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Characterization of optimal stationary strategies in undiscounted stochastic 

games*) 

by 

O.J. Vrieze 

ABSTRACT 

This paper considers two-person zero-sum undiscounted stochastic games, 

with finite state space and finite action spaces for the both players. The 

set of games having as well a value as optimal stationa~y strategies for 

the both players is characterized, by using a set of three optimality equa­

tions. Next the sets of optimal stationary strategies are characterized. 

Furthermore the set of games, for which the value is independent of 

the initial state is analysed in detail. 

KEY WORDS & PHRASES: stochastic games, average payoff optimality, initial 

state independent value, optimal stationary strategies 

This report will be submitted for publication elsewhere. 





1 • INTRODUCTION 

This paper deals with two-person zero-sum undiscounted stochastic games. 

As well the state space as the sets of pure actions of the both players are 

assumed to be finite sets. It is not yet known, whether all games of this 

type have a value. BEWLEY and KOHLBERG ([1] and [2]) suggested a candidate 

for being the value of such a game, if this value exists. Until now no game 

is constructed with a value unequal to this candidate. They also determined 

a certain subclass of the games, which have a value and for which further­

more both players have optimal stationary strategies. They showed that their 

beautiful attack circumvent all earlier results on this topic. 

In this paper (section 5) we will characterize the set of all games, 

which have a value and for which both players have optimal stationary strat­

egies. In deducing these results we use a set of three 'optimality equations, 

which may be seen as the natural extensions of the set of two optimality 

equations, with which Markov decision problems are solved (FEDERGRUEN [5], 

page 44; see also section 3 of this paper). The existence of a solution of 

these three optimality equations proves to be equivalent to the existence 

of the value of the game together with the existence of optimal stationary 

strategies for both players. 

In [5] FEDERGRUEN stated a set of two optimality equations, showing 

that the existence of a solution of these equations is a necessary condi­

tion for the existence of optimal stationary strategies for the both players. 

However he himself gave an example (page 174), which obstructed a sufficien­

cy theorem. 

In section 4 we in detail conside~ the set of games, for which the 

candidate of being the value is state-:'.ndependent. We will show, that these 

games have a value and furthermore that both players have optimal (Markov-) 

strategies and also that both players have at least £-optimal stationary 

strategies. 

In section 3 we state some well-known results, concerning Markov deci­

sion problems and in section 2 the necessary preliminaries are given. 
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2. PRELIMINARIES 

A two-person zero-sum stochastic game, notated r, is characterized by 

a five-tuple <S, {A1(k); k ES}, {A2(k); k ES}, r, P>, where Sand Ai(k), 

i E {1,2}, k ES are non-empty sets and rand Pare mappings. When Sand 

each A.(k), i E {1,2}, k ES, are finite sets, then we will call such a 
i 

game a finite stochastic game and it is this type of game, which will be 

considered in this paper. 

The parameters of r have the following meaning: 

- S = {1,2, ••• ,N} is called the state space. 

- A.(k) = {1,2, •.• ,j.k}, i E {1,2}, k ES is called the set of pure actions 
i i 

for player i in state k. 

- r is a real valued function defined on the set of tri~les T = {(k,a1,a2); 

k ES, a 1 E A1(k), a2 E A2 (k)} and is called the payoff function. 

- Pis a map from Tinto the set P(S) of probability measures on Sand is 

called the transition probability map. 

Such a stochastic game corresponds with a dynamic system, where the 

dynamic behaviour as well as the rewards are influenced by the players at 

discrete points in time (called stages), say t = 0,1,2, ••• , in the follow­

ing way: 

At each stage t the players observe the current state of the system. 

They, then, have to select, independently of one another, an action. If at 

time t the system is in state k ES anc if player 1 selects action a 1 E A1(k) 

and player 2 action a 2 E A2(k), then tio things happen. 

(1) player 1 obtains an iilllllediate rewErd r(k,a1,a2) from player 2. 

(2) the system moves with probability P(k,a1,a2){l} - which we denote by 

p(llk,a1,a2) from now on - to state l ES, which will be observed at 

the next stage t+l. 

