
stichting

mathematisch

centrum

AFDEL I NG MATHEMAT I SCHE BESL I SKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

J. LABETOULLE, E.L. LAWLER,
J .I<. LENSTRA, A.H.G. RINNOOY KAN

BW 99/79

PREEMPTIVE SCHEDULING OF UNIFORM MACHINES
SUBJECT TO RELEASE DATES

Preprint

~
MC

MAART

2e boerhaavestraat 49 amsterdam

PJUnted a..t .the, Ma.the.ma.tic.al Cen:tJr.e, 49, 2e Boe11.haaveo.:tJr.a..a;t, Amo.tell.dam.

The, Ma.thema.tic.a..l Ce,n:tJr.e,, 6owide,d .the 11-.th 06 FebnuaAy 1946, ,i..1:, a. non­
pno6.U ..i..iv..,.tltutlon cumlng a.t .the, pnomo.tion 06 pull.e ma.the.ma.tic.J., a.nd .ltJ..
a.pp.U.c.a.tiono. I.t ,i..1:, .oponoone,d by .the Ne.thrvr,ta.nd.o Gove11.nment .thnough .the,
Ne.theJr,la.nclJ., Onga.n..i..za.tion 6on .the Adva.nc.e.me,nt 06 Pune, Reoea.nc.h (Z.W.O).

AMS (MOS) subject classification scheme (1970): 90B35, 68A20

PREEMPTIVE SCHEDULING OF UNIFORM MACHINES SUBJECT TO RELEASE DATES

J. LABETOULLE
IRIA Laboria ,. Rocquencourt, France

E.L. LAWLER

University oF California, Berkeley, U.S.A.

J.K. LENSTRA

Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam, The Netherlands

ABSTRACT

We shall be concerned with finding optimal preemptive schedules on parallel

machines, subject to release dates for the jobs. Two polynomial-time algo­

rithms are presented. The first algorithm minimizes the maximum completion

time on an arbitrary number of uniform machines. The second algorithm mini­

mizes the maximum lateness with respect to due dates for the jobs on an ar­

bitrary number of identical machines or on two uniform machines. NP-hardness

is established for the problem of minimizing the total weighted completion

time on a single machine.

KEY WORDS & PHRASES: preemptive scheduling, uniform machines, identical

machines, single machine, release dates, maximum completion time, maximum

lateness, tot:al weighted completion time, polynomial-time algorithm,

NP-hardness.

NOTE: This report is not for review. It will appear in the Proceedings of

the Summer School in Combinatorial Optimization, Sogesta, Urbino, Italy,

July 10-21, 1978.

1

1. INTRODUCTION

We consider scheduling problems in which n independent jobs J 1 , ... ,Jn have

to be processed on m parallel machines M1 , ... ,Mm. Each machine can handle at

most one job at a time and each job can be executed on at most one machine

at a time. Each job J. becomes available for processing at its release date
J

r .. It has an execution requirement p. and possibly also a due date or dead-
J J

lined. and a weight w .. Unlimited preemption is allowed: the processing of
J J

any job may arbitrarily often be interrupted and resumed at the same time on

a different machine or at a later time on any machine. The machines are as­

sumed to be uniform, i.e., each machine Mi has a speed si, and complete

execution of J. on M. would require p./s. time units. If all speeds are
J l J l

equal, the machines are identical; if m = 1, we have a single machine. We

assume that all numerical data r.,p.,d.,w.,s. are integers.
J J J J l

A feasible schedule defines a completion time C. and a lateness L.
J J

C . -d . for each J . . We may choose to minimize the maximum completion time
J J J

C = maxl<"< {c.}, the maximum lateness L = max 1<.< {L.}, the total
max -J-n J max -J-n J

completion time Icj = r;=l cj, or the total weighted complebon time Iwjcj

\'~ l w.C ..
lJ= J J

When scheduling jobs subject to release dates, one can distinguish

between three types of algorithms. An algorithm is on-line if at any time

only information about the available jobs is required. It is nearly on-line

if in addition the next release date has to be known. It is off-line if all

information is available in advance.

