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. . 1 *) On stochastic dynamica systems 

by 

C. van Putten & J.H. van Schuppen 

ABSTRACT 

The conditional independence relation for a triple of a-algebras is in­

vestigated, specifically the question of the characterization and the con­

struction of minimal a-algebras that make two given a-algebras conditionally 

independent. A definition of a a-algebraic stochastic dynamical system is 

proposed for a-algebra families in terms of the conditional independence 

relation. For this a-algebraic stochastic dynamical system the stochastic 

realization problem is posed. From this general formulation the correspond­

ing concepts for stochastic processes may be deduced. 

KEY WORDS & PHRASES: conditional independence, stochastic dynamical system, 

stochastic realization problem. 
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I • INTRODUCTION 

The purpose of this paper is to report on our re­

search work on stochastic dynamical systems, speci­

fically on the definition of this concept and the 

associated stochastic realization problem. The nov­

elty of this paper is in the application of the con­

cept of conditional independence, for a triple of 

a-algebras. The motivation of our research work is 

in the problem of finding system models for arbi­

trary stochastic processes, and in the stochastic 

filtering and the-stochastic control problem. 

What is the stochastic realization problem and what 

results have been obtained so far? The stochastic 

realization problem has been defined as to find a 

representation for a Gaussian process, or equiva­

lently a second order process, as the output of a 

linear dynamical system driven by Gaussian indepen­

dent increment processes. This problem has been 

posed by Kalman (5), motivated by the formulation 

of a stochastic system theory and the linear stocha­

stic filtering problem. Doob (3) in 1944 has ini­

tiated research on Gaussian processes. Faurre (4) 

has shown existence of realizations using the con­

nection with linear deterministic dynamical systems, 

specifically the spectral factorization and the 
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positive real lemma. The first probabilistic ap­

proach has been given by Akaike (I) using the con­

cept of canonical variables. Picci (12,13) has ex­

tended this approach to continuous time Gaussian 

processes and indicated the relation with suffi­

cient statistics and splitting a-algebras. Lindquist 

and Picci (7,8,9) have resolved the strong stocha­

stic realization problem, and clarified the problem 

of finding all minimal output based realizations. 

Ruckebusch (15,16,17) has developed a Hilbert space 

formulation which also applies to the infinite di­

mensional case. 

Basic to our approach is the conditional indepen­

dence relation for a triple of a-algebras. A major 

problem for this relation is to characterize and to 

construct all minimal a-algebras that make two 

given a-algebras conditionally independent. We will 

present some partial results on this question. The 

formulation and the proofs given are definitely 

different from the case of Gaussian random vari­

ables or equivalently conditional independence in 

Hilbert space. 

Our aim is to treat stochastic realization problems 

for arbitrary stochastic processes. Rather than 

working with stochastic processes we will work with 



the spaces they generate, namely a-algebra families. 

Thus we define a a-algebraic stochastic dynamical 

system in terms of the conditional independence re­

lation. The characterizing property is the condition 

that future outputs and future states and past out­

puts and past states are conditionally independent 

given the current state. A definition of stochastic 

observability and stochastic reconstructability 

will also be given. For this concept we then pose 

the stochastic realization problem. From this form­

ulation for a-algebra families we may then deduce 

the corresponding definitions and results for stoch­

astic processes. The approach given is in many re­

spects similar to that presented by Ruckebusch (17) 

in terms of Hilbert spaces. 

Since this is only a brief paper no proofs will be 

given. A publication on the material of this paper 

is in preparation. Througout this paper {Q,F,P} 

will be a complete probability space. All sub-a­

algebras of F will be assumed to be complete. With­

out mentioning otherwise any random variable and 

stochastic process is real valued. All stochastic 

processes will be assumed to have separable and 

measurable modifications with sample paths that are 

right continuous with left hand limits. 

A brief outline of the paper follows. In section 

two we present results for the conditional inde­

pendence relation. The definition of a stochastic 

dynamical system and an example is given in section 

three. The stochastic realization problem is posed 

and coDDDented upon in section four. 