For a finite set B = {1,2, .•• ,j} we denote by P(B) the set of probabili­

ty measures on B. Note that there is a one-to-one corresponde~ce between the 
J 

set P(B) and the set {x; x = (x 1,x2 , •.• ,x.), x ~ 0, n EB, E x = l} and 
J n n=l n 

this last representation is the one, which will be used in the sequel. 

A history dependent strategy for player i is a rule, which, for each 
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stage t E {0,1,2, •.• } and each state k ES, selects dependent oft and the 

history of the game at time tan element of P(A.(k)), according to which 
i 

player i should choose his pure action in that situation, if he adopts that 

strategy. The history of the game at time tis the sequence of states and 

actions, that actually have occured until time t. The set of history depen­

dent strategies for player i is notated as H .• 
i 

A Markov strategy for player i is a history dependent strategy, such 

that for each stage t E {0,1,2, ••. } and each state k ES the seclection of 

an element of P(A.(k)) is independent of the history of the game at time t. 
i 

A stationary strategy for player i is a Markov strategy, such that for 

each stage t E {0,1,2, .•• } and each state k ES the selection of an element 

of P(A.(k)) is independent oft. The set of stationary strategies for player 
i 

i will be notated as ST .. 
i 

A strategy for player i will be notated as rr.; if rr. is a stationary 
i i 

strategy, then rr. can be notated as rr. = (rr. 1, •.. ,rr.N), where rr.k E P(A.(k)), 
i i i i i i 

k Es. 

If the players 1 and 2 play strategy rr 1 respectively strategy rr 2 , then 

a probability measure on the set of the infinite streams of payoffs is de­

fined. Comparing of these probability measures can be done on different ways, 

determining different types of games. For each of these types in a certain 

way a N-vector is added to each probability measure, associated with a pair 

(rr 1,rr2); the k'th component of this vector denotes the payoff, when rr 1 and 

rr2 are played, for the specific game with state k as initial state. 

Let for a certain type of games W(rr 1,rr2) be the vector associated to 

the pair of strategies (rr 1,rr2). 

Player l wants to maximize W(rr 1,rr2) and player 2 wants to minimize 

this vector, both componentwise. 

On each type of games the following definitions cfn be applied. 

DEFINITION 1. A game is said to have a value if componentwise 

inf sup W(rr 1,rr2) = 

TizEHz TilEHl 
sup inf W(rr 1,rr2). 

TilEHl TI2EH2 
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DEFINITION 2. If a player has a value, say W, then for E ~ 0 a strategy Til 

for player 1 is called E-optimal if componentwise 

inf W(TI 1 ,TI2 ) ~ W - E. 
TI zEHz 

A strategy Tiz for player 2 is called E-optimal if componentwise 

sup W(TI l ,TI2) $; W + E 
TIIEHI 

a-optimal strategies are usually called optimal strategies. 

From now on inf and sup will be abbreviated to inf and sup and 
'?TzEHz TI 1 EHJ . TI2 TIJ 

as inequalities between vectors will always be componentw1se we snall omit 

the specification "componentwise". 

DEFINITION 3. At-step stochastic game is a stochastic game which will stop 

after t moves of the game, possbily with a terminating state dependent ter­

minal payoff; in such games the expected payoff per stage are merely added 

up. 

Each two-person zero-sum finite t-step stochastic game has a value 

(SHAPLEY [7]) and both players have optimal Markov-strategies. In the follow­

ing Vt= (Vt(l), ••• ,Vt(N)) will denote the value of at-step stochastic game 

without a terminal payoff (or equivalently with terminal payoff 0). 

DEFINITION 4. A $-discounted stochastic game is a stochastic game with in­

finite stages, in which a payoff rt at time twill be discounted by a factor 

St, with SE [O,I), w1w:_ch results in an evaluation of Strt at time O of this 

payoff. For a pair ofYtrategies (TI 1 ,TI2) the discounted expected payoffs are 

added up. 