In Section 2 we consider the minimization of C on m uniform machines.
max

For the case that all release dates are equal, Horvath, Lam and Sethi [9]

derived a closed form expression for the optimum value of C . Gonzalez
max

and Sahni [7] proposed an O(m log m + n) algorithm which produces a sched-

ule meeting this value and containing at most 2(m-1) preemptions. For

the case that the release dates are arbitrary, Sahni and Cho [16] gave an

O(n log n + mn) off-line algorithm to determine if there exists a schedule

in which no job is completed after a common deadline. We will present a

polynomial-time nearly on-line algorithm to minimize C ; it can also be
max

used to minimize L in the case of equal release dates. Sahni and Cho [17]
max

independently developed a similar algorithm for this problem.

2

In Section 3 we consider the minimization of L on m identical or two
max

uniform machines. For the case of equal release dates, Horn [8] proposed an

O(n2) algorithm to minimize L on m identical machines. For the case of
max

arbitrary release dates, he gave an off-line algorithm, based on a network

flow computation, to determine if there exists a schedule in which no job

is completed after its deadline. Bruno and Gonzalez [3] adapted this feasi­

bility test to the case of two uniform machines. We will extend both methods

by presentingr polynomial-time

In Section 4 we consider

case of equal release dates,

algorithms to minimize L .
max

the minimization of Ic. and Iw.C ..
J J J

Bruno and Gonzalez [6] proposed an

For the

O(n log n + rr.m) algorithm to minimize Ic. on m uniform machines. It is well
J

known that in the case of identical machines allowing preemptions will not

decrease the optimal value of Iw.c. [14]. It follows that Iw.C. is minimized
J J J J

on a single machine by scheduling the jobs in order of nonincreasing ratios

w./p. [18], and that the problem on two identical machines is already
J J

NP-hard [2;12]. For the case of arbitrary release dates, Ic. is minimized
J

on a single machine by an obvious on-line extension of the above ordering

rule [1]; we will establish NP-hardness for the problem of minimizing Iw.C .•
J J

In Section 5 we conclude by mentioning an important recent contribution

to the theory of preemptive scheduling and indicating a major open problem

in this area.

3

2. MAXIMUM COMPLETION TIME

We first consider the problem of minimizing the maximum completion time C
max

on m uniform machines. The jobs and the machines are assumed to be ordered

in such a way that r 1 :::; •.. :::; rn and s 1 2 ... 2 sm.

We will describe a nearly on-line algorithm that considers the time in­

tervals¾= [rk,rk+l] in order of increasing k. For each successive interval

1, ... ,n-1), denote the remaining execution requirement of J. at rk by
(k) (k) J

1, ... ,k) and renumber the jobs so that p 1 2 ... 2 pk . The sub-

algorithm to be applied in each interval determines the amounts by which the

p;k) are to be decreased within~- At time rn' all jobs are available, and

it is well known [9] that the minimum time for their completion is given by

(1) * C
max

\Q, (n) \Q, \n (n) \m
:r + max { max 1 < n < 1 { l . _ 1 p . / l . _ 1 s . } , l . _ 1 P . / l . _ 1 s . }.

n -~-m- J- J i- i J- J i- i

The portion of an optimal schedule within any interval¾ can be constructed
. . (k) (k+l)

by applying the Gonzalez-Sahni algorithm [7] to the quantities p. -p.
J J

determined by our subalgorithm. Similarly, a schedule for the final interval

* [rn,C] can be constructed by applying the same algorithm to the quantities
() max

p.n. Since both the subalgorithm and the schedule construction procedure re-

q~ire O(n) time for each interval, the algorithm requires O(n2) time overall;

it introduces O(mn) preemptions into the optimal schedule.

Our algorithm has the property that the remaining execution requirements

passed on to the next interval will be as evenly distributed as possible. More

specifically, for each k there is no way to process the jobs before rk that
. IQ, (k)

could lead to a smaller value for any of the partial sums . 1 p. (Q,
J= J

1,

... ,k). This immediately implies the correctness of the algorithm, since each

of these partial sums appearing in (1) is as small as it could possibly be.

Rather than giving an inductive proof of this property, we will settle

for a simpler correctness proof of the entire algorithm. This proof will also

* serve to introduce algorithmic refinements, by which the optimum value C max
can be determined in O(n log n + mn) time. An actual schedule can be con-

* structed by applying the Sahni-Cho algorithm [16], using C as a common
max

deadline for the jobs. This off-line approach requires O(n log n + mn) time

and introduces O(mn) preemptions into the optimal schedule.

