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ABSTRACT 

This paper reviews the asymptotic ~ehavior of undiscounted value­

iteration in Markov Decision Problems with finite state and action spaces. 

The asymptotic results concern both the value functions and the sets of 

optimizing policies as the length of the planning period t~nds to infinity. 
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1. Introduction 

The value-iteration equations for finite, stationary Markov decision 

processes (MDPs) are 

1 

(1.1) v(n). = l. max 
k€K(i) 

k N k 
[q. + 8 I P .. v(n-1).] ; 

i j=l l.J J 
n = 1,2,3, •.. 

[Howard (1960)], where N is the finite number of states, K(i) is the finite, 

non-empty, set of actions available in state i, 8 is the one-period discount 

factor, and v(O)i denotes the scrap value of state i upon termination. We 

refer to Os 8 < 1 and 8 = 1 as the discounted and undiscounted cases, 

respectively. If action k € K(i) is chosen upon entrance to state i, an 

immediate expected reward qk1. is earned (where every qk1. is-finite) and P~. 
N l.J 

denotes the probability that the next state will be j (P~. ~ 0, l P~. = 1). 
l.J j=l l.J 

Equation (1.1) results from Bellman's principle of optimality [Bellman (1957)] 

with v(n)i denoting the maximum expected cumulative return in an n-period 

process starting from state i. 

The following notation will be employed. We let SR= {[fik]lfik ~ 0, 

l f.k = 1} denote the set of all randomized stationary policies. Here 
k€K(i) 1 

fik is the probability action k is chosen whenever entering state i. A pure 

(non-randomized) policy has each fik = 0 or 1, since it associates a single 

action k = f(i) with each i € O. SP= XiK(i) will represent the finite 

subset of pure (stationary) policies. 

With each policy f € SR' we associate an N-component reward vector 

q(f) and an NxN-transition probability matrix P(f): 
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-2-

(1.2) q(f)i I k 1 s i = f.kq. ; s N 
kE:K(i) l. 1 

P(f) .. I k 
1 i,j = f.kP .. ; s s N 

1J kE:K(i) 1 1J 

We rewrite (1.1) as 

(1.3) v(n) = Tv(n-1) = Tnv(O) ; n = 1,2, .•. 

N N where the operator T:E ~ E is defined by 

(1.4) Tx. 
1 

= max [q~ +BL P~.x.] , 
kEK(i) 1 j l.J J 

n and where T represents then-fold application of the T-operator. 

Finally, for any E ~ O, let 

S(n) = {f € splv(n) = q(f) + BP(f)v(n-1)} 

S(n,e) = {f E splq(f) + BP(f)v(n-1) ~ v(n) - el} 

denote, respectively, the set of pure policies which attain (or come within 

E of) v(n), when the remaining planning period consists of n periods. Here 

1 represents the N-vector with all components equal to unity. 

The present survey describes the undiscounted case, with emphasis on 

·the basic properties of {v(n)}:=l (section 2), its dependence upon the scrap 

value vector v(O) (section 3), and the asymptotic behavior of the sets of 
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optimal and &-optimal policies {S(n)}:=l and {S(n,E)}:=l (section 4). 

Section 5 discusses Lyapunov functions and other techniques for bounding 

a solution pair to the optimality equations arising in this model, while 

section 6 describes uses of data-transformations to simplify computations 

in the infinite horizon case. In each section, differences between the 

undiscounted and discounted cases are pointed out. Some of the material 

in sections 2-4 overlaps our previous survey on value-iteration (cf. 

Federgruen and Schweitzer (1977a)), to which the reader is referred for 

additional details. 

The following notation will be employed: For any x € EN, let 

X max = max x. ; 
i i 

Ix!. 
i 

X . min =minx. 
i i 

and 

In addition, we will use the quasi-norm sp[x], where sp[x] = 

(cf. Bather (1973)). 

X max - X . min 
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2. The Asymptotic Behavior of v(n) 

The following additional notation is required for studying the 

asymptotic behavior of v(n). For any pure or randomized policy f, let 
n co . 

the NxN-matrix TI(f) denote the Cesaro limit of the sequence {P (f)}n=l' 

and let R(f) = {iln(f) .. > O} represent the set of recurrent states for 11 

P(f). Finally, we associate with each f E SR its gain rate vector 

g(f) 
. 1 M 

= l1m M+l l Pn(f)q(f) = Il(f)q(f) 
»+oo n=O 

* Denote the maximal gain rate vector by g, where 

(2.1) 

It is known (cf. Derman (1970)) that a pure policy achieves the N maxima 

in (2.1) simultaneously. Accordingly, let 

* * = g } and = g } 

denote the set of all randomized maximal gain policies and the set of all 

pure maximal gain policies, and define 

* R = {iii E R(f) for some f E SRMG} 

* It is known that R = {i Ii E R (f) for some f E SPMG}. i.e. , any state 

that is recuJ~rent under a randomized maximal gain policy will also be 



recurrent under at least one pure maximal gain policy. It is also known 

(cf. Schweitzer and Federgruen (1977a)) that the set 

5 

Note that randomization is essential here: there generally does not exist 

* a pure maximal gain policy whose set of recurrent states is R. To illus-

trate this, consider the following 4-state example. 

Example 1 

N = 4; K(l) = K(3) = K(4) = {1} K(2) = {1,2} 

k * * qi - 0, g = (0,0,0,0), SRMG = SR, R = {1,2,3,4} 

i k k k k k 
pil pi2 p i3 pi4 

1 1 0 1 0 0 

2 1 1 0 0 0 

2 0 0 1 0 

3 1 0 0 0 1 

4 1 0 1 0 0 
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in which only state 2 has multiple alternatives. 

Both pure policies are maximal gain, with recurrent states {1,2} if 

k = I is chosen and {2,3,4} if k = 2 is chosen. No pure policy has 

* R = {1,2,3,4} as its set of recurrent states, but any randomized policy 

which uses both alternatives in state 2 with positive probability will 

* have R as its set of recurrent states. Randomization here plays the 

important role of coalescing the recurrent chains of the pure policies. 

