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On "A cut approach to the rectilinear distance facility location problem" 

by J.-c. Picard and H.D. Ratliff*) 

by 

Antoon Kolen 

ABSTRACT 

Picard and Ratliff recently proposed at cut approach to the rectilinear 

distance facility location problem and claimed it is fundamentally different 

from the direct search approach as developed by Pritsker and Ghare, Rao, 

Jual and Love, and Sherali and Shetty. Our objective is to show that the 

approach.of Picard and Ratliff is essentially a direct search approach. 

KEY WORDS & PHRASES: Multifacility Location Theory, Minimum Cut, Direct 

search approach, Cut approach. 

*) This pape!r will be submitted for publication elsewhere. 
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0. INTRODUCTION 

The problem we consider is that of locating n new facilities in the 

plane when there are m existing facilities, located at coordinates (a.,b.) 
1 1 

for i = 1,2, ••• ,m, and the objective-is to minimize the sum of weighted 

rectilinear distances. Let (xj,yj) (j = 1,2, ••• ,n) denote the coordinates 

of the new facilities. Then the problem can be formulated as 

n m 
(Pl) min z(X,Y) = I I w .. {Ix. -a. I + I y. -b. I } + 

j=1 i=1 J1 J 1 J 1 

n n 
+ I I vjk{lxj-xkl + lyj-ykl}, 

j=1 k=j+1 

where wji ~ 0, vjk ~ 0 for all i, j, and k (we define vjk = 0 for all j ~ k). 

This problem can be decomposed into two independent subproblems: 

n m n n 
(P2) min F (X) = I I w .. lx.-a. I + I I v jk lxj-xk I, 

j=1 i=1 J1 J 1 j=1 k=j+1 

and 

n m n n 
(P3) min G(Y) = I I w .. ly.-b. I + I I V jk IY j-yk I. 

j=1 i=1 J1 J 1 j=1 k=j+1 

We shall develop an algorithm to solve (P2). Without loss of generality 

we may assume that 0 < a 1 < a 2 < ••• < am. 

It is well known [2] that there exists an optimal solution to (P2) 

with xj E {a1,a2 , ••• ,am} for all j = 1,2, ••• ,n. In finding an optimal solu

tion we shall restrict ourselves to the direct search approach (PRITSKER 

and GHARE [SJ, RAO [6], JUEL and LOVE [3], and SHERALI and SHETTY [7]) and 

to the cut approach (PICARD and RATLIFF [4]). Other solution methods have 

been proposed by CA:OOT et al. [1], and WESOLOWSKY and LOVE [8, 9]. In Sec

tion 1 we shall discuss the direct search approach and give an efficient 

algorithm to solve (P2), which just like the cut approach in [4], requires 

the solution of at most m-1 minimum cut problems on networks with at most 

n+2 vertices. In Section 2 we shall discuss the relationship between the 

cut approach and the direct search approach to solve (P2). 
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1. THE DIRECT SEARCH APPROACH 

The direct search approach can be described as follows. Start with 

some solution x1 with x~ = akj (1 :::; j :::; n). Consider the set T of new faci

lities located at existing facility coordinate¾; assume ITI = h. If there 

is a subset S s T that can be moved to an adjacent existing facility coordin

ate (°1:+l or °1:-l) such that the new solution x 2 satisfies F(X2 ) < F(x1 ), 

move that subset to the corresponding adjacent facility coordinate. Then 

repeat this procedure with the solution x2 • 

If no such subset exists at any location we have found an optimal solu

tion. A justification of the algorithm can be found in the linear program

ming formulation of (P2). RAO [6] has proved through the negation of various 

alternatives that a single non-degenerate simplex pivot can only result in 

the movement of a subset of new facilities at a given location to an adja

cent iocation also coincident with some existing facility coordinate. 

SHERALI and SHETTY [7] showed that movings to a. 1 reduces F(x1 ) by 
1 1 k+ 1 

rs (X ) (°"k+l-ak), moving S to ak-l reduces F.(X ) by ls (X ) (¾ -°"k-l), where 

r. (Xl) = 
J 

I 
jES 

I 
i 

i>k. 
J 

I 
jES 

I 
i 

i<k. 
J 

r. (X1 ) + 
J I I (v. +v . ) , 

JS SJ 

w .. + 
Jl. 

w .. + 
Jl. 

jES SES 

I 
s 

k >k. 
s J 

I 
s 

k <k. 
s J 

(v. +v . ) -
JS SJ I 

i 
i:S;k, 

J 

(v. +v . ) , 
JS SJ 

(v. +v . ) -
JS SJ I 

i 
i~k. 