4

(k)
Let us consider an interval 1\. for fixed k. Given the pj (j = 1, ..• ,k),

have to determine the p~k+l) to be passed on to the next interval 1\.+l.

we

Suppose that at time rk

1 d . h (k) > > compete, wit p 1 - •·· -

the jobs J 1 , ... ,J are available and not yet
(k) V

p > 0. For ease of notation, we
V (k)

superscripts. Thus, denote the given p. by p. and the unknown
J J

drop the
(k+l) b p. y q.
J J

(j = 1, ... ,v), and let t rk+l-rk. For purposes of exposition, we assume

for the time being that, if m < v, machines M 1 , ••• ,M withs 1 = ... = s
m+ v m+ v

= 0 are added to the model.

The p. can be viewed as defining a staircase pattern as in Figure 1.
J

The q. will be chosen in such a way that they define a similar pattern. As
J

1 1

j

V

Figure 1 Staircase pattern at rk.

h. 1 ,{_-

v=h u

Figure 2 Staircase pattern at rk+l·

illustrated :in Figure 2, such a staircase can be characterized by a sequence

((h1 ,q1), ... ,(h ,q)), where q, q. for each J. with h. 1+1:,:; j:,:; h. (i =
u u i J J i- i

1, ..• ,u; h0 •- O· h = v). A first condition for feasibility is that , u

(2) qi > qi+ 1 (i = 1 , .•. , u-1) •

The staircase ((h1 ,q1) , ••• ,(hu,qu)) will be constructed in such a way th~t,

for i = 1, ..• ,u-1, the capacity of Mh, 1+1 1 .•. ,Mh· will be fully utilized to
i- i

decrease Phi--l+11•••1Phi to qi. A second condition for feasibility is there-

fore that

(3) (£-h. l)q.
i- i ~ l~ h 1 p. - tI~_-h +1 s.

]= + J J {_1 J i-1 .,_
(.Q, h. 1+1, ... ,h.; i = 1, ... ,u),

i- i

5

with the corners of the staircase, except possibly the last one, correspond­

ing to strict equalities:

(4)

A third conch tion for feasibility is of course that

(5) 0 :;; q, :;; p.
J J

(j = 1, ... ,v).

We tentatively construct the first step of the staircase by setting

Generally, having found i tentative steps (h 1 ,q1) , ... , (hi,qi) with hi< v
-

and q 1 > ••• > qi, we construct the (i+l)-st tentative step by setting

-
(6) = h.+1, q. 1 1 1.+

p -ts
h. 1 h. 1 1.+ 1+

- -
If qi> qi+J. and qi;:,: 0, the staircase ((h1 ,q1) , ... ,(hi+l'qi+l)) satisfies

(2) and (4) ;: we increment i by one and, if h, is still smaller than v, con-
1.

struct the next step.

Suppose now that qi:;; qi+l or qi< 0. In the latter situation, there is

excess capacity on Mhi-l+li••·,Mhi; in both cases, some of the capacity of

these machines has to be devoted to processing Jh·+l if (2) and (4) are to
l.

be satisfied. We therefore reconstruct the i-th step so as to include Jh·+l
l.

as well: h. is incremented by one, and q. is recalculated according to
l. l.

= <I~~h. +1 pj - tI~~h. +1 sj)/(hi-hi-1)
1.-l 1.-l

(7)

(cf. (4)). As a result, it may now be that qi-l:;; qi (qi-l < 0 cannot occur).

In this case, we reconstruct the (i-1)-st step so as to include the current

i-th step: h. 1 is increased to h., and q. 1 is recalculated as in (7). We
1- l.].-

continue until once more q 1 > ••• > qi; the adjusted staircase ((h 1 ,q1) , •.. ,

(hi,qi)) includes one more job and may have fewer steps than before. If hi

is still smaller than v, we construct the next step according to (6).

The process is terminated as soon as hi= v. If qi< 0, we reset qi

and note that only in this situation the last corner of the staircase does

0

6

not correspond to a strict equality.

We have to verify that the resulting staircase ((h1 ,q1), ••. ,(hu,qu))

and the corresponding remaining execution requirements q 1 , ... ,~ indeed sat­

isfy the feasibility conditions (2)-(5). For (2) and (4), this is obvious.