Each two-person zero-sum finite $-discounted stochastic game has a 

value and both players have optimal stationary strategies (SHAPLEY [7]). 

In the following v8 = (v8(1), ••• ,v8(N)) will denote the value of the$­

discounted stochastic game. 
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DEFINITION 5. An undiscounted stochastic game is a stochastic game with in­

finite stages, in which the evaluation of the stream of expected payoffs is 

carried out by computing the expected average payoff per step. 

However this average need not exist and this gives rise to more detailed 

definitions. In BEWLEY and KOHLBERG [2] six ways of computing an expected 

average payoff are mentioned. They prove the following lermna: 

LEMMA 2.1. If for a two-person zero-sum finite undiscounted stochastic game 

a stationary strategy guaranteed a player an amount V for one of the six 

ways of computing an expected average payoff, then this stationary strategy 

guarantees this amount Vin all six ways of computing an average payoff. 

As in this paper we will consider games, in which both players have 

£-optimal or optimal stationary strategies, we may choose arbitrary one of 

these six ways of computing the expected average payoff. We will choose the 

so-called limit expected average criterion, where the average payoff for a 

pair of strategies (TI 1 ,TI2), notation V(TI 1 ,TI2), is computed as 

where Et(TI 1 ,TI2) is the random variable determined by TII and TI 2 and denoting 

the payoff at time t and where E means the expectation with respect to 
TIJTI2 

TII and TI2 of the expression between the accolades. 

Let for a pair of stationary strategies (TI 1 ,TI2) the quantities 

p(llk,r. 1 ,TI2) and r(TI 1 ,TI2) = (r(I,TI 1 ,TI2), ... ,r(N,TI 1,TI2)) be defined as: 

and 

P (l lk , TI l , TI 2) = 
J lk 

I 
a =l 

I 

jlk 

I 
a =I I 

J2k 

I 
a =I 

2 

With a pair of stationary strategies (TI 1,TI2) we can associate a matrix 

P~ ~2 , with the (k,l)-element equal to p(llk,TI ,TI), k E {I, ... ,N}, 
"I " _ I 2 

l E -ll •.••• N}. 
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Let 

. I T 
= lim T+l l 

T-+oo t=O 

be the Cesaro-limit of P , where PO 1.s the unit matrix and 
TIITI2 TIITI2 

t E {1,2, ••• }. 

It can be se,~n that for a pair of stationary strategies the expected average 

payoff per stage equals 

T 
1 . I \ t ( ) ( ) = im T+ 1 l p . r 'IT 1 , TI 2 = Q • r 7r 1 , 7f 2 • 
T-+oo t=O TIITI2 TIJTI2 

Let for a pair of stationary strategies (n 1,n2) and associated transition 

probability matrix P the set R be the set of states which are re-
TI1TI2 TIJTI2 

current under n 1 and n2 . 

A matrix game with pure action sets A1 and A2 and payoff function 

r: A1xA2 ➔ E. will be notated as <r>, while Val(<r>) stands for the value 

of this matrix game. 
N 

Let v = (v( I), ••• , v(N)) E JR • For a stochastic game, let 

P(v) = (P 1(v), .•. ,PN(v)) denote the vector with as k'th component the real­

valued function Pk (v): A1 (k) xA2 (k) ➔ JR, where 

N 
l p(lJk,a 1,a2).v(l). 

l=l 

will denote the vector with as k'th component the value of the matrix game 

<rk+Pk(v)>, where rk+Pk(v): A1(k)xA2 (k) -► JR 1.s defined as 

N 
= r(k,a 1,a2) + l p(llk,a1,a2).v(l). 

l=l 

Two important results of BEWLEY and KOHLBERG [I] are stated 1.n the 

following lemma's: 
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LEMMA 2.2. For each -two-person zero-sum finite stochastic game there exist 
* * * a vector g = (g (1), .. e,g (N)) such that: 

V 
lim __!. = lim (l-S)V 0 = g* 
t-►= t s+ 1 µ 

* and g obeys 

* * g = Val(<P(g )>). 

* For the rest of this paper g always stands for the limit mentioned in 

lemma 2.2. 