2. CONDITIONAL INDEPENDENCE 

An important tool in our definition of a stochastic 

dynamical system is the concept of conditional in­

dependence, a concept known in the literature. For 

the conditional independence relation we present 

some results on invariance of this relation under 

certain operations. Furthermore we pose the problem 

of characterizing all a-algebras that make two given 

a-algebras conditional independence and that are 

minimal with respect to set inclusion. We shall con­

clude with an example in which all those minimal a­

algebras can be exhibited. 

Below L{,(Fi) is the collection of all bounded Fi­

measurable real valued random variables (i=l,2); 

L1(F.) is the collection of all F.-measurable real 
1 1 

valued random variables with finite expectation 

(i=l ,2). 

Definition 2.1. Let {Q,F,P} be a probability space 

and F1, F2, G sub-a-algebras of F. F1 and F2 are 

said to be aonditionaZZy independent given Giff 

E[x 1 I G]E[x2 I GJ 

for all x1 
I I 

E Lb(F 1), x2 E 1t,(F2). 

Notation (F 1,F2,G) E CI(P). G is said to be split­

ting w.r.t. F1 and F2• □ 

Example 2.2. F, F1 and F1 v F2 (the smallest a­

algebra containing both F1 and F2) are splitting a­

algebras w.r.t. F1 and F2. 

Proposition 2.3. The following statements are 

equivalent. 

(a) 

(b) 

(c) 

(F 1,F2,G) E CI(P); 

(F2,F1,G) E CI(P); 
I E[x 1 I F2vG] = E[x 1 I G] for all x1 EL (F 1), D 

If G is the a-algebra containing all sets N of F 

with P(N) 0 or P(N) = I then E[x I G] = Ex for 

x E L1(F) and consequently (F 1,F2,G) E CI(P) is 

equivalent to independence of F1 and F2. 

The concept of conditional independence is used in 

the study of Markov processes. The equivalent pro­

perty 2.3(c) expresses that conditioning F1 on F2 v 

G, it is sufficient to know G only. Thus condition­

al independence is seen to be equivalent to a suf­

ficiency property for a-algebras. Sufficient a­

algebras in the Bayesian formulation of statistics 

have been considered in (18). 

Example 2.4. If H1, H2, H3 are independent a-alge­

bras, then H3 is a splitting a-algebra w.r.t. H1 v 

H3 and Hz v H3. 

Conditional independence is preserved under certain 

changes in F1, F2, G and Pas the following propo­

sitions show. First we introduce the operations of 

projection of a-algebras. 
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Definition 2.5. Let F1, F2 be sub-a-algebras of F, 

then a(F 1 I F2) is defined to be the smallest a-alge-

bra with respect to 

tions E[x 1 I F2J, x 1 

a(F 1 I F2) = a({E[x 1 

which all conditional expecta-
1 EL (F 1) are measurable 

I I F 2 J I x I E L (FI ) } ) • □ 



Proposition 2.6. Let F1, F2, G, h be sub-a-algebras 

of F. 

(a) If (F 1,F 2,G) E CI(P) and G c H c G v F1, then 

(F 1,F2 ,H) E CI(P); 

(b) If (F 1,F 2,G) E CI(P), then (F 1,F 2,a(F 1 I G)) e 

CI(P). □ 

In proving propositions like the one above the fol­

lowing proposition may be useful. 

Proposition 2.7. Let F1, F2, G, H be sub-a-algebras 

of F. 

(a) (F 1,F 2,G) e CI(P) iff a(F 1 I F2vG) c G; 

(b) (Fl ,F2,G) E CI(P) iff (Fj ,Fi,G) E CI(P) for all 

a-algebras F ;t C Fl VG and Fz c F2 VG. 

(c) (F 1 ,F 2vH,G) c CI (P) iff (F 1,F2,G) E CI (P) and 

(Fl ,H,F 2vG) ~: CI(P). □ 

Necessary and sufficient conditions for the preser­

vation of conditional independence under measure 

transformation are given by 

Proposition 2.8. Given the sub-a-algebras F1, F2, 

G and the probability measures P1, P0 on (rl,F), 

assume that: 
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bra is contained in F1 v F2 as the following example 

shows. 