To see that (3) must be true, note that each q, is initially defined by an
]_

equality constraint and can only increase thereafter. To verify (5), it is
-

sufficient to show that q. ;;; Ph·. Subtracting (3) fort= h.-1 from (4), we
]_]_]_

find q. ;;; Ph, -tsh. , which implies the desired result.
1 JL 1

Let us now analyze the running time of the subalgorithm. The number of

step constructions as in (6) is exactly v. The number of step reconstruc­

tions as in (7) is at most v-1, since during each adjustment two steps are

collapsed into one. It follows that the process terminates in O(v) time.

This presupposes that the given values p. are ordered; but since the rela-
J

tive order of the remaining execution requirements does not change, we can

maintain an ordered list of these values and insert the value of the job

that becomes available at rk in O(v) time. Hence the subalgorithm determines

the values q. for each interval in O(v) time. As has been indicated above,
]

the Gonzalez--Sahni algorithm [7] can be applied to construct an actual sched-

ule in each interval in O(v) time as well. We thus have arrived at a nearly

on-line algorithm that requires O(n2) time overall.

We now intend to prove the correctness of the algorithm.

We note first that not only does the relative order of the remaining

execution requirements remain invariant, but also the following stronger

property holds: as soon as two remaining execution requirements become equal,

they will remain equal. To see this, suppose that p. = p. 1 at time rk, and
- J J+

let hi= j. l~ccording to (6), we set qi+l = pj+ 1-tsj+l· But qi;;; pj-tsj;;;

pj-tsj+l = qi+l'

J. 1 as well ..
J+

This lea.ds

and we have to reconstruct the i-th step so as to include

us to define the rank of an available job Jj at time rk as

the value h. for which h. 1+1;;; j;;; h .. The rank of a job at timer is de-
i i- i n

fined analogously as its step height that would be found if the subalgorithm

* were to be applied in the interval [r ,c]. A job will be called critical
· n max

if its rank is at most m-1 and noncritical otherwise. The rank of a job

cannot decrease; in particular, once a job becomes noncritical, it never

7

becomes critical again. It follows from (4) that in any interval the fastest

h. machines are exclusively processing the longest h. critical jobs. A crit-
i i

ical job is processed continuously from its release date until it either is

completed or becomes noncritical.

These observations suggest the following correctness proof for the al-

gorithm. First, suppose that the schedule

completion of 9., critical jobs (9., < m). At

* ends at C with the simultaneous
max

any time when 9.,' of these jobs are

available, they are processed by the fastest 9.,' machines. In this case, the

schedule is clearly optimal.

Alternatively, suppose that the schedule ends with the simultaneous

completion of m noncritical jobs. Let rk be the last release date just prior

to which there is idle time on some machine. Ignoring the jobs that are

available but noncritical at time rk-l' we conclude that the portion of the

schedule for the remaining jobs has a structure as illustrated in Figure 3.

jobs
criti ca 1
or
unavailable
at Jtk.- l

Figure 3 Simultaneous completion of noncritical jobs.

Before rk, the available critical jobs are processed by the fastest machines.

* Between rk and C , there is no idle time. It follows that the schedule is
max

* optimal for the jobs under consideration and a fortiori that C is the
max

minimum time to complete all the jobs.

Let us use the new terminology to describe a more efficient implementation

of the subalgorithm. We will reduce the running time by dealing more care-

8

fully with the noncritical jobs, circumventing the need to introduce machines

of speed zero.

Consider the situation after a typical application of the subalgorithm,

as illustrated in Figure 4. The noncritical jobs of lowest rank, i.e.,

1

critical jobs

m

active noncritical jobs

inactive noncritical jobs
V

Figure 4 Staircase patterns at rk and rk+l.

Jh· 1+1, ... ,Jih· where h. 1+1 :s; m :s; h., will be called active. In the interval
i- i i- i

~, their remaining execution requirements are reduced by machines Mhi_ 1+1,
-

... , M to a common amount q .. The remaining noncritical jobs, i.e., Jh. +1,
m i i

... ,Jv' will be called inactive. In~, their remaining execution require-
- -

ments are not reduced at all, since qi> qi+l = Pbi+l (note that shi+l = 0).