LEMMA 2.3. Let p = 1; 8, then for a -two-person zero-sum finite stochastic 

game, we can ex-pand v8 (also notated VP) for 8 close enough to 1 (p close 

enough to 0) in a Puisseux series of the following form: 

V 
p 

= 

00 

, k/M 
l ~•P , 

k=-M 

where Mis a positive integer and aka vector for each k. Furthermore 

it holds that a_M = g* 

A further nice statement in BEWLEY and KOHLBERG [2] is the fact, that 

neither player can, using stationary strategies, guarantee himself more 

than g*. This leads to the following lemma. 

LEMMA 2.4. If a -two-person zero-sum finite undiscounted stochastic game 

has a value and if both players have £-optimal stationary strategies, then 
* the value equals g. 

* It may be clear, that also in general g is a high candidate for being 

the value of an undiscounted stochastic game, however this still remains an 

open problem. 

3. MARKOV DECISION PROBLEMS 

If in each state a player, say player 1, has only one action, then he 

is called a dummy player (he has no real choice). Then the game is identical 
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to a Markov decision problem, in which the total payoff should be minimized. 

Markov decision problems are analysed in detail, e.g. DENARDO and FOX [3], 

DERMAN [4] and FEDERGRUEN [5]. 

It is known that there always exist optimal stationary strategies. 

The following lemma can be found in DENARDO and FOX [3]: (Notations are 

analogous to the one introduced in section 2). 

LEMMA 3.1. For a minimizing finite Markov decision problem., there exist a 

unique vect01~ g and a non-unique vector v such that 

(I) g = min (<P(g)>) 

(2) v+g = 

N 
where O = X 

k=I 

1T2EST2 

min (<r+P(v)>) 
1T 2E0 

Ok and 

J2k 

I 
a =I 

2 

N 
1T 2k(a2) l p(lJk,a2)g(l)}. 

l=I 

Then 8 is the minimal expected average payoff and a stationary strategy 

1T2 is optimaZ if and only if (a) 1T 2 E O and (b) for each k ER it holds 
1T2 

that 1T2k is optimal in (2). 

Let R* == {k J there exist an optimal stationary strategy 1T 2 with k E R } 
1T2 

FEDERGRUEN [5] proved, that there exist an optimal stationary strategy 1T 2 , 

such that R* = R 
1T2 

If player 2 is a dummy player, then we have a mazimizing Markov deci-

sion problem and for the solution of this problem min in lennna 3.1 should 

be replaced by max. 

Now suppose for a two-person zero-sum finite stochastic gamer, that 

player I plays the stationary strategy 1T 1. We will ask for the best answer 

of player 2 to this strategy 1T 1. 

Consider therefore the following minimizing Markov decision problem r': 

set of states: {1,2, •.• ,N}; set of pure actions in state k: A2(k); rewards 

r1/ A2 (k) + ]R defined as rk (a2) = r(k,1T 1 ,a2); transition probabilities 

defined as p 1 (iJk,a2) = p(lJk,1T 1,a2). Now it can be seen, that if a strategy 
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for player 2 in the original gamer is such, that for each time t, his 

selection of his action does not depend on the actual past actions of player 

1, then this strategy can also be interpretated as a strategy in the deriv­

ated Markov decision problem r' and moreover the expected average payoff in 

both problems are the same. This especially holds for the class of station­

ary strategies. Along the same lines of theorem 1, page 91 in DERMAN [4] it 

can be shown, that if player 1 uses a strategy TTz in r which does depend 

on the past actions of player 1, then there can be constructed a strategy 

n2, not depending on the past actions of player 1, such that for each t the 

expected payoff at time t remains equal. 

Summarizing the above yields, that for looking at the best answer of 

player 2 to a stationary strategy TT 1 of player 1 we may consider the above 

stated Markov decision problem r'. So by lemma 3.1 there exist a stationary 

strategy, which is a best answer to TT 1• 

This will be stated in a lemma. 

