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ABSTRACT

Picard and Ratliff recently proposed at cut approach to the rectilinear
distance facility location problem and claimed it is fundamentally different
from the direct search approach as developed by Pritsker and Ghare, Rao,
Jual and Love, and Sherali and Shetty. Our objective is to show that the

approach.of Picard and Ratliff is essentially a direct search approach.
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0. INTRODUCTION

The problem we consider is that of locating n new facilities in the
plane when there are m existing facilities, located at coordinates (ai'bi)
for i = 1,2,...,m, and the objective is to minimize the sum of weighted
rectilinear distances. Let (xj,yj) (j =1,2,...,n) denote the coordinates

of the new facilities. Then the problem can be formulated as

n m
(P1) min z(X,Y) = Z z w.i{[x.—aili-ly.—bil} +

j=1 i=1 It ]

I

+ v, {Ix.-x | + |ly.-yv. |},
j=1 k=341 K3 KTk
> > i 4 i = i >

where wji = 0, vjk 2 0 for all i, j, and k (we define vjk 0 for all j = k).

This problem can be decomposed into two independent subproblems:

n m n n
(P2) . min F(X) = j£1 121 wjilxj-ail + j£1 k=§+1 vjklxj—xkl,
and |

n m n n
(P3) min G(Y) = j§1 121 wjilyj—bil + jzl k=§+1 vjklyj-ykl.

We shall develop an algorithm to solve (P2). Without loss of generality
we may assume that 0< a, < a, <...¥< a -

It is well known [2] that there exists an optimal solution to (P2)
with Xj € {al,az,...,am} for all j = 1,2,...,n. In finding an optimal solu-
tion we shall restrict ourselves to the direct search approach (PRITSKER
and GHARE [5], RAO [6], JUEL and LOVE [3], and SHERALI and SHETTY [7]) and
to the cut approach (PICARD and RATLIFF [4]). Other solution methods have
been proposed by CABOT et al. [1], and WESOLOWSKY and LOVE [8, 9]. In Sec-
tion 1 we shall discuss the direct search approach and give an efficient
algorithm to solve (P2), which just like the cut approach in [4], requires
the solution of at most m-1 minimum cut problems on networks with at most

n+2 vertices. In Section 2 we shall discuss the relationship between the

cut approach and the direct search approach to solve (P2).



1. THE DIRECT SEARCH APPROACH

The direct search approach can be described as follows. Start with
some solution X1 with xg = akj (1 £3j £ n). Consider the set T of new faci-
lities located at existing facility coordinate a, ;i assume |T| = h. If there
is a subset S ¢ T that can be moved to an adjacent existing facility coordin-
ate (ak+1 or ak—l) such that the new solution X2 satisfies F(X2) < F(Xl),
move that subset to the corresponding adjacent facility coordinate. Then
repeat this procedure wifh the solution X2.

If no such subset exists at any location we have found an optimal solu-
tion. A justification of the algorithm can be found in the linear program-
ming formulation of (P2). RAO [6] has proved through the negation of various
alternatives that a single non-degenerate simplex pivot can only result in
the movement of a subset of new facilities at a given location to an adja-
cent location also coincident with some existing facility coordinate.

SHERALI and SHETTY [7] showed that moving S to a reduces F(Xl) by

k+1

reduces F(Xl) by KS(XI)(ak-ak_l), where

1 .
rs(X )(ak+1—ak), moving S to ak_1

rS(Xl) = ) r, xh+ 7 7 (v"s+vs')'
jes jesS seS J J
) ,
r.(X") = w,, + (v, +v_.) - w,, - v, +v_.
3 g ji g s SJ) E ji g (JS SJ)'
i>k. k >k, i<k, k <k.
3 s j 3 s
1 1
L7y = ] L&)+ ) L (v, v ),
jes jes jes I J
1
£.(x7) = w.. + (v, +v_.) - w.., - (v. +v_.).
3 E ji é js g ji g js s
i<k, k <k, izk, k =2k,
3 s 73 3 s

The difficulty lies in establishing whether there is a subset that can
be moved to an adjacent location such that the value of the objective func-
tion reduces. JUEL and LOVE [3] solve this problem by checking each subset
expiicitly. SHERALI and SHETTY [7] solve this problem by maximizing



rS(Xl)(ZS(Xl)) over all subsets S € T using the following quadratic zero-
one formulation:
h ) ) h h
- +
maximize izl tiri(x )(or‘ﬂi(x )) + izl jzl titj(vij vji)

set. ti e {0,1}, i =1,2,...,h.

This problem can be solved by adapting an algorithm of CABOT and FRANCIS
([7]). However, Sherali and Shetty fail to observe that maximizing rS(Xl)
over all subsets S ¢ T is actually a minimum cut problem on a network with
h+2 vertices.