As a first refinement, the subalgorithm does not have to deal with the

active noncritical jobs separately, since their remaining execution require­

ments will remain equal throughout. They can easily be handled simultaneously

by straightforward generalizations of (6) and (7). As a second refinement,

the subalgorithm can be terminated as soon as either h. = v or h. ;:: m and
i i

qi> Phi+l·

Rather than maintaining an ordered list of all remaining execution

requirements, we have to do so only for the largest m-1 of them. We simply

record the number of active noncritical jobs, their common remaining execu­

tion requirement, and the lowest index of any of them. Finally, we maintain

a priority queue for the remaining execution requirements of the inactive

noncritical jobs.

9

At each release date, the execution requirement of the job that becomes

available is, depending on its size, inserted either in the ordered list in

O(m) time or in the priority queue in O(log n) time. The staircase computa­

tions for the longest m-1 jobs and the active noncritical jobs require O(m)

time in each interval and O(mn) time overall. The queue operations require

O(log n) time in each interval and O(n log n) time overall, since once an

inactive job becomes active and is withdrawn from the queue, it remains ac­

tive throughout. Hence successive applications of the modified subalgorithm

* determine the value C in O(n log n + mn) time. As has been indicated
max

above, the Sahni-Cho algorithm [16] can be applied to construct an actual

* schedule in the interval [r1 ,c] in O(n log n + mn) time as well. We thus
max

have arrived at an off-line algorithm that requires O(n log n + mn) time

overall.

10

3. MAXIMUM LATENESS

We now consider the problem of minimizing the maximum lateness L on m
max

identical machines subject to arbitrary release dates for the jobs.

A relaxed version of this problem is to test a trial value of L for
max

feasibility. That is, for a given value y, one has to determine whether or

not there exists a schedule for which L ~ y. This condition is equivalent
max

to the requirement that no job J. is completed after an induced deadline
J

d.+y. Sahni [15] proposed an off-line algorithm for the case of equal dead-
]

lines that requires O(n log mn) time and introduces at most n-2 preemptions.

He also showed that there can be no nearly on-line algorithm for the case

of arbitrary deadlines. Horn [8] proposed a network flow algorithm for the

latter case. He suggested that one might conduct a search for the optimum

value of L , but offered no upper bound on the number of trial values
max

that have to be tested. Our contribution here is to obtain such a bound and

to show that it is polynomial in the problem size.

Horn's approach is as follows. Suppose y is a trial value for L
max

Let {e1 , ... ,e 2n} (e 1 ~ .•. ~ e 2n) be the ordered collection of release dates

r. and induced deadlines d.+y; if a release date and a deadline are equal,
J J

the smaller index is to be assigned to the release date. Further, define the

time interval Ek= [ek,ek+l] fork= 1, ... ,2n-1.

A flow network is constructed with job vertices J 1 , ... ,Jn, interval

vertices E1 , ... ,E2n-l' a source vertex Sand a sink vertex T. There is an

arc (Jj,EK) of capacity ek+l-ek if and only if rj ~ ek and ek+l ~ dj+y.

In addition, there is an arc (S,J.) of capacity p. for j = 1, ... ,n and an
J J

arc (Ek,T) of capacity m(ek+l-~) fork= 1, ... ,2n-1. Now, a maximum value

flow is found in O(n3) time [11]. It should be evident that the trial value

y is feasible if and only if the maximum flow value is P = I;=l pj. If the

maximum flow value is indeed P, a feasible schedule is easily constructed:

for each interval Ek, read off the flows through the arcs (Jj,Ek) and apply

McNaughton's schedule-construction procedure [14]. The resulting schedule

contains at most O(n2) preemptions.

Notice that there are certain critical trial values of L . These are
max

2
then values y such that dj+y = rk for some pair Jj and Jk. The vertex-arc

structure of the network remains unchanged for all trial values between two

successive critical values.

We propose to find the optimum value of L in two phases. In the
max

first phase,, the largest infeasible critical value y 0 is determined. A
2

bisection search for y 0 requires the testing of log2n = O(log n) trial
3

values, or O(n log n) time overall.

11

In the second phase, a maximum value flow and a minimum capacity cut

are found in the network with capacities induced by the value y 0 • Next, a

value y 1 > y 0 is determined in such a way that the capacity of this cut is

increased to exactly P. The procedure is then repeated in the network in­

duced by y 1 .. This process yields a sequence of increasing trial values y 1 .