Example 2.11. Let x 1, x2 , x 3 be independent non­

trivial random variables and F1 = a{x 1+x2}, F2 
a{x2+x3}, G = a{x 2}. Then (F 1,F2,G) E CI(P), G ¢ 

F1 v F2. G is minimal if x2 = IA and O < P(A) < I. 

Proposition 2.12. A minimal splitting a-algebra G 

w.r.t. F1 and F2 has the properties a(F 1 I G) = G 

and a (F 2 I G) = G. □ 

Example 2.13. Consider the probability space (JN, 

2JN ,P) with lN = {I, 2, ... }, 2JN the a-algebra of all 

subsets of lN and P a probability measure on 2JN 

satisfying P({n}) > 0 for all n E JN. Every a-alge­

bra Fin 2JN may be characterized by a partition of 

JN, rrF, giving the atoms of F. Let us define a­

algebras F1 and F2 by their partitions. 

{l},{2,3,4},{5},{6,7,8}, .•• , 

{1,2},{3},{4,5,6},{7},{8,9,10}, ... 

Let <n>F be the atom of n in F, then E[ I I GJ(m) = 
<n>F 

P(<n>Fn<m>G)/P(<m>G). 

(a) P1 « P0 on F1 v F2 v G, with p = dP/dP0 , We then have the following propositions about split-

(b) (F 1,F2,G) E CI(P0). ting and minimal splitting a-algebras w.r.t. F1 and 

Then (F 1,F 2,G) E CI(P 1) iff p = p1p2 a.s. P0 , where• F2 • 
+ + 

pl EL (FlvG,PO)" P2 EL (F2vG,PO). □ P 't' 2 13 I A 1 b G 1·s spl1'tt1"ng ropos1 10n . . . a-age ra 

We now define th,! property of minimality of split­

ting a-algebras, which is particularly important 

for the stochastic rali~ation problem. 

Definition 2.9. A a-algebra G is called a minimal 

splitting a-algebra w.r.t. F1 and F2 iff 

(a) (F 1,F2,H) E CI(P) and H c G imply H = G. 0 

The main problem here is to characterize all mini­

mal a-alg~bras that make two given a-algebras condi­

tionally independent, and to devise a procedure to 

construct such minimal a-algebras. We have not yet 

succeeded in resolving this problem. Below we state 

some preliminary results. 

The next proposition already has been stated in 

(18). 

Proposition 2.10 .. a(F 1 I F2) and a(F2 I F1) are mini­

mal splitting a-algebras w.r.t. F1 and F2• D 

It is not true that every minimal splitting a-alge-

w.r.t. F1 and F2 iff 

(a) <2n-1>G n <2m-1>G 

and 

0 for all n t m, n,m E lN 

(b) <2n>G c {2n-2,2n-1,2n,2n+l ,2n+2} n lN for all 

n E lN. 

Proposition 2.13.2. A a-algebra G is minimal split­

ting w.r.t. F1 and F2 iff 

(a) <2n-1>G n <2m-l>G = 0 for all n t m, n,m E lN 

and 

(b) a sequence {kn}~=! exists, kn E {-1,1} for ne lN 

such that {2n} c <2n+kn>G for all n c JN. 

We remark that the concept of conditional indepen­

dence for a triple of a-algebras is different from 

the concept of conditional independence for Hilbert 

spaces, as used in (10,17). The extension of the 

proofs from Hilbert space formulation to the a­

algebra formulation is nontrivial mainly because 

one cannot take an orthogonal complement with 



respect to a a-algebra as one can with respect to 

a subspace in a Hilbert space. 

3. STOCHASTIC DYNAMICAL SYSTEMS 

In this section we define stochastic dynamical sys­

tems. We motivate our definition with the follow­

ing well-known model. 

Definition 3.1. Given T = R+' random variables x0, 
. xo Yo 

y0, Brownian motion processes v, w, with F ,F 

F!, F: independent, a,y ER, and processes x, y 

defined by 

dxt axtdt + dvt,x0 , 

dyt yxtdt + dwt,Yo• 

Proposition 3.2. For the model of definition 3.1 we 
/!,y X Xt 

have (tF VtF ,Ft,F ) E CI for all i ET, which in 

turn implies that ( F8Yv Fx F8YvFx Ft) E CI for t t , t t' 
all t E T, 

Proof. A calculation using the conditional charac­

teristic function. D 

The second result says that any event in the future 

observation increments and future states condition­

ed on past observation increments and past states 

depends only on the current state. This property is 

the intuitive notion of a dynamical system, hence 

we will generalize this formulation, For a continu­

ous time stochastic differential model it seems 

necessary to work with the increments of the ob­

served process in the above proposition. 