J 

W,, 
Jl. I 

s 
k :S;k, 

s J 

I 
s 

k ~k. 
s J 

(v. +v . ) , 
JS SJ 

(v. +v . ) • 
JS. SJ 

The difficulty lies in establishing whether there is a subset that can 

be moved to an adjacent location such that the value of the objective func

tion reduces. JUEL and LOVE [3] solve this problem by checking each subset 

explicitly. SHERALI and SHETTY [7] solve this problem by maximizing 
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r (X1 ) (l (x1 )) over all subsets S s Tusing the following quadratic zero-
s s 

one formulation: 

h 
maximize l 

i=l 
t.r. (X 1 )(or l. (x1 )) + 

1 1 1 

h h 

I I 
i=l j=l 

t. t. (v .. +v .. ) 
1 J 1J J1 

s•t. t. E {0,1}, i = 1,2, ... ,h. 
1 

This problem can be solved by adapting an algorithm of CAOOT and FRANCIS 

([7]). However, Sherali and Shetty fail to observe that maximizing r 5 (x1 ) 

over all subsets SST is actually a minimum cut problem on a network with 

h+2 vertices. 

This can be seen as follows. We have 

Defining S = T\S and 

C = I 
jET 

I 
jES 

[ I 
i 

i>k. 

w .. + 
J1 I 

s 
(v. +v . ) ] -

JS SJ 

- I 
jES 

J 

c I 
i 

i~k. 
J 

- I I 
jES s 

k =k s j 

c I 
i 

i>k. 
J 

w .. + 
J1 

k >k. 
s J 

w .. + 
J1 I 

s 
k <k. 

s J 

(v. +v . ) + 
JS SJ 

(v. +v . ) ] -
JS SJ 

I I 
jES SES 

(v. +v . ) • 
JS SJ 

I 
s 

(v. +v . ) ] 
JS SJ 

k >k. 
s J 

(note that C is a constant which does not depend on the subsets S of T), 

we can rewrite rs(x1 ) as 

1 
rs<x ) = c - L c I 

jES i 
i>k. 

J 

w .. + 
J1 I 

s 
k >k. 

s J 

(v. +v . ) ] -
JS SJ 



c I 
i 

i~k. 
J 

w .. + 
J l. I 

s 
k <k 

s j 

(v. +v . ) ] -
JS SJ I \ (v. +v . ) • 

l_ JS SJ 
jES SES 
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Hence finding the subset S of T which maximizes rs(x1 ) over all subsets S of 

Tis equivalent to finding the subset S of T which minimizes. 

where 

and 

I_ 
jES 

e. 
J 

f. 
J 

= 

= 

e. + 
J 

I 
i 

i>k. 
J 

I 
i 

i~k. 
J 

I 
jES 

W .• 
J l. 

w .. 
J l. 

f. + 
J 

+ 

k 

+ 

k 

c. =v. +v .. 
JS JS SJ 

s 

s 

I 
jES SES 

C. t 
JS 

I (v. +v . ) , 
s JS SJ 

>k. 
J 

I (v. +v . ) , 
s JS SJ 

<k. 
J 

This is equivalent to finding a minimum (s,t) cut in the following network. 

(fig. 1 ) . We have vertices s, t and 1,2, ... ,h, and arcs ( s, j) with capacity 

e. (j = 1,2, .•. ,h), arcs ( j, t) with capacity f. (j = 1,2, ... ,h) and arcs 
J J 

( j, k) of capacity cjk (1 ~ j < k ~ n). 

Fig. 1: Net.work corresponding to the problem of maximizing rs(x1 ) over 
all subsets S of T. 
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As initial solution for the direct search approach both JUEL and LOVE 

[3], and SHERALI and SHETTY [7] take the solution one gets by locating each 

new facility with respect to existing facilities using the algorithm for 

the single facility rectilinear location problem (see [2]). 

We will give an algorithm that starts with all new facilities located 

at the same existing facility coordinate a (1 ~ q ~ m). 
q 

Direct Search Algorithm 

STEP 1: Start with all new facilities located at a 
q 

Seti= q, j = q. 

STEP 2: Let Xi be the current solution. 

If i = m, then go to Step 3. 

If i < m, then determine the subset S of the set T. of new facili-
i r 

ties located at ai such that rs(X) ma¾~T. rv(X). 

