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ABSTRACT 

We investigate the computational complexity of deterministic sequencing 

problems in which unit-time jobs have to be scheduled on a single machine 

subject to chain-like precedence constraints. NP-hardness is established 

for the cases in which the number of late jobs or the total weighted tardi

ness is to be minimized, and for several related problems involving the 

total weighted completion time criterion. 

KEY WORDS &, PHRASES: NP-hardness, single machine, unit-time jobs, chain

like precedence constraints, number of late jobs, total weighted tardiness, 

total weighted completion time. 

NOTE: This report is not for review; it has been submitted for publication 

in a journal. 





1 

1. INTRODUCTION 

The theory of the computational complexity of combinatorial problems has 

been applied on various occasions to provide fundamental insights into their 

inherent difficulty, notably in the area of sequencing and scheduling [7J. 

Rather than reviewing this theory in detail, we refer to [9;15] for informal 

introductions and to [6] for a thorough exposition. Suffice it to say that 

the theory has allowed the identification of a large class of NP-complete 

problems, with the following two important properties: 

(i) no NP-complete problem is known to be easy, i.e., solvable by an algo

rithm whose running time is bounded by a polynomial function of problem 

size; 

(ii) if any NP-complete problem would turn out to be easy, then they would 

all be easy. 

All these problems are recognition problems, which require a yes/no answer. 

The optimization problems that correspond to many of them are at least as 

difficult and will be called NP-hard. Many notorious problems such as 0-1 

programming, traveling salesman, plant location and job shop scheduling 

problems are NP-hard. Hence, establishing NP-hardness of a problem yields 

strong circumstantial evidence against the existence of a polynomial-time 

algorithm for its solution. This makes it easier to accept the inevitability 

of tedious enumerative optimization methods or of fast approximation algo

rithms. 

In this paper we shall be mainly concerned with the complexity of 

scheduling unit-time jobs on a single machine subject to chain-like prece

dence constraints. The scheduling model is defined as follows. There are n 

jobs J 1 , ... ,Jn that have to be processed on a single machine. The machine 

can execute at most one job at a time; each job is available at time zero 

and requires one unit of uninterrupted processing time. The ordering of the 

jobs has to respect a given precedence relation ➔ • This relation is derived 

from an acyclic directed graph with vertices corresponding to jobs; if there 

is a directed path from Jj to Jk, we write Jj ➔ Jk and require that Jj is 

completed before Jk can start. Some important types of precedence relations 

are defined and illustrated in Figure 1. We shall assume that the constraints 

are chain-like, i.e., each job has at most one immediate predecessor and at 
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(d) c..hcu__n: each vertex has indegree at most one and outdegree at most one. 

Figure 1 Types of precedence relations. 

most one immediate successor. 

Each feasible schedule defines a completion time C. for J. (j = 1, ... ,n.). 
J J 

The optimality criteria that will be considered are all nondecreasing func-

tions of c1 , ... ,Cn. Given a due dated. and a weight w. for each J., we de-
J J J 

fine its tardiness T. = max{O,C.-d.} and its unit penalty u. = 1 if c. > d., 
J J J J J J 

U. = 0 otherwise, and we may reauire the minimization of the total weighted 
J -

completion time Iw.C., the total weighted tardiness LW,T., the total tardi-
J J J J 

ness LT,, or the number of late jobs LU,. 
J J 

In Sections 2 and 3 we establish NP-hardness for the minimization of 

LU, or LW,T. in the described model. Weaker results for the LU, criterion 
J J J J 

have been reported in [4;8]; the case of the LT, criterion remains open. In 
J 



Section 4 we prove NP-hardness for the minimization of Iw.c. in various 
J J 

related scheduling environnents. In Section 5 we summarize our results in 

the compact notation of [7] and offer some concluding remarks. 

3 
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2. THE NUMBER OF LATE JOBS 

The main result of this paper concerns the minimization of Iu. on a single 
J 

machine. 