To formulate a rather general definition of a stoch­

astic dynamical system we will not work with stocha­

stic processes but with the spaces they generate, 

that is, with families of a a-algebras. 

Definition 3.3. (a) A a-aigebraia stoahastia dynami­

aai system is a collection 

{O,F,T,r,{Py,YEf}, {Gt,Ht,teT}} 

such that for ally E r, t ET 

+ + - -
(GtvHt,GtvHt,Ht) E CI(Py). 

Here {n,F} is a measurable space, Ta totally order­

ed index set, r a control index set such that for 

ally Er there exists a probability measure PY: 

F ➔ [0,1] with {n,F,PY} complete, {Gt,Ht,teT} are 

two a-algebra families complete with respect to P 
+ - +Y 

for ally E r, and Gt= vs>t Gs, Gt= vs<t Gs' Ht= 

v H , H-t = v H . We call {Gt,tET} the output s>t s s<t s 
a-aigebra famiiy, and {Ht,teT} the state a-aigebra 

famiiy. A a-algebraic stochastic dynamical system 
+ -

is denoted by {Gt,Gt,Ht,tET} E ES{Py,yef}. 

(b) A a-algebraic stochastic dynamical system 
+ -

{Gt,Gt,Ht,teT} E ES{Py,yer} i! c~lled: 

output based: iff Ht c vseT(GsvGs) for all t ET; 

past output based: iff Ht c G~ for all t ET; 

future output based: iff Ht c G; for all t ET; 

externai based: if£ Ht¢ v T(G+vG-) for at least 
SE S S 

one t ET; 
+ stoahastia observabie: iff a(Gt I Ht) = Ht for all 

t E T; 

stoahastia reaonstruatabie: iff cr(G; I Ht) 

all t E T; 
+ -(c) For {Gt,Gt,Ht,teT} E ES{PY,yer} we define the 

stoahastia state transition funation as the map 

s < t, 

and the stoahastia read-out funation as the map 

(t,Ht,y) I+ Py I Gt' 

where Py I Ht denotes the restriction of Py to Ht. D 

The characterizing property of a a-algebraic stoch­

astic dynamical system implies by 2.3(c) that for 
I + + 

any y E r, t ET, XE L (GtVHt) 

E [x I G-vH-vHtJ = E [x I Ht]. 
y t t y 
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In words, any event in the future output and the 

future states conditioned on past output and past 

states depends only on the current state. Note that 

in the above definition the roles of past and future 

are interchangable, due to the synnnetry in the con-

ditional independence relation. Also note that 
+ -

{Gt,Gt'Ht,teT} E ES{P ,yer} implies that 
Y+ -

t € T, we have that (Ht,Ht,Ht) E CI(Py)' 

will call {Ht,teT} a Markovian a-algebra 

for all 

hence we 

family. So 

far we have given little attention to the stochastic 

control aspect in the above definition. 

The following equivalent condition is sometimes 

useful. 



Proposition 3.4. {G~,G~,Ht,tET} E ES{Py,yEr} iff 
+ - -

(I) (Ht,GtvHt,Ht) E CI(Py) for all t € T, y € r; 
+ - - + (2) (Gt,GtVHt,HtvHt) € CI(Py) for all t € T, y € r. 

Proof. Apply 2.7(c). D 

We specialize the above definitions to continuous 

time stochastic processes. 

Definition 3.5. A aontinuous time finite dimension­

al stoahastia dynamiaai system is a collection 

k n {O,F,T,r,{Py,YEr}, {R ,Bk}, {R ,Bn}} 

such that for ally E r, t € T, we have 
X 

( F6Yv Fx F 6YvFX Ft) E CI(Py) t t , t t' 

or, equivalently, that 

6y 6y xt 
{tF ,Ft ,F ,tET} € ES{Py,y€f}. 