If rs(Xi) ~ 0, then go to Step 3. Otherwise ~ove S to ai+l" 

Seti= i+l and go to Step 2. 

STEP 3: Let Xj be the current solution. 

If j = 1, then stop; we have an optimal solution. 

If j > 1, then determine the subset S of the set T. of new 
. J . 

facilities located at a. such that ls(XJ) = maxv~T. lv(XJ). 
J 

If ls(Xj) ~ 0, then stop; we have an optimal 
J 

solution. 

Othi::!rwise move S to a. 1 . Set j = j-1 and go to Step 3. 
J-

Before proving that this algorithm produces an optimal solution, we 

make the following observations 

OBSERVATION 1: Let x 1 be a given solution, and let T be the set of new 

facilities located at ak. Let x2 be the solution resulting from x1 by 

moving the subset s1 s T from~ to ak+l" Then the following equalities 

hold 

(a) rs s (X 1) 
lU 2 

of T. 

(b) r (X l) 
S1\S3 

OBSERVATION 2: 

(a) ls s (X 1) 
1 u 2 

1 2 = r 8 (X) + r 8 (X ), where s 1 and s2 are disjoint subsets 
1 2 

1 2 = rs (X ) + ls (X), where s3 is a subset of s1 a 

1 3 

With x1 ,x2 ,s1 ,s2 ,s3 analogously to Observation 1 we get 

= l (X 1 ) + ls (x 2 ), and 
s1 2 
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. 2 
(b) ls \s (xl) = l cxl> + rs ex ). 

1 3 Sl 3 

OBSERVATION 3: Let x 1 be a given solution, and let T be the set of new 

facilities located at ak. The calculation of rs(x1 ) does not depend on the 

actual location of the new facilities, but depends only on which of these 

facilities have a coordinate less than or equal to¾ and which have a co-
l 

ordinate greater than ak. The calculation of ls(X) does not depend on the 

actual location of the new facilities but depends only on which of these 

facilities have a coordinate greater than or equal to¾ and which have a 

coordinate less than ak. 

We are now ready to prove the following theorem. 

THEOREM 1. The direct search algorithm produces an optimal solution. 

PROOF. Suppose that in Step 2 of the algorithm a subset S 

moved from a. to We claim that rv(Xi+l) ~ 0 for all ai. +1 • 
i+l ' i 

l (X ) ~ 0 for all W w . 

of T. has been 
]_ 

v c T.\s and - ]_ 

l(a) and 1(b), 

using rs(Xi) = maxVcT, 
- ]_ 

~ S. This follows from Observation 
i 

rv(X ). Since both the set of new facilities which 

have a coordinate greater than a. and 
]_ 

the set of new facilities which have 

a coordinate less than or equal to a. are invariant during the algorithm 
]_ ·+1 

we find using Observation 3 that rv(X) = rv(Xi ) for all solutions X suc-
i+l i+1 

ceding X in the algorithm. Similarly iw<X) = iw<X ) for all solutions 

X succeeding Xi+l in the algorithm. A similar argument holds for Step 3 of 

the algorithm. Therefore at the end of the algorithm no subset can be moved 

to an adjacent location such that the value of the objective function is 

reduced, and we have an optimal solution. D 

2 THE CUT APPROACH 

We next discuss the cut approach of PICARD and RATLIFF [4] in terms 

of the direct search approach. 

DEFINITION. Let Xk be the solution defined by 

called a maximal subset with respect to¾ if 

x~ =¾for all j. Then Sis 
J k k 

rs(X) = maxv {l 2 .}rv(X ). 
£; , , ••• ,n 
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LEMMA 1. Let X 'be the solution defined by xj = ak for all j E s1 and 

xj = ¾+l for all j E s 2 = {1,2, .•. ,n}\s1 • If rv(X) ~ 0 for all vs s 1 and 

~(X) ~ 0 for all W s s2 , then s2 is a maximal subset with respect to¾· 

* PROOF. Let H be a subset of {1,2, ... ;n} and let X be the solution defined 

* . * by x. = ¾+l for all j EH and x. =¾otherwise. We shall show that 
J * J 

F(X) ~ F(X ). There are subsets W ~ s 2 and Vs s 1 such that H = (s2 \W) u V. 

* We can get X from X by first moving W to ak and then moving V to ak+l' or 

vice versa. These two movements reduce F(X) by 

[r (X) + l (X) - 2 
V W I I 

jEW SEV 

Since 

r (X) + l (X) - 2 
V W I I 

jEW SEV 

* it follows that F(X) ~ F(X ). Since 

and 

it follows that 

(v. +v .)](a 1-ak). 
JS SJ k+ 

(v. +v .) ~ 0 
JS SJ 

This is true for all subsets H. We have proved that s 2 is a maximal subset 

with respect to¾· D 

We now give an alternative proof of Theorem 1 from [4]. 