THEOREM 1. T.he problem of scheduling unit-time jobs on a single machine sub

ject to chain-like precedence constraints so as to minimize Iu. is NP-hard. 
J 

The case in which there are no precedence constraints but arbitrary process

ing times is solvable in O(n log n) time [19]. Thus, imposition of a very 

simple type of precedence relation on the jobs has a dramatic effect on the 

computational complexity of the problem. Theorem 1 dominates previous NP

hardness results for the case of arbitrary precedence constraints [4] and 

for the case of chain-like constraints and arbitrary release dates (i.e., 

lower bounds on the starting times of the jobs) [8]. 

Proof of Theorem 1. We have to show that some known NP-complete problem is 

reducible to the Iu. problem. Our starting point will be the following NP
J 

complete problem [ 9; 6; 16]: 

SET 3-P.A.RTITION: Given a set S = { 1, ... , 3t} and a family ~ = { S l, ... , 

S} of 3-element subsets of S, does~ include a partition if S, i.e., 
s 

a subf~nily oft subsets such that each element in Sis contained in 

exactly one of them? 

Given any instance' of SET 3-PARTITION, we construct an instance of the Iu. 
J 

problem, but with nonequal processing times, as follows: 

there are 4s jobs; 

We 

for each occurrence of an element j ES in a subset S. E ~, there is a 
J.. 

job Jij with processing time pij = sj and due date dij 

(j ES., i = 1, ... ,s); 
J.. 

t+½sj (j+1) 

for each subset S. E ~, there is a 
J.. 

job Ji with processing time pi= 1 

and due dated. = d, where d = s + 
J.. 

s\~ 1\. j (i = 1, ... ,s); 
Li= LJESi 

for each subset S == {j,j' ,j"} 
i 

E ~, where j < j' < j", there are chain-

like pn~cedence constraints Ji ➔ J ij ➔ J ij, ➔ J ij,, (i = 1, ... ,s). 

shall prove the following propositions. 

l(a) This problem can be polynomially transformed into an equivalent problem 



with unit processing times. 

l(b) SET 3-PARTITION has a solution if and only if there exists a feasible 

schedule with value Iu. ~ 3(s-t). 
J 

Propositions 1 (a) and l(b) together imply Theorem 1. 

Proof of Proposition 

••• ➔ J~~ij) of unit-time 
J.J 

l(a). we replace each job J .. 
(1) J.J 

jobs with due dates d .. = 
J.J 

by h . ( 1) 
a c ain J.. ➔ 

J.J 
= d (pirl) = d 

ij , 
d(P.:i,.j) = d (j ES., i = 1, ... ,s). 
ij ij J. The resulting problem has d unit-time 
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jobs. Given any feasible schedule in 
(1) (p · . ) 

which Ji. , ... ,J. _iJ are not scheduled 
J J.J (1) (p· ···1) 

consecutively, we can obtain another schedule by moving J .. , ... ,J. _J.J to 
( J.J J.J 

the right, up to J.~ij), thereby moving some other jobs to the left. This 
J.J 

schedule is still feasible, since no precedence constraints are violated, 

and it has no more late jobs, due to our choice of due dates. Hence, each 

h . ( 1) 
c ain J.. ➔ 

J.J 
➔ J~~ij) can be considered as a single job J .. with process-

J.J J.J 
ing time p. . and 

J.J 
due date d ... 

J.J 
Proof of Proposition l(b). Suppose that SET 3-PARTITION has a solution, 

i.e.,,$_ includes a partition,$_' of S. A feasible schedule in which no more 

than 3(s-t) jobs are late is then obtained as follows (cf. Figure 2). First, 

the t "subset jobs" J. with S. ES' are scheduled in the interval [O,tl. For 
J. J. = 

each element j ES, it is now possible to select exactly one "occurrence job" 

from J. = {J .. , lj' = j, i = 1, ... ,s} that is preceded by one of these subset 
~j J.J 