It terminates when the minimum cut capacity is exactly P, i.e., at an

iteration z where y is the first feasible trial value and therefore the
z

optimum value of L • We shall show that z = O(min{n2 ,log n + log p }) ,
max 3 2 max

where pmax 0= max 1 <. < {p.}. Hence the two phases require O (n min {n , log n
-J-n J

+ log pmax} 1 time overall.

Suppose a minimum cut with capacity P0 <Pis found in the network for

y 0 . Consider how the capacity of this cut is changed when y 0 is increased

by some positive amount o. The capacity ek+l-ek of an arc (Jj,Ek)

(a) stays the same if ek and ek+l are both release dates or both deadlines;

(b) increases by o if ek is a release date and ek+l :is a deadline;

(c) decreases by o if ek is a deadline and ek+l is a release date.

A similar situation holds for the capacities of the arcs (Ek,T), except

that they change by mo or -mo rather than by o or -o. It is not hard to

establish that the capacity of the cut is increased by µ 0 o, where µ 0 is an

integer multiplier with 1:,; µ 0 :,; 2n2 . Accordingly, we set o = (P-P0)/µ 0 ,

y 1 = y 0+o, and repeat.

Each cut in the network can be characterized by a pair (µ,P 1), where

µ is its multiplier and P' its capacity. When y. is increased toy. 1 , the
l l+

multipliers of cuts do not change, although their capacities, of course, do.

To obtain bounds on the number of iterations, suppose that the minimum cut

found at iteration i has multiplier JJ. and capacity P., and consider the
l l

replacement of y 1 by yi+l.

at

at

Each cut with multiplier JJ ~ JJ. will have its capacity increased to
l

least P. Hence]J. 1 <]J., unless z = 1+1. It follows that there can be
2 l+ l

most O(n) iterations.

12

Further, each cut with multiplierµ< 11. and capacity P' 2:: P-(P-P.)µ/11.
1 1 1

will have its capacity increased to at least P. It is not hard to verify

that at each iteration the number of possible pairs (µ,P') with P' ~ Pis

decreased by a factor of at least two. It follows that there can be at most
2

log2 (n P) = O(log n + log p) iterations. we have arrived at the desired
max

result.

Bruno and Gonzalez [3] showed that essentially the same feasibility test

can be employed in the case of two uniform machines. Under the assumption

that s 1 2:: s 2 , each arc (Jj,Ek) has capacity s 1 (ek+l-ek) and each arc (Ek 1T)

has capacity (s 1+s 2) (ek+l-ek) •

The first phase in our search for the optimum value of L is as
max

before. In the second phase, the arc capacities change by ~s 1o and ~(s 1+s 2)o,
2 .

instead of +o and +mo. Since there are now s 1n possible values for the

multiplierµ, the first bound on the number of iterations is O(s 1n 2). Since

there are s 1 n 2P possible pairs (µ, P') with P' ~ P, the second bound is

O(log s 1 + log n + log p) . Hence the algorithm requires O(n3min{s 1n 2 ,
max

log s 1 + log n + log p }) time overall.
max

13

4. TOTAL WEIGHTED COMPLETION TIME

we finally consider the problem of minimizing the total completion time Ic.
J

or the totaJ weighted completion time Iw .C ..
J J

Let us first assume that all release dates are equal. Bruno and Gonzalez

[6] proposed a simple algorithm to minimize Ic. on m uniform machines:
J

order the jobs according to nondecreasing execution requirements, and

schedule each successive job preemptively so as to minimize its completion

time. This algorithm is illustrated in Figure 5. Obviously, it requires

O(n log n + mn) time and introduces at most (m-1) (n-~) preemptions.

m = 3, ~l = 1, ~2 = 2, ~3 = 3

n = 4, pl= 3, p2 = 8, p3 = 8, µ4 = 10

optimal schedule obtained by Bruno-Gonzalez algorithm: ·

13 J4

12 J3

11 J2

0 1

14

13

3 4

14

6

re,= 14
j

Figure 5 Example with m uniform machines, all r.
J

0, Ic. criterion.
J

The Bruno-Gonzalez algorithm not only minimizes Icj but also l~=l Cj

for 9., = 1, ,n-1. Further, it minimizes Iw.C. provided that the weights
J J

are agreeabJe, i.e., pj < pk implies wj ~ wk [6].