THEOREM 2. x 0 is an optimal solution to (P2) iff Sk = {j Ix~> ak} is a 

maximal subset with respect to ak for all k = 1,2, ... ,m-1. 
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PROOF. Let Sk be a maximal subset with respct to ak for each k = 1,2, ... ,m-1. 

Let X(k) be the solution defined by x~k) = ak+l for all j E Sk and x~k) = 

~ otherwise. By Observation 3 we have 

for all v c {1,2, ... ,n}\sk 

and 

Since Skis a maximal subset we find using Observation 1 and 2 that 
0 

r (X ) ~ 0 for all subsets V of the set of new facilities located at akin 
V 0 

xO, and fw(X ) ~ 0 for all subsets W of the set of new facilities located 

at ak+l in x 0 . By repeating this argument for all k = 1,2, ... ,m-1 we have 

proved that no subset of new facilities located at the same location can 

be moved to an adjacent location such that the objective function is re-

d d O · · 1 1 · Ob . 1 1 t· d uce. Hence X is an optima so ution. Let X e an optima sou ion an 

let k 0 E {1,2, ... ,m-1} be fixed. Assume x 0 is given by x~ = akv for all 

j E T ( -q ~ v ~ -1 , 1 ~ v ~ p) where k < • • • < k ~ k < k < < k and 
V -q -1 0 1 p 

T , .•• ,T 1 ,T 1 , ... ,T form a partition of {1,2, ... ,n}. 
-q ~ p 

Let T be a subset of Sk. Then T = tf T with T. £ T. Let W be a 
0 _ v=1 V _ V V (k ) 

subset of {1,2, ... ,n}\Sko· Then W = Uq T with T ~ T Let X O be 
v=1 -v -v -v 

the solution defined by 

We shall prove below· that 

(k ) p 
fT (X O ) ~ I 

v=1 

and 

(kO) q 
rw(X ) ~ I 

v=1 

f-
T 

for all j E sk 
0 

(XO) 
V 

r-
T 

(XO). 
-v 

otherwise. 
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Since x 0 is an optimal solution we have 
0 

0 lT (X ) ~ 0 for all v = 1,2, •.• ,p 
V (ko) 

and rT- (X ) ~ 0 for all v = 1,2, •.• ,q, 
-v 

and therefore lT (X ) ~ 0 and 

rW(x(ko)) ~ 0. It follows from Lemma 1 that Sko is a maximal subset with 

respect to ak. 
0 

(k ) 
lT (X O ) 

Similarly 

l_ 
jET 

V 

= L 
jET 

c I 
i 

i<k 
V 

r 
s 

w .. + 
J l. I 

s 
k <k 

S V 

(v. +v . ) 
JS SJ 

(v. +v . ) -
JS SJ 

+ l_ L 

I 
i 

i<'=k 
V 

w .. 
Jl. 

(v. +v . ) . 
JS SJ 

k <'=k 
S V 

jET 
V 

SET 
V 

[ I 
i 

"<k l.- 0 

I 

w .. + I (v. +v . ) - I w .. 
Jl. s JS SJ i Jl. 

ks~ko '>k l. 0 

L L (v. +v . ) ] + 
JS SJ jET SET 

(v. +v . ) • 
JS SJ 

p p 

I I . I_ 
v=l r=l JET 

rf=v V 

p 
2 I l_ 

v=l jET 
V 

I -
SET \T 

r r 

I 
i 

k <i<k 
0 V 

(V.+v.)+ 
JS SJ 

w .. ;;;,: 0 
Jl. 

I 
v=l 

r-
T 
-v 

r 
v=l r=l jET 

I . 
SET \T 

-r r 

(V. +v . ) + 
JS SJ 

2 

r,f,-v -v 

I l l 
v=l jET k <i~kO 

-v -v 

w .. ;;;,: o. □ J l. 
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Our direct search algorithm constructs an optimal solution satisfying 

the conditions of Theorem 2 in PICARD and RATLIFF [4]. Their Theorem 3 is 

now easy to prove by using Observation 3. We have also proved their Theorem 

4 since our direct search algorithm only depends on the quantities rs(X) 

and ls_(X) which are independent of the distances between existing facilities. 
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