LEMMA 3.2. If for a two-person zero-sum finite stochastic game TT 1 is a 

stationary strategy for player 1, then 

inf V(n 1,n2 ) = 
TTzEHz 

The set R* of the derivated Markov decision problem r' by a stationary 

* strategy n 1, will be notated as R (n 1). 

Evidently, if we fix a stationary strategy n2 for player 2, then the 

only change in the above analysis is that min should be replaced by max. 

* ~· -4. UNDISCOUNTED STOCHASTIC GAMES IN WHICH g = g.1 

* In this section we will consider games in which g does not depend on 

the initial state. It appeared that these games have a value and that both 

players have optimal Markov strategies and E-optimal stationary strategies. 

The next lemma will be needed: 

LEMMA 4.1. If <r 1> and <r2> are matrix games of the same dimensions, then 
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1Val<r 1> - Val<r2>! ~ ~a~ lr 1(i,j) - r 2 (i,j)I. 
l.' J 

Let 11 . II denote the max norm 1.,n JRN. 

THEOREM 4.2. For a two-person zero-sum finite undiscounted stochastic game 

the foUowiny two assertions are equivalent: 

(i) * g = g. I 

(ii) 3g E JR such that \fr > O, 3v E JRN with 
E: 

llv ~ - - Val(<r+P(v )>)II + g .. I ~ E: . 
E: E: 

PROOF. Suppose (i) is true. From discounted stochastic game theory we know 

VS= Val(<r+~W(VS)>) (SHAPLEY [7]). Then for B close enough to I and using 

lemma 2. I and lemma 4. I we get: 

= max max Jg - ( I -S) Pk (VS) I 
k i,J 

So for S close enough to I, we see that VS obeys (2). 

Suppose now that (ii) 1.s true. Let 1r~k be an optimal action for player 

1 in the matrix game <rk+Pk(vE:)> and consider the stationary strategy 

nf = (1rf 1, ••• ,1rfN). Then for all stationary strategies 1r 2 for player 2 we 

have 

-
E: • 1 • 

Multiplying this inequality by Qi:: and rearranging terms yields 
1rl1r2 

min Q E: .r(n~ ,n2), ;:::: (g-E:). I. 
1f2E:ST2 1fl1f2 

(1) 
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Analogously we can show the existence of a stationary strategy TI~ for player 

1, such that 

(2) 

Clearly (I) and (2) together with lemma 3. 2 show that g. I is the value of 

the game and as both players have E-optimal stationary strategies we may 

* conclude from lemma 2.3 that g.l = g. D 

COROLLARY 4.3. If (i) or (ii) of theorem 4.2 holds, then 

(a) the game has a value 

(b) both players have E-optimal stationary strategies 

(c) both players have optimal Markov strategies. 

PROOF. (a) and (b) are 

4.2. Concerning (c) let 
Vt ~ -T~ (g-0).1, t~ t(o). 

in the t(o)-step game. 

shown in the second part of the proof of theorem 

for o > 0 t(o) be the smallest integer such that 
0 Let Til be an optimal Markov strategy for player 1 

Consider with O < o < I the following Markov strategy for player 1: 

in the first t(o) steps he should play TI~, in the next t(o:) steps he 
02 3 o 

should play TII ; in the next t(o) steps he should play TII , etc. Then 

it can be seen, that for each initial state player I, playing the above 

Markov strategy, guarantees himself: 

□ 

The following theorem characterizes for which games with g* = g.1 both 

players have optimal stationary strategies. This theorem can also be found 

in FEDERGRUEN [SJ. 

THEOREM 4.4. For a two-person zero-sum finite undiscounted stochastic game 

the following three assertions are equivalent: 

(i) g* = g.1 and both players have optimal stationary strategies. 
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(ii) 3v E lRN and g E JR such that v + g. I = Val(<r+P(v)>). 

(iii) a~M+k = 0, k E {1,2, ••• ,M-l} (coefficients in Puisseux series expansion 

of VJ and g* = g.I is the value of the game. 
p 

PROOF. The proof runs as follows: (ii)~ (i) ~(iii)~ (ii). 