The historical account of the literature on the asymptotic behavior 

of v(n) goes back to Bellman (1957) and Howard (1960). Bellman showed that 

k * * * if every P .. > O, then v(n). ~ n<g > where every g. = <g >. Howard gave 
1J 1 1 

* examples where lim[v(n) - ng] existed, and conjectured that this was 
)l+00 

always true. The conjecture is false if some of the (maximal gain) poli-

cies have tpm's with periodic states. As an illustration, consider the 

following 2-state example with only one policy. 

Example 2 

* g = (0,0) 

n even 

n odd 

* so that lim[v(n) - ng] exists if and only if v(0) 1 = v(0) 2. We remark here 

* that there always exists choices of v(0) such that lim[v(n) - ng] exists. 

* 00 
On the other hand, Brown (1965) showed that {v(n) - ng }n=O is always 

bounded inn so that 
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* gi = lim v(n)i/n, 1 sis N 
n-+<x> 

* (for any v(O)). This justifies the interpretation of g. as the maximum 
l 

average expected reward per transition when starting in state i. It remained 

* to show when lim[v(n) - ng] exists and the behavior when the limit fails 
n-+<x> 

to exist. As mentioned above, non-existence of the limit is associated 

with the occurrence of maximal gain policies having periodic tpm's. 

An elegant result by White [1963] states conditions which exclude 

periodicities, and ensure existence of the limit. Specifically, if there 

exists a states, integer m and number a> 0 such that 

(2. 2) [P(f1)P(f2) ... P(f )]. ~a> 0, 1 sis N m 1s 

* * * * then g. = <g > for all i,v = lim[v(n) 
1 

n<g >!] exists for any choice of 
n-+<x> 

v(O), and the approach to the limit is geometric. 

To avoid the linear divergence of v(n) with n, White proposed working 

with the relative values, obtained by setting (say) the Nth component of 

* v equal to (say) zero. Under condition (2.2), the vector 

( "th *rel 0) W1 VN = 

is unique, and the relative value iteration scheme 
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(2.3) y(n+l) = Ty(n) - [Ty(n)]N! , n = 0,1,2, ... 

(where y(n) *rel 
= v(n) - v(n)N!) will converge geometrically to v 

Brown (1965) and Lanery (1967) have shown, albeit with faulty proofs, 

* that there exists an integer J ~ 1 such that lim[v(nJ) - nJg] exists for 
n-+<» 

N every v(O) € E. The present authors (cf. Schweitzer and Federgruen (1978a)) 

showed, in fact, that in the general case the process has to be observed 

* every J steps, where 

J* = min{J ~ llthere exists f E S~G such that P(f)J is 

an aperiodic tpm} 

so as to overcome the irregular behavior caused by the periodicities in the 

* tpm's. Note that J is independent of the scrap values. 

More specifically, we showed that 

(2.4) lim[v(nJ + r) - (nJ + r)g*] exists for all v(O) E EN for 
n-+co 

some r = 0, ... , J-1, if and only if J ~ 1 is a multiple 

* of J. 

(2.5) for each v(O) E EN, there exists an integer J 0 , which depends upon 

* * v(O) and divides J, such that lim[v(nJ + r) - (nJ + r)g] 
J1-+co 

exists for any r = 0,1, •.. ,J-l if and only if J is a multiple 

of J 0 . Thus, in Example 2, J* = 2 and J 0 = 1 or 2, depending 

on whether v(0) 1 - v(0) 2 = 0 or~ 0. 



9 

* It follows from (2.4) that lim[v(n) - ng] exists for all v(O) if 

·* 
n-+<x> 

and only if J = 1, which holds if and only if there exists a (randomized) 

* policy f € SRMG with P(f) aperiodic. Randomization is essential here 

because it serves to reduce the periods of the recurrent chains. As an 

illustration, the two pure policies in Example 1 have periods 2 and 3, 

* * while the randomized policy in SRMG has period 1, so J = 1. Coalescing 

subchains and reducing periods appear to be among the few instances in 

MDPs where randomized policies play a central role. However, a finite 

* procedure exists to calculate J from the periods of the finite set of 

pure maximal gain policies. [Schweitzer and Federgruen (1978a)] 

* A sufficient condition for J = 1, hence for the existence of 

* lim[v(n) - ng] for every v(O), is that every pure maximal gain policy 
n-+<x> 
(or every pure policy in Sp) has an aperiodic tpm. The motivation for 

* seeking easily-verified sufficient conditions for J = 1 is given in Sec-

tion 4. 

The present authors have also shown (cf. Schweitzer and Federgruen 

* * (1977b)) that if v(O) is such that v = lim[v(n) - ng] exists, then the 
J1-+oo 

approach to the limit is ultimately geometric. That is, there exist scalars 

* c > 0, and Os A < 1 such that 

(2 .6) I * *I * n v(n) - ng - v m S c(A) ; n = 0,1,2, ... , 

* where A represents the ultimate average contraction factor per step, and is 
N independent of v(O) € E, and where c > 0 does depend upon v(O). The geo-

metric convergence result is achieved by showing the existence of an integer 
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M ~ 1 (independent of v(O)) and an integer nO ~ 1 (dependent upon v(O)) as 

well as an M-step contraction factor A(V(O)), such that 

* * * * (2.7) sp[v(n+M) - (n+M)g - v] s Asp[v(n) - ng - v] 

for all n ~ nO 

* * In fact, whenever g = <g >!, as happens to be the case in most real life 

applications, nO may be taken to be equal to one. 

In the general multi-chain case, however, no good estimates are avail-

* able for nO, and likewise no good upper bounds exist for A, except if the 

problem satisfies a simultaneous scrambling condition (cf. Federgruen, 

Schweitzer and Tijms (1977), or if one is iterating a single fixed policy. 

In that case, it may be readily shown (cf. Morton (1977)) that A can be 

taken as the modulus of the subdominant eigenvalue of the tpm. 

The absence of estimates for A is unfortunate because it precludes 

* the use of (2.7) to estimate the deviation of v(n) - ng from its limit. 