Here {O,F} is a measurable space, Tc R is an inter­

val with its Borel measurable subsets, r a control 

index set such that for ally Er there exists a 

probability measure PY: F + [0,1], y: n 

x: 0 x T + Rn are stochastic processes, 

o({x ,Vs~t}), tFx = o({x ,Vs~t}), F~y = 
s 6 s 

Vs<t}), tF y = o({ys-yt,Vs>t}). We call 

X T + Rk, 
X 

and Ft= 

o({ys-yt, 

y the out-

put process, and x the state proaess. A representa­

tion of this object is denoted by 
X 

{ F6Y F6Y Ft tET} E ESFC{Py,yEr}. □ t , t , ' 

A ESFC representation is called output based, ex­

ternal based, stochastic observable, stochastic re­

constructable iff the corresponding a-algebaric 

stochastic dynamical system has these properties. 

The above definition, although similar to the de­

finition of a a-algebraic stochastic dynamical sys­

tem, differs from it in several aspects. For the 

future and past output a-algebra families we have 

taken those generated by the future and past incre-
+ _ 6y = F6y ment~ of the output process, or Gt - tF , Gt t • 

Because of this choice it is not clear how to de­

fine the output a-algebra family {Gt,tET}. As re­

marked earlier, a stochastic differential model re­

quire us to work with the increments of the output 

process. Of course other conventions are possible, 

which will lead to different representations. 

The term finite dimensional in the above definition 

refers mainly to the fact that the state a-algebra 

family {Ht,tET} has a generating process x taking 
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values in a finite dimensional Euclidean space. If 

the Borel measurable function f: Rn+ Rn is injective 

then it can be shown that F xt = Ff (xt) for all t E T, 

hence the state process xis unique up to injective 

transformations. As remarked earlier a stochastic 
X 

dynamical system has the property that {F t,tET} is 

a Markovian a-algebra, hence xis a Markov process. 

A discrete time finite dimensional stochastic dyna­

mical system on Tc Z may now be defined by the con-
x 

dition that {tFY,F~,F t,tET} E ES{Py,yEr} with tFY = 

a({y ,Vs>t}), Fyt = a({y ,Ys<t}). For such a stocha-
s s 

stic dynamical system we may define the stochastic 

state transition function as 
X 

(s,t,x ,y) + E [exp(iu'xt) IF s], s y 

and the stochastic read-out function as 
xt 

(t,xt,y) + Eiexp(iv'yt) IF ]. 

For a finite dimensional stochastic dynamical sys­

tem it seems more natural to work with the condi­

tional characteristic function than with the condi­

tional measure to define the stochastic state trans­

ition function as is done in 3.3. Alternatively one 

may define a stochastic dynamical system as a col­

lection of spaces and maps with the condition that 

the stochastic state transition function f and the 

stochastic read-out function g are such that 

f: xs + distribution on xt, s < t, 

g: xt + disrtibution on yt. 

This definition has been suggested by Kalman (6, 

p. 5 footnote) and is the natural extension of the 

definition of a deterministic dynamical system. 

As an example we present the well-known model with 

Brownian motion noise. To allow dependence of the 

measure on a control index set we use the measure 

transformation technique introduced by Benes (2). 

Definition 3.6. Given {O,F,P0}, T = R+, two inde­

pendent Brownian motion processes x, y, a control 

index set r, for each y E r measurable functions 

fy: T x R + R, hy: T x R + R. Define for each y E r 

the process 

t 
pt(y) = I + 10 ps(y)[fy(s,xs)dxs + hy(s,xs)dys]. 

Assumer is such that for ally E r, E0[p00 (y)J = I. 

Define for each y E r the probability measure PY: 



F + [0,1] by dPY/dP0 = p00 (y). □ 

Proposition 3.7. For the model of definition 3.6 

we have that 

{n,F,T,r,{Py,yEf},{R,B},{R,B}} E ESFC 

is a continuous time finite dimensional stochastic 

dynamical system. With respect to Py we have the 

representations, 

dxt fy(t,xt)dt + dvt, 

dyt hy(t,xt)dt + dwt, 

where v, ware Brownian motion processes. D 

Proof. Fort ET we have 
X 

( F6Yv Fx F6YvFX Ft) E CI(Po). 
t t , t t' 

By the expression for p(y) and 2.8, we conclude 

that 
X 

( F6Yv Fx F6YvFX Ft) CI(P) f 11 f □ t t , t t, E y or a y E . 