(ii)~ (i) follows similarly as the proof of the second part of theorem 4.2. 

(i) ~ (iii) this part needs some more knowledge of the Puisseux series 

expansion; the proof of it will be omitted but can be found in BEWLEY 

and KOHLBERG [2] (lennna 7.11). 

(iii)~ (ii) from the Puisseux series expansion one can derive 

11.• m (V - .a.:.!_) = 
S 1-s ao 

Stl 

Now 

or 
~ -

vs - ~~~ + g.I = Val(<r+SP(Vs- ~~~) >). 

Then taking the limit for Stl from the left and right part of this 

expression yields a0 + g.I = Val(<r+P(a0)>) and so (ii) is true. 0 

REMARK 4.5. From theorem 4.2 we see that a fourth equivalent assertion is: 

n V is not empty, where for E: > 0 V is defined as V = {v Iv E ]RN and 
t::>O t:: t:: t:: t:: t:: 
v obeys part (ii) of theorem 4.2}. 

E: 

* There are also games in which g = g. 1 and where only one of the players 

has optimal stationary strategies. In the same way as above it can be shown 

that in that case the following theorem holds (of course a similar theorem 

.can be stated concerning player 2). 

THEOREM 4.6. For a two-person zero-sum finite undiscounted stochastic game 

the following two assertions are equivalent. 

(i) g* = g.I and only player has an optimal stationary strategy. 

(ii) (a) 3g E JR such that Vi::: > O, 3v E lRN uJith 
E: 
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Uv + g.l - Val(<r+P(v )>)U ~ E 
E E 

(b) 3v E ]RN such that v+g.l ~ Val(<r+P(v)>), where for aU v, obeying 

this inequality, at least in one component this inequality is strict. 

5. CHARACTERIZATION OF UNDISCOUNTED STOCHASTIC GAMES HAVING OPTIMAL 

STATIONARY STRATEGIES 

In this section we will characterize the set of undiscounted stochastic 

games, for which both players have optimal stationary strategies. Next we 

will characterize these sets of optimal stationary strategies. 

We will need the following result concerning Markov decision problems. 

This lemma holds as well for a minimizing problem as for a maximizing prob­

lem. 

LEMMA 5.1. Let for an undiscounted Markov decision problem r, with optimal 

payoff g, t_~e Markov decision problem r' equal to r except tnat the payoff 

function r' is defined as r' = r-g, i.e. if in state k the action a is taken, 

then the immediate payoff equals r'(k,a) = r(k,a)-g(k), then the optimal pay­

off for the undiscounted Markov decision problem r' equals 0. 

PROOF. We will proof the lemma for a minimizing problem. From lemma 3.1 

we derive P1T2 .g cg, VTT2 E ST2 and by multiplying this inequality by Q1T 2 
we see that (PTT .g)(k) = g(k) fork ER (the recurrent states under TT 2). 

2 1T2 
This implies that (Q1T2 .g)(k) = g(k) fork E R,r2 . Then for arbitrary station-

ary strategy 1T2 we get fork E R,r2 : 

(Q .(r(1T2)-g))(k) = (Q .r(1Tz))(k)-g(k) c g(k)-g(k) = o. 
1Tz 1T2 

But as the average payoff in the transient states is a convex combination 

of the average payoffs in the recurrent classes it follows that 

However for 1Tz optimal in r we have Q1T2 .r(TT2) = 

Q1T (r(TT2)-g) = O, proving the lemma. D 
2 

g and Q .g = 
1Tz 

g, so 
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THEOREM 5.2. For a two-person zero-sum finite undiscounted stoch.astic game, 

the following two assertions are equivalent: 

(i) The game has value g and both players have optimal stationary strategies. 

(ii) (a) g = Val(<P(g)>). 

(b) Let OE.(k) be the finite set of extreme optimal actions for player 
l. 

i in the matrix game Pk(g), i E {1,2}. Then there exist vectors 
N N 

vi E ]R. and v2 E ]R. such th.at for au k E s 

v 1(k) + g(k) = Val (<rk+Pk(v 1)>) 
OE l (k) xA2 (k) 

and 

Val (<rk+Pk(v2)>) 
A1 (k) xOE2 (k) 

(Val(<.>) means, th.at for the matrix game<.> ~he sets of pure wxz 
action for the player 1 and 2 are respectively Wand Z.) 