SET 3-PARTITION instance with t= 2, s= 4: 

s 1 2 3 4 5 6 

s1 1 2 4 

s2 2 3 5 

S3 2 4 5 

S4 3 5 6 

partition of S: {S1,s4} 

feasible schedule with 3(s-t) late jobs: 
\J1HJ11rJ12 : T------)>J,4 , !J2~J22-• ~---•-Jz3,-,-----~--J25 

i )J4_ , , J43~!~~·----;------->J45 -~---J46 J3~~J32'~----,----J34,-----~J3S 

P++--f~~➔ ~~~~ 
t,J:,t(Jt+i) s~~st(}t+l/ 

Figure 2 Illustration of the reduction of SET 3-PARTITION to the Iu. problem. 
J 
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jobs, and to schedule it in the interval [t+½s(j-l)j,t+½sj(j+l)]; in this 

way, 3t occurrence jobs are completed at their due dates. Finally, the re

maining s-t subset jobs are scheduled in [t+~st(3t+1),s+~st(3t+1)] and the 
3 

remaining 3(s-t) occurrence jobs in [s+2st(3t+1) ,d]; the latter occurrence 

jobs are late. 

Conversely, suppose that there exists a feasible schedule in which at 

most 3(s-t) jobs are late, or, equivalently, in which at least 3t occurrence 

jobs are on time. It will be shown below that this implies that exactly one 

job from each set J. (j E ·s) is on time. This, in turn, implies that the 
=:i 

amount of time available for processing subset jobs that precede at least 

one of these occurrence jobs is bounded from above by 

max. 8 {a .. } - I, 8 p .. = t + -23st(3t+1) 
JE l] JE l] 

3 
2st (3t+1) t. 

The subsets corresponding to these jobs constitute a subfamily~, c ~ of 

size at most t such that each element in Sis contained in at least one of 

them. Hence,~, defines a partition of S. 

It remains to be shown that if 3t occurrence jobs are on time, then 

exactly one job from each set J. (j ES) is on time. It is clearly sufficient 
=:i 

to prove that the following assertion A(j) holds for j = 1, ... ,3t. 

A(j): If j occurrence jobs are on time and completed not later than 

t+½sj(j+l), then exactly one job from the set 2x is on time, fork= 

1, ... ,j. 

Note that A(j) implies that no set of j on-time jobs can be completed before 

d sk = ½ s j ( j + 1 ) • 
lk=l 

Obviously, A(l) and A(2) are true. We will show that A(l) , ... ,A(j-1) 

together imply A(j). Suppose that j jobs are on time and completed not later 

than t+½sj (j+l). Let x· (0 ~ x ~ j) of these jobs 

then at least one job from a set~ with k 2'. j+l 

belong to J .. If x = 0, 
=:i 

has to be completed not 

later than t+½sj(j+l), and j-1 other jobs have to be on time and completed 

not later than 

t + ½sj(j+l) - s(j+l) = t + ½s(j-l)j - s < ½s(j-l)j. 

A(j-1) implies that this is impossible. It follows that x 2 1, and j-x other 

jobs have to be on time and completed not later than 



t + ½sj (j+l) - xsj = t + ½s (j-x) (j-x+l) - ½s (x-1) x 

{= t + !s(j-l)j 

< ½ s (j-x) (j-x+l) 

for x = 1, 

for x 2:-: 2. 

If x ~ 2, A(j-x) implies that this is impossible. It follows that x = 1, 

and A(j-1) asserts that exactly one job from the set 4 is on time, for 

k = 1, .•. ,j-1. This is equivalent to A(j). D 

7 
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3. TOTAL WEIGHTED TARDINESS 

We next consider the minimization of Iw.T. on a single machine. 
J J 

THEOREM 2. The problem of scheduling unit-time jobs on a single machine sub

ject to chain--like precedence constraints so as to minimize Iw.T. is NP-hard. 
J J 

The case in which there are no precedence constraints is simply solvable as 

a linear assignment problem in O(n3) time [7]; for arbitrary processing times 

it is NP-hard [18;17;12]. When all weights are equal, the problem of Theorem 

2 is NP-hard for arbitrary precedence constraints [14], but the case of chain

like constraints remains open. We strongly suspect that even this problem is 

NP-hard: minimizing LT, seems much harder than minimizing Iu., ands~ far all 
J J 

complexity results have confirmed this intuition. 