This can be seen as follows. We have

Defining S = T\S and

(note that C is a constant which does not depend on the subsets S of T),

we can rewrite rS(Xl) as

rS(X1)=C— Y LY w,,+ ) (v, +v_] -
o= - J s]
Jes i s
i>k, k >k,
J s ]



- ) z w,, t ) (v, +v_ )1 = )Y ) (v, +v_.).
jes i ] Js 8] jesS seS Js s8]
iSkj k <k

Hence finding the subset S of T which maximizes rS(Xl) over all subsets S of

T is equivalent to finding the subset S of T which minimizes.

)

e,+2f,+ z c

. r
jes J jes J jesS seS Js
where
e. = ) w.. .+ ) (v, +v_.),
J i Ji S Js sJ
i>k k >k
J s ]
£.= ) w..+ ) (v, +v_ ),
J i Ji S Js sJ
i<k k <k
J s ]
and
c =v, +vV

This is equivalent to finding a minimum (s,t) cut in the following network.
(fig. 1). We have vertices s, t and 1,2,...,h, and arcs (s,j) with capacity
ej (3 =1,2,...,h), arcs (j,t) with capacity fj (j =1,2,...,h) and arcs

(1 £ 3 <k <£n).

(j,k) of capacity cjk

Fig. 1: Network corresponding to the problem of maximizing rS(Xl) over
all subsets & of T.



As initial solution for the direct search approach both JUEL and LOVE
[3], and SHERALI and SHETTY [7] take the solution one gets by locating each
new facility with respect to existing facilities using the algorithm for
the single facility rectilinear location problem (see [2]).

We will give an algorithm that starts with all new facilities located

at the same existing facility coordinate aq (1 £ g < m).

Direct Search Algorithm

STEP 1: Start with all new facilities located at aq
Set i =g, jJ = 4.

STEP 2: Let Xi be the current solution.
If i

m, then go to Step 3.

If i < m, then determine the subset S of the set Ti of new facili-
. i, _ 1

ties lo;ated at ai such that rS(X ) = maXVSTi rv(X ).

If rs(x ) £ 0, then go to Step 3. Otherwise move S to a,

i+1”
Set i = i+l and go to Step 2.

J be the current solution.

STEP 3: Let X
If j = 1, then stop; we have an opﬁimal solution.
If j > 1, then determine the subset S of the set Tj of ngw
facilit%es located at aj such that ZS(XJ) = maxy<r ZV(X]).
If KS(XJ) < 0, then stop; we have an optimal solution.

Otherwise move S to aj_ Set j = j-1 and go to Step 3.

1
Before proving that this algorithm produces an optimal solution, we

make the following observations

OBSERVATION 1: Let X1 be a given solution, and let T be the set of new

facilities located at a - Let X2 be the solution resulting from X1 by

moving the subset 81 € T from a, to a
hold
(a) r x!) = r (Xl) +r
SqUS9 Sl‘
of T.

(b) r

K41 ° Then the following equalities

S (X2), where S1 and 82 are disjoint subsets

2

1 1 2 ,
sl\83(X ) rsl(X ) + ﬂs3(x ), where s, is a subset of S, -

OBSERVATION 2: With Xl,Xz,Sl,Sz,S3

xly =2, 1)y + ¢ (x2), and
2 S1 S2

analogously to Observation 1 we get

(2) !'slus



(b) Ksl\s

o 2
xly = 2. &) +r_ x%).
3 51 S3

OBSERVATION 3: Let X! be a given solution, and let T be the set of new

facilities located at ak. The calculation of rs(xl) does not depend on the

actual location of the new facilities, but depends only on which of these
facilities have a coordinate less than or equal to a, and which have a co-

ordinate greater than a The calculation of KS(Xl) does not depend on the

K
actual location of the new facilities but depends only on which of these

facilities have a coordinate greater than or equal to ap and which have a

coordinate less than ak.

We are now ready to prove the following theorem.
THEOREM 1. The direct search algorithm produces an optimal solution.

PROOF. Suppose that in Step 2 of the algorithm a subset S of Ti has been
i+l

moved from a., to a, We claim that rv(x ) £ 0 for all V ¢ Ti\s and

. , i+1°
+
ZW(Xl 1) < 0 for all Ww € S. This follows from Observation 1(a) and 1(b),

using rS(Xl) = max rV(Xl). Since both the set of new facilities which

VCET,

=+i
have a coordinate greater than ai and the set of new facilities which have
a coordinate less than or equal to ai are invariant during the algorithm
i+

. 1 .
we find using Observation 3 that rv(x) = r. (X ) for all solutions X suc-

\Y
ceding Xi+1 in the algorithm. Similarly KW(X) = KW(Xi+l) for all solutions

X succeeding Xi+1 in the algorithm. A similar argument holds for Step 3 of

the algorithm. Therefore at the end of the algorithm no subset can be moved
to an adjacent location such that the value of the objective function is

reduced, and we have an optimal solution. g
2 THE CUT APPROACH

We next discuss the cut approach of PICARD and RATLIFF [4] in terms

of the direct search approach.