A characteristic feature of the algorithm is that at each point in time

the fastest machines are working on the jobs with the shortest remaining

execution requirements. One may consider a straightforward extension to

the case of arbitrary release dates, in which at each subsequent release

date the above rule is applied to the available jobs. In contrast to the

algorithm described in Section 2, the resulting algorithm has the property

that the remaining execution requirements passed on to the next interval

will be as unevenly distributed as possible. Unfortunately, it may produce

non-optimal schedules, as is illustrated in Figure 6. The example shows

14

in fact that no on-line algorithm will be able to minimize Icj even on two

identical machines.

For the case of a single machine, it has been pointed out in Section 1

that when all release dates are

by scheduling the jobs in order

equal Iw.C. is minimized in O(n log n) time
J J

of nonincreasing ratios w./p. [18]. Again,
J J

n. = 5, Jtl = /t2 = Ji.3 = 0, Jt4 = Jt5 = Jt

P1 = P2 = P3 = 2, P4 = P5 = 1

(a.) Jt = 2

optimal schedule obtained by extended Bruno-Gonzalez algorithm:

J 1 14

J 2 15

0 2 3

(b) Jt = 3

optimal schedule:

J 1 I 12
121 13

0 1 2 3

13

14

15

4

5

Ic. = 15
j

Ic. = 16
j

non-optimal schedule obtained by extended Bruno-Gonzalez algorithm:

Ml J 1 13 13 15

M2 J 2 re,=
j

17

0 2 3 5

Figure 6 Example with two identical machines, Ic.
J

criterion.

an obvious extension to the case of arbitrary release dates is to apply the

ratio rule at: each release date to the remaining execution requirements of

the available jobs. This on-line algorithm yields an optimal schedule when

the weights are equal or agreeable [1]. Surprisingly [1,p.82], the problem

is NP-hard when the weights are arbitrary, as will be shown below.

This result will be obtained by a reduction from the following NP­

complete problem [10]:

15

PARTITION: Given positive integers a 1 , ... ,at,b with l~=l aj = 2b, does there

exist a subset Sc T = {1, .•. ,t} snch that I. Sa.= b?
JE J

Given any instance of PARTITION, we define a corresponding instance of the

problem of minimizing Iw.C. on a single machine subject to arbitrary release
J J

dates as follows:

n = t+1;

r. = 0, pj = w. = a. (j E T) ;
J J J

r = b, pn = 1 ' w 2.
n n

We claim that PARTITION has a solution if and only if there exists a sched­

ule with value Iw.C.:,; y, where
J J

y = l1<"<k<t a.ak + 3b + 2.
-]- - J

With respect to {J. lj ET}, any nonpreemptive schedule without machine idle
J

time is optimal and has value Il<"<k<t a.ak. Inserting the unit-time job J
-J- - J . n

in a schedule for {J.lj ET} increases the contribution to Iw.C. of the
J J J

latter set by the total weight of all jobs completed after J. Denoting the n
index set of all jobs completed before J by S, we therefore have for any

n
schedule that

C = b+c+1 for some C 2 0,
n

IjES w. = b+c-d
J

for some d 2 0,

Iw.C. -- l1:,;j:,;k:,;t ajak + 2b - IjES w. + 2C = y + C + d
J J J n

(cf. Figure 7). It follows that there exists a schedule with value y if and

only if PAR"rITION has a solution.

Since PARTITION can be solved in O(tb) time, the above reduction does

not exclude the existence of a similar pseudopolynomial algorithm [5] for

the single machine problem. However, the latter problem is NP-hard even with

respect to a unary encoding C12] (NP-hard in the strong sense [5]), which

implies that it cannot be solved in pseudopolynomial time unless P = NP.

16

schedule corresponding to solution of PARTITION:

0

• • • • • • • . • • I . • .•.•.••. ·········•{J. jES}•········ • • • • • • • • • • j •••••••••
000000000 I . 00000000 J 000000000{]. j€T-S}oooooooo n 000000000 J 00000000

b b+l 2b+l

arbitrary schedule:
. • . • • . • • • • . • I . • .••.....•• ooo
• · • • • • • • • • • • {J . J E:S} • • • • • • • • • • • o o o
• 0 0 0

ooo I . 000000 J ooo{J. j€T-S}oooooo n ooo 1 000000

0 b+c.-d b+c. b+c.+l 2b+l

Figure 7 Reduction from PARTITION to single machine problem, Iwjcj criterion.