Proof of Theorem 2. Our proof is of the same form as the proof of Theorem 1. 

We will start from the following NP-complete problem [6]: 

3-PARTITION: Given a set S = {1, ..• ,3t} and positive integers a 1 , ... ,a3t, 

b with e4 < aJ. < e2 for all j ES and I. a.= tb, does Shave a partition 
JES J 

into t 3-element subsets s. such that I. a.= b (i = 
1 JESi J 

Given any instance of 3-PARTITION, we construct an instance 

problem, again with nonequal processing times, as follows: 

there are 4t-1 jobs; 

1, ... ,t)? 

of the Iw.T. 
J J 

for each j ES, there is a job Jj with processing time pj = a., 
J 

due date 

d. = 0 and weight w. = a.; 
J J J 

for each i E {l, ... ,t-1}, there is a job J'. with processing time p'. = 1, 
1 ~i 

due dated'.= i(b+.1) and weight w' = 2; 
1 i 

there are no precedence constraints. 

It clearly suffices to prove the following propositions. 

2(a) This problem can be polynomially transformed into an equivalent problem 

with unit processing times and chain-like precedence constraints. 

2(b) 3-PARTITION has a solution if and only if there exists a schedule with 

value IwjTj ~ y, where y = I 1~j~k~3t ajak + !(t-l)tb. 

It is easily verified that the entire transformation is polynomial-bounded. 

This crucially depends on the fact that 3-PARTITION is NP-complete even when 



the numerical problem data are encoded in unary rather than binary, i.e., 

when the problem size is O(tb) instead of O(t log b) [SJ. 
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Proof of: Proposition 2(a). We 

➔ J(Pj) of unit-time jobs with due 

replace each 
(1) 

dates d. 

job b h . (1) 
J~ v a c a1.n J. ➔ ••• 

J ~ J 

oi Cp--1) (p·) 
W, = . . . W. J = 0, W. J = W. (j 

J J J J 

J 
E S) • 

= d(pj) = d. and weights 
j J 

As in the proof of Proposition 

l(a), we can apply a simple interchange argument to show that, due to our 

choice of weights, each chain J ~ l) ➔ • • • ➔ J ~Pj) can be considered as a 
J J 

single job J:i with processing time pj, due date dj and weight wj. 

t-1) . 

Proof oF Proposition 2(b). Let us first ignore the jobs J'. (i = 1, ... , 
1. 

Since d. = 0 for all j 
J 

ES, we have'. S w.T. = '. S w,C,; moreover, LJE J J LJE J J 
j ES, the value of I w C is not influenced by the 

jES j j 
since p. = w. for all 

J ] 
ordering of S [21. It follows that for any schedule of the jobs J. (j ES) 

J 
without machine idle time we have 

I. S w.T. = I1<"<k<3t a.ak. JE J J -]- - J 

Let us now calculate the effect of inserting job J 1 in such a schedule. Sup-· 

pose that J 1 is completed at time c1 and define L1 = c1-di· Since all jobs 

J j (j E S) that are processed after Ji are completed one time unit later, 

the value of I. S w.T. is increased by the total weight of these jobs. It 
JE J J 

follows that 

IjES wjTj + wiTi = (IlSjSkS]t ajak + (t-l)b - Li) + 2max{ □ ,L{} 

= I1SjSkS3t ajak + ((t-l)b + !Lil). 

It is easily seen that insertion of all jobs J~ resulting in completion times 
1. 

C' d'+L' (i = 1, ... ,t-1) yields a schedule with value 
i i i 

IL'. I) 
1. 

It follows that a schedule has value Iw.T. Sy if and only if there is no 
J J 

idle time and moreover the jobs J'. are completed at times C'. = d'. = i(b+l) 
1. 1. 1. 