Consequently, (2.6)-(2.7) are not yet as useful as MacQueen's bounds 

in the discounted case (cf. MacQueen (1966) and also eq. (5.1)). Addi­

tional investigation is needed here to complete our understanding of the 

rate of contraction. 

Finally, a generalization of these results is available for the non­

stationary case, where instead of having perfect knowledge of the parameters 

of the model, only approximations to the latter can be generated, or where 

it is computationally preferable to generate sequences of approximations 



11 

for the parameters (cf. Federgruen and Schweitzer (1978a) for an enumera­

tion of models in which this situation occurs). So in the non-stationary 

model we assume that we are able to generate sequences 

{ k }co k 1 s i s N and k € K(i) q:i(n) n=l ➔ q. 
1 

k . co k 1 i,j N and k E K(i) {P:lj (n) }n=l ➔ P .. s s 
1J 

00 

{K(i,n)}n=l ➔ K(i) 1 $ i s N 

Moreover, in most cases geometric convergence for the parameter approxima-

tions may be achieved, and the present authors showed (cf. Federgruen and 

Schweitzer (1978a)) that in this case the quantities of interest in our 

model can be approximated via the scheme 

(2.8) x(n+l). = 
1 

max [q~(n) + l P~.(n)x(n).] , 
kEK(i,n) 1 j 1 J J 

.., 
In particular, the asymptotic behavior of the sequence {x(n)}n=l is similar 

to that described for the stationary case: 

(a) * C0 

{x(n) - ng }n=l is bounded 

* (b) if lim[x(n) ng] exists, then the limit is approached geometrically 
n-+co 
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(c) 
* * co N If J = 1, then {x(n) - ng }n=l converges for every choice of x(O) EE, 

* * * * N and if j ~ 2, then lim[x(nJ + r) - (nJ + r)g] exists for all x(O) EE 

* and r = ID, ... , J - 1. 

However, unlike the stationary case (cf. section 3), 

* * (d) lim[x(n) - ng] may exist for every x(O), even when J ~ 2 
n-+<o 

and 

* * (e) lim[x(n) - ng] may fail to exist for every x(O), when J ~ 2. 
n-+o> 

Finally, examples in Federgruen (1978) show that, even with all of the 

tpm's of all of the policies being aperiodic, all kinds of irregular behavior 
co 

of the sequence {x(n)}n=l may be expected when the parameters of the model 

are approximated at a slower than geometric rate. 
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3. Dependence of the Asymptotic Behavior upon the Scrap Values 

Let W denote the set of starting points for which the value iteration 

scheme converges, i.e., 

W = {v(O) € ENllim[v(n) - ng*] exists} 
n-+co 

= {x € ENllim[flx - ng*] exists} 
n-+co 

If J* = 1, then W = EN, while if J* ~ 2, Wis a non-empty strict subset of 

EN (cf. Schweitzer and Federgruen (1977b)). For v(O) € W, we let 

* L(v(O)) = lim[v(n) - ng] 
J1-+CO 

This section summarizes the relatively few results that are known with 

respect to both Wand L(•); moreover, we state some of our conjectures with 

respect to their properties. 

The differences between the discounted and undiscounted cases deserve 

some emphasis here. In the discounted case, lim v(n) always exists, and 
J1-+CO * 

is independent of v(O). In the undiscounted case, lim[v(n) - ng] doesn't 
* J1-+CO 

always exist (except when J = 1), and when it does exist, it will explicitly 

depend upon v(O). (For instance, adding a constant to every component of 

v(O) adds the same constant to every component of v(n) and of L(v(O)).) 

These differences motivate our inquiry into the structure of the set W 

where the limit does exist, and the dependence of L(•) upon the scrap values. 
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The following notation will be needed. Suppose v(O) €Wand 

* * * * lim[v(n} - n~] = v. Then {g, v} satisfy the two coupled functional 
n-+a> 
equations (cf. Howard (1960)): 

(3 .1) I k 1 s i N gi = max P .. g. , s 
k€K(i) j 1J J 

(3. 2) 
k I k i v. = max {q. - gi + P .. v .} , 1 s s N 1 k€L(i) 1 j 1J J 

where L(i) = {k € K(i)lg. = 
1 

* 

I P~.g.}. These equations determine g uniquely 
j 1J J 

as g = g in agreement with (2.1). But they determine v only up to certain 

additive constants. We let 

NI * (3.3) V = {v € E (g, v) is a solution to (3.2)}. 

In general, V may have a complicated structure, a characterization of 

which is given in Schweitzer and Federgruen (1978b). Vis known to be 

closed, unbounded, connected but generally non-convex. The necessary and 

sufficient condition for the convexity of V was derived, and each of the 

following three conditions are easily verified sufficient conditions: 

* (a) R = {l, ... ,N} 

* -Cb) for each i ~ R, L(i) is a singleton 

* (c) n = 1, where 

(3.4) 
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with n(f) ~ 1 representing the number of subchains (closed, irreducible sets 

* of states) of P(f), f € SR. n = 1 is in fact the necessary and sufficient 

* condition for v € V to be unique up to a multiple of ! , i.e. , under ~ = 1, 

* V takes the simple structure V = {v0 + c!l-m < c < +m} and in case n ~ 2, 

the set V can be shown to be an n*-dimensional subset of EN. A finite algorithm 

* was given to determine the number n, as well as a triangular decomposition 

* for the polyhedral set from which we may choose then parameters (degrees 

of freedom), which determine v € V (cf. Schweitzer & Federgruen (1977a)). 

* Finally, the condition n = 1 is trivially met if every pure or every pure 

maximal gain policy is unichained. 

The multichain policy iteration algorithm (Howard (1960)) may be used 

to find an element of V. If v(O) € W, then lim[nv(n-1) - (n-l)v(n)] = 
* n-+m 

lim[v(n) - ng] € V so that value-iteration may be employed to approximate 
n-+co 
an element of V, since several devices have been proposed to avoid the numer-

* m ical difficulty of g being unknown and of {v(n)}n=l diverging linearly with n. 