This stronger result can be obtained by a reduction from the following

unary NP-complete problem [4]:

3-PARTITION: Given positive integers a 1 , ••• ,a3t,b with I~~l aj = tb, do there

exist t pairwise disjoint 3-element subsets s. c {1, .•• ,3t} such that
1.

t a = b for i = 1, •.. ,t?
lj€S. j

1.

The reduction is as follows:

n = 4t-1;

rj = O, pj = wj = aj (j = 1, ..• ,3t);

r. = (j-3t)(b+l)-1, p. = 1, wj = 2 (j = 3t+1, ••• ,4t-1);
J J 3

Y = ll~j~k~3t ajak + (t-l)t(2b+l).

The equivalence proof is left to the reader.

17

5. CONCLUDING REMARKS

An important recent contribution to the theory of preemptive scheduling of

uniform machines subject to arbitrary release dates is the development of a

polynomial-time algorithm to minimize Lmax by Martel [13]. His method pro­

ceeds along the same lines as our algorithm for the case of identical ma""'

chines described in Section 3 and is based on a "generalized" network flow

model.

The remaining major open problem in this area involves the minimization

of Ic .. It has been pointed out that this problem cannot be solved by an on­
J

line algorithm. We suspect that it cannot be proved NP-hard either and con-

jecture that it is solvable in polynomial time.

ACKNOWLEDGMENTS

This research was partially supported by NSF Grant MCS76-17605 and by NATO

Special Research Grant 9.2.02 (SRG.7).

18

REFERENCES

1. K.R. BAKER (1974) Introduction to Sequencing and Scheduling. Wiley,

New York.

2. J. BRUNO, E.G. COFFMAN, JR., R. SETHI (1974) Scheduling independent

tasks to reduce mean finishing time. Comm. ACM 1.2_,382-387.

3. J. BRUNO, T. GONZALEZ (1976) Scheduling independent tasks with release

dates and due dates on parallel machines. Technical Report 213, Comput­

er Science Department, Pennsylvania State University.

4. M.R. GAB~Y, D.S. JOHNSON (1975) Complexity results for multiprocessor

scheduling under resource constraints. SIAM J. Comput. _!,397-411.

5. M. R. GAB~Y, D.S. JOHNSON (1978) "Strong" NP-completeness results: moti­

vation, examples and implications. J. Assoc. Comput. Mach. ~,499-508.

6. T. GONZALEZ (1977) Optimal mean finish time preemptive schedules. Tech­

nical Re,port 220, Computer Science Department, Pennsylvania State

University.

7. T. GONZ.A,LEZ, S. SAHNI (1978) Preemptive scheduling of uniform processor

systems. J. Assoc. Comput. Mach. ~,92-101.

8. W.A. HOF~ (1974) Some simple scheduling algorithms. Naval Res. Logist.

Quart. 21,177-185.

9. E.C. HORVATH, S. LAM, R. SETHI (1977) A level algorithm for preemptive

scheduling. J. Assoc. Comput. Mach. ~,32-43.

10. R.M. KAF~ (1975) On the computational complexity of combinatorial

problems. Networks 5,45-68.

11. A. V. KARZANOV (1974) Determining the maximal flow in a network by the

method of preflows. Soviet Math. Dokl . .1:.2_,434-437.

12. J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of

machine scheduling problems. Ann. Discrete Math. 1,343-362.

13. C. MARTEL (1979) Personal communication.

14. R. McNAUGHTON (1959) Scheduling with deadlines and loss functions.

Management Sci. §_, 1-12.

15. S. SAHNI (1977) Preemptive scheduling with due dates. Technical Report

77--4, Department of Computer Science, University of Minnesota, Minnea­

polis.

16. S. SAHNI, Y. CHO (1979) Scheduling independent tasks with due times

19

on a uniform processor system. J. Assoc. Comput. Mach., to appear.

17. S. SAHNI, Y. CHO (1979) Nearly on line scheduling of a uniform proces­

sor system with release times. SIAM J. Comput., to appear.

18. W.E. SMITH (1956) Various optimizers for single-stage production. Naval

Res. Loqist. Quart. i, 59-66.