k . .
DEFINITION. Let Xk be the solution defined by xj =a for all j. Then S is

r (Xk).

k
called a maximal subset with respect to ak if rs(x ) = maxVC{1 5 n}tv



Kk for all j € S1 and

xj = a for all j e s, = {1,2,...,n}\Sl. If rv(X) < 0 for all v ¢ 5, and

LEMMA 1. Let X be the solution defined by xj = a

then S, is a maximal subset with respect to a -

KW(x) < 0 for all W ¢ S,, )

*
PROOF. Let H be a subset of {1,2,...,n} and let X be the solution defined
* . . * .
by xj =a for all j € H and xj =a otherwise. We shall show that

F(X) < F(X*). There are subsets W ¢ S, and V ¢ S, such that H = (SZ\W) uVv.

2
*
We can get X from X by first moving W to a

1

X and then moving V to ak+1, or

vice versa. These two movements reduce F(X) by

-a, ).

[r, (x) + £ (x) -2 ) (vt a3y

JeEW seV

Since

r, (X) + £ (x) -2 .X ) (v, tvg) S 0
JeEW seV

’ *
it follows that F(X) < F(X ). Since

k
(X )(ak+ -a, )

k
F(X) =F(X') -« 173

52

and
* k k
F(X ) =F(X) - rH(X )(ak+1—ak)
it follows that

rsz(xk> > r (x5).

This is true for all subsets H. We have proved that 52 is a maximal subset
with respect to a, . 0

We now give an alternative proof of Theorem 1 from [4].

THEOREM 2. XO is an optimal solution to (P2) iff Sk = {jl xg > ak} is a
maximal subset with respect to ak for all k =1,2,...,m-1.



PROOF. Let Sk be a maximal subset with respct to ak for each k =1,2,...,m-1.

Let X(k) be the solution defined by xék) =3 for all j € Sk and x;k) =
a, otherwise. By Observation 3 we have
0 (k) o
rV(X )y = rV(X ) for all v ¢ {1,2,...,n}\Sk
and
0, _ Lo (k)
Kw(x ) = Kw(x ) for all W¢ S, .

Since Sk is a maximal subset we find using Observation 1 and 2 that

rV(XO) £ 0 for all subsets V of the set of new facilities located at ak in
0

XO, and ZW(X ) < 0 for all subsets W of the set of new facilities located

at ak+1 in X . By repeating this argument for all k = 1,2,...,m-1 we have

proved that no subset of new facilities located at the same location can
be moved to an adjacent location such that the objective function is re-
duced. Hence XO is an optimal solution. Let XO be an optimal solution and
let k. € {1,2,...,m-1} be fixed. Assume XO is given by x? = a for all

0 k
v
jeTv (g £v<-1,1<v <p) wherek_q<...<k_1SkO<k1<...<kpand

1°71

Let T be a subset of Sko. Then T = Us_l %v with %V CT . Let Whe a
subset of {1,2,...,n}\Sy . Then =03 % withT <cT . ILet X(ko) be
0 v=l "-v -V -V

T_q,...,T_ ,T ,...,Tp form a partition of {1,2,...,n}.

the solution defined by

(ko) (kq)
xj = ako+1 for all j € SkO and xj = ako otherwise.

We shall prove below that

(k.) P
tax 0y < ¥ oes &%)
v=1 v
and
(ko) q
r (X ) < Z r~ (X7).



Since XO is an optimal solution we have £~ (XO) <0forallvs=1,2,...,p

0 _ v (ko)
and rg, V(x ) <0 for all v =1,2,...,q, and therefore Zi(x

) £ 0 and
r-(X(kO)) < 0. It follows from Lemma 1 that Sko is a maximal subset with
W

respect to ako.

- Z (Vjs+vsj) + Z. Z~ (vjs+vsj).

S jeT. seT
k >k vy
s v
(ko)
L4 (x y= ) [ ) w,, + )} (v,+v ) - ) w,,
oa ji - ji
JeT i S i
< <
1_ko ks_kO J.>kO
- ) v 01+ ) ) (v, v ).
s Js 8] JeT seT S
ks>k0
P 0 (ko) p P
Y e (x7) - La(x y=1 1 L Lo L v )+
v=1 v v=1 r=1 jeT seT \T ] ]
v rr
r#v
b
2 )y 7 L w20
v=1 jeT i J
k0<i<kV
Similarly
P a-na -1 1 7 1
r~ (X7) - r (X ) = L (v, v )+
v=1 Ty w v=1l r=1 jeT _seT \T Js s3]
-v -r 'r
r#v
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Our direct search algorithm constructs an optimal solution satisfying
the conditions of Theorem 2 in PICARD and RATLIFF [4]. Their Theorem 3 is
now easy to prove by using Observation 3. We have also proved their Theorem
4 since our direct search algorithm only depeﬁds on the quantities rS(X)

and KS(X) which are independent of the distances between existing facilities.
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