* For later use we define for each v € V, the set S (v) of maximizing 

policies in (3.2): 

(3.5) * N s (v) = Xi=l L(i,v) 

L(i, v) = {k € L(i)lv. 
1 

where 

k * k = qi - gi +). P .. v.} , 
j 1J J 

We now consider the function L(x), x E W. The following properties 

are known to hold: 

(3 .6) L(x +a!)= L(x) +al, for any scalar a, i.e., L(•) is unbounded 
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(3.7) L(•) is continuous on W with Lipschitz norm of unity: 

sp[L(x) - L(y)] s sp[x-y] ; x,y £ W 

(3.8) L(•) is a convex function on W: 

L((l-a)x + ay) s (1-a)L(x) + aL(y) ; x,y i W 

for Os as 1 such that (1-a)x + ay £ W 

(3.9) L(x) £ V 

* (3.10) if x £ W, then Tx £Wand L(Tx) = L(x) + g 

In general, L(x) is very difficult to display in closed form because it 

involves the (transient-type) decisions when termination of the process is 

near. 

One simple example, patterned after Brown (1965), illustrates some 

of the structure in L(•): 

k * Example 3: N = 2; qi= O for all 1 sis N; k £ K(i). Hence g = o. 

i k k 
pil 

1 1 .4 

2 .5 

2 1 .6 

k 
pi2 

.6 

.5 

.4 

* 2 J = 1 ; W = E, i.e., 

2 L(x) exists for every x £ E 



17 

Note that 

where P(fr) uses alternative r in state 1 (r = 1,2). Consequently, value­

iteration will alternate between P(f1) and P(f2). This implies 

( ._46 ·.46)]n v(0) "f (0) (0) 1 V l S V 2 

v(2n) = 

( ._s6 ·.4s)]n v(0) 'f (0) (0) 1 V l ~ V 2 

Letting n-+ co, 

L(x) = 

The following example illustrates more complex behavior 

Example 4: N = 3; K(l) = K(3) = {1}, K(2) = {1,2} 

i k 
k 

pil 
k 

pi2 
k 

pi3 

1 1 0 1 0 

2 1 1 0 0 

2 0 0 1 

3 1 0 0 1 
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k * q. - 0; g = (0,0,0) 
l. 

rnax[x1, 

T2nx = T2x = rnax[x2, 

X3 

rnax[x2, 

T2n+lx = T3x = rnax[x1, 

X3 

X3] 

X3] n = 

X3] 

X3] n = 

Note that lim Tnx exists if and only if T2x = 
n~• 

l,2,3, ... 

l,2,3, .. . 

3 T x, hence 

Note that W may be written as the union of two polytopes w1 and w2 , where 

In addition, 
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We know (cf. Schweitzer and Federgruen (1977b)) that Wis always 

closed and unbounded; e.g., if x € W, then x +a!€ W for all scalars a. 

Wis connected in all cases examined by the authors, and it is conjectured 

that this holds in all generality. The above example shows, however, that 

W does not need to be convex, even if Vis convex. The above examples sug­

gest, in addition, that W may always be decomposed into a finite number of 

polytopes such that L(•) is linear on each of the polytopes and has direc­

tional derivatives in any feasible direction wherever two such polytopes 

join. These polytopes may have the structural form of cones. (See also 

Theorem 3.2.) 

In general, it is very difficult to compute W, which depends sensi­

tively upon the value-iteration decisions when termination is near. It 

is hard even to give an analytic characterization of W. The following 

theorem provides a step in that direction, but is not useful at present 

* because the function L (x) (defined below) is as poorly understood as 

L(x) itself. 
* 

Define L*(x) = lim [T'1J x - nJ*g*]. * According to (2.4), L (x) exists 

N for every x € E. 

is undefined for x 

n-+co * 
Note that L(x) agrees with L (x) for x € W; however, L(x) 

* N 
€ E \W. Note that the J*-step operator -r1 may be inter-

* preted as the value iteration operator in a J -step MOP, with {l, ... ,N} as 

its state space, and with action spaces, one step expected rewards and transi­

tion probabilities given by: 
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* 
K(i) = {(£"1 , ••• ,f1)1fr E Sp, 1 s rs J*} 

* * * * 
qr·= q(:f"1)i + P(r )q(r3 -l)i + .•• + t3 2 1 [P( ) .•• P(f )]q(f )i 

~, P .. 
1J 

* 
1 sis N and '= (f"1 , •.• ,f1) 

* . J 1 
=P(f- ) ... P(f) .. ; 

1J 
1 s i,j s N; 

* As a consequence, the properties (3.6) and (3.7) carry over to L (x), and 

* N property (3.8) shows L (x) is a convex function everywhere on E 

Theorem 3.1: (characterization of W) 

* x E W if and only if L (x) EV. 

* * Proof: If x E W, combine L (x) = L(x) with L(x) EV to conclude L (x) EV. 
* * * r nJ +r * * Conversely, assume L (x) EV and define L' (x) = lim T x - (nJ + r)g 

* (r = 1,2, •.• ,J ). 

* 

Observe that for all 1 sis N: 

(3.11) TnJ +1 * * xi - (nJ + l)gi = 

n-+oo 

* * k * * k * k nJ * * max {nJ [l P .. g. - g.] + q. - g. + l P .. [T x - nJ g ]} 
kEK(i) j 1J J 1 1 1 j 1J 

and note that for n sufficiently large, only k E L(i) achieve the maximum on 

the right of (3.11). Use this when letting n tend to infinity, to conclude 

for all 1 sis N: 

k * k * = max {q. - g. + l P •• L (x).} = 
kEL(i) 1 1 j 1 J J 
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* where the second inequality follows from L (x) EV. Likewise, one 

* k proves L ' (x) = L*(x) for all 1 s ks J*, i.e., lim r1x - ng* exists, or 
n-foe» 

XE W.0 

Finally, the following theorem given an abstract characterization of 

* the function L (x), but lacks utility until a better understanding of the 

set r (as defined below) becomes available. 