We present one result on the stochastic observabi­

lity of a stochastic dynamical system. 

Proposition 3.8. Given 

6y 6y xt 
{tF ,Ft ,F ,tET} E ESFC{Py,YEf} 

with the representation 

where T = R+, r = {y0} a set with one element, 

x: n x T + Rn, y: n x T + Rk, and v, w standard in­

dependent Brownian motion processes. If Q' ~ (C', 

A'C' , ... ,(A')n-lC'), rank(Q) = n, then this stocha­

stic dynamical system is stochastic observable. D 

Proof. Fors< t we have 
X 

E [ exp (iv' ( y t -y s) ) I F s J = 

= exp(iv' f: C~(t,,)d,xs - ½ v'v(t-s)) 

E[exp(iv' ft C J'~(,,r)dv d,)] 
s s r 

Thus rank(Q) n implies that 
X 

xs + E[exp(iv' (y t -y s)) I F s] 
X X 

bijective, hence F s 

a( F6Y I /s). D 
a(a(y t -y s) I F s) and 

t 

4. THE STOCHASTIC REALIZATION PROBLEM 

In this section we formulate the stochastic reali-

zation problem and present some preliminary results. 

Definition 4.1. Given the collection 

{n,F,T,r,{Py,YEf}, {Gt,Lt,Kt,tET}} 

where {Gt,Lt,Kt,tET} are a-algebra families with 

Lt c Kt for all t ET, and the other symbols are 

as defined in 3.3. 
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The a-algebra stochastic realization problem for 

this collection is to find, if possible, a a-algebra 

family {Ht,tET} such that 

+ -
(1) {Gt,Gt,Ht,tET} E ES{Py,YEf} 

(2) Lt c Ht c Kt for all t ET. 

Then we call ES a realization of the above collec­

tion. We call such a realization minimal iff for all 

t ET, Ht is minimal in 

+ -
(Gt,Gt,Ht) E CI(Py) for ally E r. □ 

If Lt c Gt c Kt for all t E T, then it is easily 

established that {G~,tET} is a solution to the a­

algebraic stochastic realization problem. However 

this solution will in general not be minimal. The 

main problem therefore is to find minimal realiza­

tions. We note that the stochastic realization prob­

lem for the collection {n,F,R,{y},{Py},{Gt,Gt,F,tET}} 

is the Markov extension problem as posed by Rozanov 

(I 4). 

Proposition 4.2. Let 

+ -
{Gt,Gt,Ht,tET} E ES{Py,yEf}. 

If {Ht,tET} is minimal then ES is stochastic obser­

vable and stochastic reconstructable. D 

Proof. Apply 2. 12. D 

We now specialize the stochastic realization prob­

lem to the stochastic processes case. 

Definition 4.3. Given a stochastic process y: n x 

T ➔ Rk and a a-algebra family {Ft,tET}. 

(a) The stochastic realization problem for y is to 

find, if possible, a stochastic process x: Q x 

T ➔ Rn such that: 
X 

( 1) { Fby i'Y F t tET} E ESFC{P}·, i ' t , ' 
(2) Ft c F for all t ET. 

t 
(b) Given a ESFC representation with output and 

state process y, x. The strong stochastic re­

presentation problem is to find, if possible, 



stochastic difference equations driven by in­

dependent random variables in the discrete 

time case, stochastic differential equations 

driven by independent increment processes in 

the continuous time case, both yielding pro­

cesses y1, x 1, such that y1 = y, x1 = x in the 

sense of indistinguishable processes. The weak 

stoahastia representation problem is the above 

stated problem where we require only that 

y 1 = y, x 1 = x in the sense of probabilistic 

equivalence. D 

Although we have made some progress with the above 

defined problems, they have not yet been resolved. 

5. CONCLUSION AND FINAL REMARKS 

In this paper a definition of a stochastic dynami­

cal system has been given, and the stochastic real­

ization problem has been posed. Research on the 

questions posed in this paper is in progress. 
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