP-hard, even if b. = 1 (i = 1, ••• ,n). As pointed out in Section 3, a 
l. 

branch-and-bound approach may offer a practical alternative to the general 

dynamic programming recursion. Such an approach could be based on a fixed 

charge network flow formulation (cf. [22]). 

5. SUMMARY 

We have analyzed the computational complexity of a class of deterministic 

production planning problem for various types of cost functions, set-up 

costs and capacity limits. Table 1 below indicates for each problem type 

whether it is solvable in polynomial time, NP-hard, or currently open, and 

also gives the running time of the best available algorithm for its solu­

tion (under the assumption that nR ~ C ). 
n n 

TABLE I. SUMMARY OF COMPLEXITY RESULTS 

p! ,h. arbitrary 
l. l. infinite 

zero ! O(nR2) 
n 

bi equal I O(nR2) . n 

arbitrary I 0 (nR2) . n 

pi' h i concave * O(n2) 

* solvable in polynomial time 

? open 

Ci 

equal 

I O(nR c) . n 

! O(nR c) 
n 

! O(nR c) 
n 

* O(n4 ) 

p! ,h. convex 
arbitrary l. l. 

! O(R C) ? O(nR) 
n n n 

! O(R C) ! O(R C) 
n n n n 

! O(R C) I O(R C) . n n n n 

! O(R C) 
n n 

NP-hard, even for equal demands and zero storage costs 
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We hope that this overview has once again demonstrated the usefulness 

of arguments from complexity theory, when potential algorithmic improvements 

for a combinatorial optimization problem are being considered. 
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