1 2 3 n For any infinite sequence of pure policies t = {f ,f ,f , ... }, f ESP, 

where? is used when n periods remain before the termination of the plan­

ning period, define then-period rewards and tpm's by: 

q(t,n) 

P(~,n) n 1 = p (f ) •.• p (f ) 

Let r = { (a.,y) la. e EN; y .is an NxN stochastic matrix; 

* * * * (a.,y) is a limit point of (q(t, nJ) - nJ g, P(t, nJ )) 

for some infinite policy sequence t} • 

* Theorem 3.2: Characterization of L (x) 

(3.12) max [a.i + yx.] ; 
(a.,y)Ef 1 

N 
X E E ; 

* * 

1 s i s N 

·In addition, for each x there is a choice (a, y) Er which achieves all 

N maxima in (3.12). 
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* Proof: Fix (a,y) Er and a policy sequence~ such that lim(q(~, nkJ) -
k-+co 

* * nkJ g' (a,y) for some sequence of increasing integers 
00 

{nk}k=l' Next, note that for all n ~ 1: 

* * * (3.13) v(nJ) ~ q(~, nJ) + P(~, nJ )x 

* * where x = v(O). Replace n by nk, subtract nkJ g from both sides in (3.13) 

and let k tend to infinity, to conclude: 

* (3.14) L (x) ~a+ yx for any (a,y) Er 

* Finally, let ~ r be such that f E S(r) for all r ~ 1, with v(O) = x. 

* 

Then 

(3.13) with~ replaced by~ holds as a strict equality for all n; choose a 

00 * * * subsequence {nk}k=l such that the bounded sequence P(~, nkJ) + (say) y 

* * ** * ** * * and consequently q(~, nJ?) - nKJ g = v(nkJ) - nJ? g - P(~, nkJ )x 

* * * * * + L (x) - y x =a. Thus, (a, y) Er and (3.14) holds as a strict equality 

* * when a and y are replaced by a and y . □ 
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4. The asymptotic behavior of S(n) 

In this _section we describe the properties of the sets of optimizing 

policies S(n), as n tends to infinity. The asymptotic behavior differs 

* sharply between the case where v(O) E Wand the case where lim[v(n) -·ng] 
n~ 

fails to exist. However, even in case v(O) E W, contrived examples show 

a possibly irregular dependence of S(n) upon n. This suggests that con­

vergence of S(n) cannot be safely relied upon as a termination criterion 

for value-iteration. This is in surprising contrast with 
00 

(i) the fact that for appropriate choices of the sequence {En}n=l + 0 

00 

the sequence of En - optimal policies {S(n, En)}n=l will converge whenever 

v(O) E W. 

(ii) the empirical fact that in "real-life" problems, the sets 
00 

{S(n)}n=l converge invariably and unambiguously. 

For a more detailed description of the following turnpike properties, cf. 

Federgruen and Schweitzer (1979a). 

* * (a) if v = lim [v(n) - ng] exists, then 
n~ 

* * (4 .1) S(n) c S (v) ~ SRMG 

for all n exceeding some n0 which depends upon v(O). (The Cartesian product 

* * set S (v) was defined by (3,5).) Thus S(n) will always settle upon maxi-

* 00 mal gain policies whenever {v(n) - ng }n=l has a limit. 

An important unsolved problem is the estimation of n0 • Until upper 

bounds on n0 are available, one cannot be sure that policies produced by 

a finite number of value-iteration steps are indeed maximal gain. Examples 

are known where sup n0 (v(O)) =~,i.e., n0 may exceed any given integer m 
v(O)EW 

by an appropriate bad choice of v(O). 
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* * * * ( b) If v •= lim [v(n) - ng ] so that S(n) ~ S (v ) for large n, the 
n-+co 

asymptotic biehavior of S(n) may still be erratic [see, e.g., modifications 

* * of Shapiro (1968)]. S(n) could be a strict subset of S (v) for every n, 

* * with some members of S (v) never identified. Also, S(n) could oscillate 

* * periodically among members of S (v) [see Brown (1965)] or could even 

* * oscillate in a non-periodic way among members of S (v) (by modification 

of an example in Bather (1973)). This potential for irregular behavior 

* * (when S (v) is not a singleton) discourages use of convergence of S(n) 

as a termination criterion. 

* * It is mevertheless possible to compute S (v ) correctly by means of 
a:, 

e:-optimal policies, as follows. Let {e:n}n=l denote any sequence of posi-

tive numbers which approaches Oat a slower rate than the geometric rate 

* * 1 of convergence of v(n) - ng - v to Q, e.g., take e:n = n- (or the 

reciprocal o:f any positive polynomial inn). Then for all n exceeding 

some n1, 

* * S (v) = {f e: splv(n+l) s q(f) + P(f)v(n) + e:n!} 

Once again, no bounds are available for n1. 

Here again, all of the results mentioned under (a) and (b) carry 

over to the non-stationary model where only geometric approximations for 

the parameters are available (cf. section 2). 

* . (c) If lim [v(n) - ng] doesn't exist, then S(n) need not lie in SRMG 
n-+co 

for all largie n; it need not even intersect SRMG" The first such example 



is given in [Lanery (1967)], where S(n) lies outside SRMG for infinitely 

many n. Later the authors constructed an example [Federgruen and 

Schweitzer (1979a)] where S(n) is disjoint from SRMG for every n. These 

examples contrast sharply with the behavior in the discounted case, where 

S(n) can contain only optimal policies when n is sufficiently large. 

For problems with many thousands of states, value-iteration is the 

most practical way to locate maximal gain policies. The importance of 

(a) and (c) is that value-iteration can be relied on to identify maxi-

* mal gain policies only if lim[v(n) - ng] exists. 
n-+co * 

This motivates the search for conditions ensuring either J = 1 (so 

the limit exists for every v(O)) or v(O) E W (so the limit exists for 

* this v(O)). Sufficient conditions for J = 1 were indicated above. If 

these conditions cannot be verified, and if there is concern about non-

* existence of lim[v(n) - ng] due to the presence of periodic tpm's, it 
n-+co 

is suggested that a data-transformation be applied (see below) to ensure 

* that J = 1. 