PROOF. Suppose (i) is true. Application of the lennna's 2.3 and 2.4 yields 

* g = g and g = Val(<P(g)>). Let OE 1(k) be the finite set of extreme optimal 

actions in the matrix game <Pk(g)> for player 1. 

Let TI; be an optimal stationary strategy for player 1. By assumption 

we have min V(TI~,TI2) = g, so by the lennna's 3.2 and 3.1 we can deduce 
TI2 

g = min(<P *(g)>), TI 
I 

where <P *(g)> equals an N-vector with k-th component equal to the function 
k TI 

P * (g): A2
1 (k) ➔ JR, defined as 

TI} 

* But this implies, that Tilk is optimal in the matrix game <Pk(g)>, so 

(3) 

Consider now the stochastic game, called r', in which the difference with 

the original stochastic game is that (a) for each state k player 1 has the 
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set OE 1(k) as his pure action set and (b) the payoff in state k under pure 

actions a 1 E OE 1(k) and a2 E A2 (k) equals r(k,a1,a2)-g(k). 

Lemma 5.1 shows that 

If TI; is optimal for player 2 in the original game, then 

so again using lemma 5.1 yields 

max 
N 

TilEXP(OE 1 (k)) 
1 

(4) 

(5) 

Combining (4) and (5) gives that r' has value O and both players have optimal 

stationary strategies. But then we may apply theorem 4.4 yielding the exis­

tence of a vector v 1, such that for all k ES: 

Val (<rk-g(k)+Pk(v 1)>) 
OE l (k) xA2 (k) 

and this is equivalent to the first equation of (ii). The second equation 

can be derived analogously. 

* N Suppose now (ii) is true. Let the stationary strategy TI E X P(OE 1(k)) 
* l k=l 

be such that Tilk is an optimal action for player l in the matrix game 

<rk+pk(v 1)>. Let TI 2 be an arbitrary stationary strategy for player 2, then 

we have 

Multiplying both sides of (6) by Q * and rearranging terms yields 
TIITI2 

(6) 

(7) 
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* * But as Tilk € P(OE 1(k), so Tilk is optimal in <Pk(g)> we have PTI1TI 2 g ~ g 

and by iterating we get Q * g ~ g. Inserting this last inequality in (7) 
TIITI2 

yields the desired result 

(8) 

* In the same way we can show the existence of a stationary strategy TI 2 for 

player 2, such that 

(9) 

Remembering lemma 3.2 we see that the combination of (8) and (9) assures 

us the validity of (i). D 

COROLLARY 5.3. Let for a two-person zero-sum finite undiscounted stochastic 

game (i) or (ii) of theorem 5.2 hold. Let for each k ES the finite sets 

B1(k) and B2(k) be such that P(A.(k)) J P(B.(k)) J P(OE.(k)), i E {1,2}, 
i N i i 

k ES. Then there exist a vector v E 1R, such that for each k ES 

v(k) + g(k) = Val (<rk+Pk(v)>). 
Bl (k) xB2 (k) 

PROOF. Analogously as in the first part of the proof of theorem 5.2 it can 

be shown, that the undiscounted stochastic game, which differs from the 

original stochastic game by (a) the set of pure actions for player i in 

state k is B.(k), i E {1,2}, k ES and (b) the payoff in state k for the 
i 

actions a 1 E B1(k) and a2 E B2 (k) equals r(k,a1,a2) - g(k), has value O. 

Then again theorem 4.4 assures the corollary. D 

Theorem 7.3.3 part (a) of FEDERGRUEN [5] is a special case (namely 

B.(k)=OE.(k)) of corollary 5.3. 
i i 

We are now going to characterize the sets of optimal stationary strate-

gist. 