(i = 1, ... ,t-1). Such a schedule exists if and only if the jobs J. (j ES) 
J 

can be divided into t groups, each containing 3 jobs and requiring b units 

of processinq time, i.e., if and only if 3-PARTITION has a solution. D 
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4. TOTAL WEIGHTED COMPLETION TIME 

We finally extend the result of the previous section to the minimization of 

Iw.C. in various scheduling environments. Our results are stated without 
J J . 

proof; they can easily be derived by a straightforward application of the 

techniques employed to prove Theorem 2. 

Theorem 3 deals with the single machine model where, in addition, the 

jobs have either release dates {i.e., lower bounds on their starting times) 

or deadlines {i.e., upper bounds on their completion times). 

THEOREM 3. The problems of scheduling unit-time jobs on a single machine sub

ject to chain-like precedence constraints and either arbitrary release dates 

or arbitrary deadlines so as to minimize Iw.c. are both NP-hard. 
J J 

The case in which there are no precedence constraints but both release dates 

and deadlines is solvable as a linear assignment problem in O{n3) time; the 

reverse case in which there are arbitrary precedence constraints but neither 

release dates nor deadlines is NP-hard [13;14]. When all weights are equal, 

the case of arbitrary precedence constraints, release dates and deadlines 

can be solved in O{n2) time through the Coffman-Graham algorithm [1] [11]. 

Theorem 4 extends these results to the situation of two parallel iden

tical machines, where each job can be processed on either machine. Chain-like 

precedence constraints and release dates {deadlines) on one of the nachines 

can be simulated by outtree{intree)-like constraints, including a single 

chain on the other machine, in an obvious way. 

THEOREM 4. The problems of scheduling unit-time jobs on two parallel identi

cal machines subject to either outtree- or intree-like precedence constraints 

so as to minimize Iw.C. are both NP-hard. 
J J 

When all weights are equal, the case of arbitrary precedence constraints can 

be solved in O{n2) time by the Coffman-Graham algorithm [1] [3]. 

Theorem 5 states analogous results for a two--machine flow shop, where 

each job J. consists of a chain of two operations o1 . ➔ o2 . which have to be 
J J J 

processed on the first and the second machine respectively. Note that a pre-



cedence constraint Jj ➔ Jk implies that o2 j has to be completed before o1k 

can start. 

THEOREM 5. ~~he problems of scheduling jobs with unit-time operations in a 

two-machine flow shop subject to either outtree- or intree-like precedence 

constraints so as to minimize Iw.c. are both NP-hard. 
J J 

11 

When all weights are equal, these problems can be solved in polynomial time 

[10], but the case of arbitrary precedence constraints then remains open. 
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5. CONCLUDING REMARKS 

For those who are familiar with the classification of deterministic sequenc

ing problems introduced by Graham, Lawler, et al. [7], we list the problems 

which have be~en shown to be NP-hard in this paper using their notation. 

Theorem 1 : llchain,p.=llI□.; 
J J 

Theorem 2: 1 I chain,p .=11 Iw .T.; 
J . J J 

Theorem 3: 1 II chain, r . , p. = 1 I I w. C . ; 1 I cha in , d . , p . = 1 I I w . C . ; 
J J J J J J J J 

Theorem 4: P2Jouttree,p.=11Iw.C.; P2jintree,p.=11Iw.C.; 
J J J J J J 

Theorem 5: F2jouttree,p.=1Jiw.C.; F2lintree,p.=11Iw.C .. 
J J J J J J 

The remainin~r major open problem in the area of scheduling chains of unit

time jobs on a single machine is 1lchain,p.=1!IT .. 
J J 

Proposition 2(b) in Section 3 basically establishes NP-hardness for 

1I Jiw.T .. · The same reduction was already given, without proof, in [17,p.359]; 
J J 

a more complicated transformation can be found in [12]. NP-hardness proofs 

for this problem that are weaker in the sense that they are valid only with 

respect to the standard binary encoding of the numerical problem data 

appeared in [17,p.357] and, surprisingly, [18]. All the above NP-hardness 

results are "'strong" in the sense that they hold even with respect to a 

unary encoding [5;6;15]. 
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