25 
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5. Bounds and Lyapunov Functions 

* * For discounted MDPs, where B < I, the unique fixed point v = Tv 

of the monotone contraction operator Tis sought. The following bounds 

* on v were given by MacQueen (1966) and later improved slightly by 

Porteus (1971). 

(5.1) 
(Tx - x) . * . min 1 x + --1---B-- s v s x + 

(Tx - x)max 
1 - B I ' 

N any x EE 

These bounds have the following three convenient properties: 

invariance: they remain unchanged when xis replaced by 

* * sharpness: the bounds converge to v when x approaches v 

monotonicity under value iteration: the bounds move monotonically 

inward when xis replaced by Tx. 

The bounds in (5.1) are conveniently used during discounted value-iteration, 

with x = v(n) and Tx = v(n+l), since the bounds may be computed with almost 

* no additional effort and converge monotonically and geometrically to v. 

The bounds are useful both as a termination criterion (stopping when 

* Iv - v(n)I~ achieves a given precision) and for elimination of suboptimal 

actions [MacQueen (1967)]. For a recent survey on elimination tests, we 

refer to White (1978). 

Consider now the construction of analogous bounds for undiscounted 

MDPs, where 8 = 1. Differences are immediately apparent because the dis­

* counted case has only~ set of optimality equations for the N-vector v 
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whereas the undiscounted case has a pair of coupled functional equations 

* * * for two N-vectors g and v . Furthermore, in the discounted case v is 

uniquely determined by these equations whereas in the undiscounted case 

* * only g is uniquely determined, while v is determined up to certain 

additive constants. 

* We describe first bounds on the gain rate vector g . Consider, ini-

* * * tially, the special case where all components of g are equal: g = <g >!, 

This is the most important case i"n practice, arising in the so-called uni­

chain case where each pure policy f has a tpm P(f) with a single closed 

irreducible set of states, plus possibly some transient states. Bounds 

* on the scalar <g > were given first by Odoni (1969) 

* (5.2) (Tx - x) . s <g > s (Tx - x) any x E EN min max 

with the properties 

invariance: the bounds remain unchanged when xis replaced by 

X + al 

* * sharpness: the bounds converge to <g > when x approaches some v EV 

monotonicity under value iteration: the bounds move monotonically 

inward (but not necessarily strictly monotonically) 

when xis replaced by Tx. 

These bounds are conveniently used during value-iteration, with 

x = v(n) and Tx = v(n+l), or (see eq. (2.3)) x = y(n) and Tx = Ty(n)). 

* If lim(v(n) - ng) exists, then both upper and lower bounds converge to 
J1-+cio 
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* <g >; however, if these limits don't exist, then a gap will occur between 

the asymptotic levels of the upper and lower bounds. 

The bounds are useful as a termination criterion (stopping with ~n 

* estimate of <g > which achieves a given precision) but so far have not 

been useful for elimination of suboptimal actions (see further discussion 

* below) due to the absence of estimates of the deviation of v(n) - n<g >! 

* from v. 

* Consider next the general case where the components of g can be 

unequal. The authors obtained the following bounds on the maximal gain 

* rate vector g [Schweitzer and Federgruen (1979a)] 

(5.3) g + { max [q(f) - g + P(f)x - x]}min! s 
f€A(g) 

* s g s g + { max [q(f) - g + P(f)x - x]}max! , 
f€A(g) 

g € G, X € ~ 

where G = {g €ENI&= max P(f)g} and, for g € G, A(g) = {f€Klg = P(f)g} 
f€K 

and where the expressions within braces in (5.3) are maximized component by 

* component. Note that G is not empty, since Q, ! and S are in G. Note 

* * also that when g = <g >!, the choice g = Q reduces the above bounds to 

those of Odoni. 

The above bounds have the properties: 

invariance: they remain unchanged when replacing (g,x) by (g + a!, 

x + b!) for any scalars a, b. 



29 

* * sharpness: the bounds converge tog when g approaches g , and 

* x approaches some v e: V. 

Unfortunately, the monotonicity property has eluded generalization to this 

case. We lack a value-iteration scheme for generating successive pairs of 

vectors {g,x} such that the bounds move monotonically inward. The main 

technical difficulty appears to be the absence of simple characterizations 

of G and A(g), g e: G, or of simple ways to generate sequences of members of 

G. However, in the upper bound in (5.3), it is permitted to replace 

max by max, and the task of minimizing the upper bound is then 
fe:A (g) fe:Sp 
related to the primal linear program for the gain rate vector [Denardo 

and Fox (1968)], [Hordijk and Kallenberg (1978)]: 

min I g. 
i 1 g,x 

I k 
1 i N k K(i) g. ~ P .. g. :,; :,; , e: 

1 j 1J J 

k I k 
1 i N k E K(i) x. ~ q. - g. + P .. x. :,; :,; 

J 1 1 1 j 1J J 

* Finally, we describe bounds on the relative value vector v e: V. Con-

* * * * sider, initially, the case n = 1, where g = <g >! and v is unique up to 

an additive multiple of! (cf. (3.4)). It is convenient to measure the 

* * deviation of an N-vector x from v by sp[x - v ], which is invariant to 

* the additive constant in v. Define 

cf>(x) = sp[Tx - x] 
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which is non--negative and vanishes if and only if x E V. The following 

theorem shows that ~(x) provides a computable measure for the distance 

* between x and v : 

Theorem 5.1: (cf. Federgruen and Schweitz~r (1979b)) 

* Assume n = 1. Then there exists a constant c1, 1/2 s c1 < 00 such 

that 

(5. 4) for all N 
X E E 

if and only :if 

(5.5) all states in i = {iii E R(f), for some f ESP}~ R* 

can reach each other, i.e., if i,j ER then there 

r exists a policy f E SR, such that P (f) . . > 0 for 
l.J 

some 1 s r s N. 

Remark: The condition (5.5) can be expressed in various equivalent ways. 
A 

For example, (5.5) is equivalent to R being a communicating system (cf. 
A 

Bather (1973)), or to the existence of a (randomized) policy that has R 

as its singli~ subchain. Observe, in addition, that the combination of 

* n · = 1 and (S.5) certainly holds in the unichain case. 