THEOREM 5.4. Let for a two-person zero-sum finite undiscounted stochastic 
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game (i) or (ii) of theorem 5.3 hold. Let OE 1(k), k ES be as in theorem 

5.2 and let for a stationary strategy TI 1 of player 1 R*(TI 1) as in section 3. 

Then: a stationary strategy TII is optimal for player 1 if and only if 
N 

(a) TII E X P(OE 1(k)) and 
k=l 

(b) 
N there exist a vector v 1 E JR , such that 

k E S 

* and such that for each k ER (TI 1) the action Tilk assures exactly 

v 1 (k)+g(k) in the matrix game <rk+pk(v 1)>. 

PROOF. Let 'JT 1 be an optimal stationary strategy for player 1. In the first 

part of thi proof of theorem 5.2 we have proven part (a) of the theorem 

(see C.)). r 1 is optimal and also player 2 has optimal stationary strate­

gies, so 

min Q r(TI 1 ,TI2) = g. 
TI zEST2 

TIITI2 

By l eir,ma. 5. l this gives 

min Q (r(TI} ,TI2)-g) = o. 
TizEST2 

TIITI2 

As theorem 4.4 can also be applied to Markov decision problems, it now 
N follows that there exist a vector v 1 E JR such that 

or equivalently 

min (<r+P .v1>). 
ST TI I Tiz TI2€ 2 

N 
As ~l E X P(OE (k)) (IO) assures us that v 1 obeys 

k=l I 

v I (k) + g (k) ::; 

(IO) 

( 11) 
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(IO) and (II) show the validity of (b). 

Let TII and v 1 be such that (a) and (b) are true. Let TI2 be a station­

ary strategy for player 2, which is a best answer against TI 1, clearly 

(12) 

(see lelllllla 2.3). 

By assumption v 1(k)+g(k) ~ r(k,TI 1,;2) + PTI TI .v1 
. . . . 1· b . ld I 2 Multiplying this inequa ity y Q ~ yie s: 

TI}TI2 

(Q ~.g)(k)=g(k), (13) 
TI 11r 2 

Combining (12) and (13) gives 

(14) 

As P ~ g ~ g (Tilk optimal in <Pk(g)>, Vk ES) and as (14) holds for the 
TI}TI2 

recurrent states of TII and ; 2 it follows from DENARDO and FOX [3] (lelllllla 4), 

that also (Q ~ .r(TI 1,w2))(k) ~ g(k) if k is a transient state and the 
TI1TI2 

combination with (12) gives 

(I 5) 

fork transient. (14) and (15) together with the assumption on TI 2 show the 

optimality of TI 1• 

Of course a similar theorem can be stated for player 2. 

The next theorem characterizes the sets of optimal stationary strategies 

in games, where for each pair of stationary strategies all states are re­

current. HOFFMAN and KARP [6] were the first, who showed, that these games 

do have a value and that both players have optimal stationary strategies. 

THEOREM 5.5. Let for a two-person zero-sum finite undiscounted stocha.stic 



game under each pair of stationary strategies all states be recurrent. 

Then a stationary strategy TI 1 for player 1 is optimal if and only if 
N 

(a) TII E X P(OE 1(k)) (OE 1(k) be as in theorem 5.2) 
k=l 

(b) 
N there exist a vector v 1 E lR , such that 

v 1 (k) + g(k) = k E s 

and such that Tilk is optimal in the matrix game (<rk+Pk(v1)>) 

for Vk E S. 

19 

PROOF. Looking at theorem 5.4 it can be seen that the only thing we should 

prove is that in the inequality in (b) the inequality sign cannot be strict 

in any component. 

So suppose it is strict in one or more components, then there exists 
N 

a TII E X P(OE 1(k)) such that for every TI 2 E ST2 it holds. 
k=l 

with strict inequality in say state k. Multiplying by Q~ 

states recurrent): 
TI}TI2 

yields (all 

with strict inequality in at least one component. As then, this also holds 

for the best reply of player 2 against i 1, it follows that TTI is a stationary 

strategy for player which assures him in at least I start more than g, 

contradicting lemma 2.4. D 
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