* The bounds in (5.4) estimate the deviation of x from v, in terms 

of the computable quantity 4>(x). The upper bound in (5.4) is the direct 

analogue of (5.1) in the discounted case, which may be rewritten as 

(5. 6) * -1 sp[x - v] s (1 - S) sp[Tx - x] 
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The bounds in (5.4) again have the three desirable properties of (a) invari­

~ (they remain unchanged when replacing x by x + a!); (b) sharpness 

* (they converge to Oas x approaches v + a!; (c) monotonicity of the upper 

bound under value-iteration (t(Tx) s t(x)). 

In principle, the bounds in (5.4) permit both a termination criterion 

for achieving a given precision, and elimination of suboptimal actions 

* * * (those not in S (v ), which set is uniquely determined if n = 1). Unfor-

tunately, the bounds are not useful as written because c1 can be enormously 

large for real problems. Our current upper bound for the unichain case, 

c1 = 4N/[min{P~.IP~. > O}]N, needs considerable refinement to make these 
1J 1J 

bounds practical. 

* An alternative method of bounding v and eliminating suboptimal actions 

has been proposed (Federgruen, Schweitzer and Tijms (1977)) in the unichain 

case where every P(f), f € Sp, is unichained. The method uses the data­

transformation (6.1), which converts the original undiscounted MDP into a 

new one, denoted by a tilde, with the same state and action spaces, SRMG and 

*rel . v left intact, the scalar gain rate multiplied by a scalar T, 0 < T < 1, 

and every P(f) .. ~ 1 - T > 0. White's relative value scheme (2.3) for the 
11 

transformed model has the form 

(5. 7) y(n+l) = Qy(n) , where 

~ ~ ~ Qx = Tx - (Tx)N!, and 

Tx = (1-T)x + TTx 
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We recall that the scheme (5.7) has the property lim y(n) 
n-+00 

*rel = V If 

~ every P(f), f e: Sp, is unichained, then Q is an N-step contraction operator 

~N NI *rel on E = {x e: E xN = O} with v as its unique fixed point. This p~rmits 

the construction of monotonically and geometrically converging upper and 

*rel ~ lower bounds on v , in terms of y(n), and to use these bounds to eli-

minate sub-optimal actions in complete analogy with MacQueen's procedures 

in the discounted case (cf. Federgruen, Schweitzer and Tijms (1977)). 

This is believed to be the first published scheme employing value­

iteration for monotonically and geometrically converging upper and lower 

*rel bounds on v , and for permanent action elimination. Computational 

testing of the scheme is lacking, and it is unknown how to weaken the uni­

* chainedness assumption to merely n = 1. Finally, we refer to Hastings 

(1976) for a "temporary" elimination scheme of non-optimal actions. 

* * For MDP's with n = 1, i.e., with v e: V unique up to a multiple 

of!, we define a continuous function,: EN+ E1 as a Lyapunov function 

if it satisfies the following conditions: 

(5 .8) (a) 

(b) 

N 
♦ (x) ~ 0, x e: E ; ♦ (x) = 0 if and only if x e: V 

♦ (Tx) s ♦ (x) 
N 

; X e: E 

(c) there exists an integer M ~ 1 such that ♦ (,>ix)< ,Cx) 

whenever ♦ (x) > 0. 

One such function is ♦ (x) = sp[Tx - x], as used above; if every P(f) is 

unichained and has a positive diagonal (where the latter can be achieved 



33 

via the above discussed data-transformation (6.1)), then (5.Sc) holds with 

M = N. 

* Another possible Lyapunov function is $(x) = sp[x - v] with (5.8c) 

following from (2.7) if lim[Tnx - ng*] exists. This Lyapunov function, 
J1-+CO 

however, cannot be numerically evaluated midway through the value-iteration 

* computations because v is unknown. In the discounted case, the right 

hand side of (5.6) is a Lyapunov function with M = 1 and $(Tx) s a$(x). 

Lyapunov functions have two convenient uses, one theoretical and 

the other numerical. Theoretically, their existence ensures convergence 

* of the value-iteration scheme v(n) - ng, i.e., construction of a Lyapunov 

function is a way of proving algorithm convergence [cf. Zangwill (1970)]. 

Computationally, their numerical value measures (or bounds) the deviation 

* v - x between the limit point and the current guess. 

* Lastly, we describe difficulties in constructing bounds on v EV 

* * in the general multichain case. If n ~ 2, v EV is not unique up to a 

* * multiple of!; instead, v is determined up ton additive constants 

* (cf. section 3). Consequently, the expression sp[x - v] is not uniquely 

* defined until a particular choice of v EV is made. One natural measure 

of deviation, inf sp[x-v], appears computationally intractable. Another 
VEY * * 

natural choice, to measure the deviation of x = v(n) - ng = Tnv(O) - ng 

* * * from v = L(v(O)) = lim[v(n) - ng] EV via sp[v(n) - ng - L(v(O))] is 
J1-+CO 

again intractable because g 

through the calculations. 

* and L(v(O)) are unknown while being midway 

The contraction property (2.7) is not helpful because A and n0 are 

usually unknown. 
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* A third choice is to compute bounds on the optimal bias w [Denardo 

(1970)] EV.· Here exact variational bounds are available [Schweitzer and 

Federgruen (1979a)] 

(5.9) * v + { max [-P(f)v + P(f)y - y]}min! s w s 
feS*(v) 

v + { max [-P(f)v + P(f)y - y]} 
feS*(v) max 

* 

N 
, VE V, y € E 

where V and S (v) were defined in (3.3) and (3.5), respectively. These 

bounds are both invariant and sharp. 

* In addition to the absence of a compelling reason to select w as 

the prototype member of V, the bounds in (5.9) are not computationally 

* useful until simple ways are discovered to characterize V and S (v), 

v EV, and to generate sequences from V. These deficiencies in our 

computational procedures indicate that the multichain undiscounted case 

is still an open area for investigation. 



35 

6. Data Transformations 

Data transformations of the parameters of our model are meant to 

convert one MDP into another (cf. Schweitzer (1971b), Schweitzer (1972), 

Federgruen and Schweitzer (1979c), Lippman (1975), Porteus (1975), and 

Porteus and Totten (1974)). Their main use is to create a transformed MDP 

which is easier either to analyze theoretically or to compute numerically. 

Data transformations generally destroy the interpretation of v(n) as 

the vector o:f maximal n-period rewards. However, they are useful for 

the infinite-horizon case, provided that the quantities of interest 

transform in a tractable manner. 

A useful data-transformation for the undiscounted MDP, indicated 

by a tilde, is 

(6 .1) 
~ 
N ·- N 

~k k q. = Tq. 
1 1 

~ K(i) = K(i) , 1 $ i $ N 

~k 
P .. = 

1J 
k (1-,)o .. + ,P .. ; 

1J 1J 

1 $ i,j $ N; k E K(i) 

where O <, < 1. This may be interpreted as observing the process, and 

making decisions, at intervals, rather than at unit intervals. It has the 

properties 

~ ~ (6.2) Il(f) = Il(f) ; g(f) = Tg(f) , f E Sp 

~* * ~ ~ g = Tg SRMG = SRMG; V = V 
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The important new feature is that every P(f) .. 2!: 1 - T > 0 so that every 
11 

~ . 
tpm P(f) is ~Lperiodic. It follows that value-iteration on the transformed 

problem will be guaranteed to converge for any choice of the scrap va!ue 

~* vector, since, J = 1. Thus value-iteration on the transformed problem 

will be sure to identify maximal gain policies, and is hence preferred 

over value-iteration in the original model, if the latter has periodic 

tpm's. 

A second use of data transformations is to convert semi-Markovian 

decision proc:esses (SMDP's) where the transitions are not equally spaced 

in time, into MDPs, where the transitions are one unit time apart. Con­

sequently, teichniques developed for the infinite-horizon MDP may be invoked 

for the infinite-horizon SMDP. 

Consider first the undiscounted infinite-horizon semi-MOP. The 

functional equations to be solved are (cf. Jewell (1963)): 

* I k * (6. 3) g. = max P .. g. , 1 s i s N 
1 kEK(i) j lJ J 

* k * k I k * v. = max {q. g.H. + P .. v.} • 1 s i s N 
1 kEL(i) l 1 1 

j lJ J 

I * t K * k where L(i) = {k E K(i) g. = l P .. g.} and where H. > 0 is the mean holding time 
1 j lJ J 1 

in state i, when action k is chosen. 

The appropriate data transformation is (cf. Schweitzer (1971b)) 

~ ~ (6. 4) N - N; K(i) = K(i) 1 s i s N 

(contd. on page 37) 



where 

(6.5) 

~k -rq~/lf. q. = 
l. l. l. 

~k H. = -r 
l. 

j 
~k (1 P .. = 

l.J 

1 s 

k P .. 
'[ ..2:1. - 7c)o .. + . 
H. l.J 

-r k , 
H. 

l. l. 

i,j s N ; k E'. K(i) 

0 <-rs min{H~/(1 - P~.)I (i,k) with P~. < 1} 
l. l. l. l. l. 

The transformed problem is an undiscounted MOP with decisions at fixed 
,.,.., """'* * ,.,.., ,.,.., 
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intervals -r, with SRMG = SRMG' g = -rg, L(i) = L(i), and V = V. Moreover, 

~ by choosing -r strictly less than the upper bound in (6.5), we have P(f)ii > O 

for all 1 sis N and f ESP. As a consequence, value-iteration as applied to 

the transformed model will be guaranteed to converge and will yield maximal 

gain policies as well as a solution v EV. (Schweitzer (1971b).) 

* * In the special case where g = <g >!, Odoni's bounds (cf. (5.2)) for 

the scalar gain rate of the transformed problem are just the bounds given 

by Hastings (1971) and Schweitzer (1971a) for the gain rate of an SMDP 

* * with g = <g >!: 

[ q: + I k -xi] P .. x. 
l.J J * (6 .6) min max 

H~ 
s <g > s 

i kEK(i) 
l. 

[ qk + I 
k -xi] P .. x. 

l. l.J J N max max 
If. 

, XE'. E . 
i kEK(i) 

l. 
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Consider next the discounted infinite horizon SMDP with functional equa-

tion: 

(6.7) 

and 

* * 
V = Qv where 

Qx. = 
]. 

max [q~ + 
ke:K(i) 1 

k 
~ 0, B~ B .. = 1Jl 1,sum 

N 

I 
j=l 

k 
B .. x.] 
1J J 

I B~ 1,j 
::=; 0 < 

j 
1 

The operator Q is a monotone contraction operator with contraction modulus 

* 0 < 1, hence it has a unique fixed point V , which can be approximated fast 

via the successive approximation scheme v(n) = Qv(n-1) = Qnv (O). 

I V *1_ In addition, upper and lower bounds on v(n) - - follow from 

standard contraction operator theory, and are based on the maximal and 

minimal magnitudes of B~ (cf. Porteus (1971), Hastings (1971)). 1,sum 

Improvements on the latter can, however, be obtained via the following data 

transformation 

~ ~ (6.8) N -· N K(i) = K(i) all i 

(1 ~ k (1 ~ k 0 .. ) ~k - 13) q. ~k - S)(B .. -1 
0 .. 1J 1J q. = ; B .. = + ; 1 1 B~ 1J 1J 1 B~ - -1,sum 1,sum 

1 ::=; i,j ::=; N, k E K(i) 



~ where Bis chosen to satisfy 

B~ k - B .. 
0 ::;; 1,sum 11 ::;; B 1 max k < 

l::;;i::;;N 1 - B .. 
kEK(i) 11 

~k ~k This ensures that B .. ~ 0 and B. = B < 1. The transformed (tilde) 1J 1,sum 
~ process is a discounted MOP with discount factor B, and with the same 

* fixed point v and the same set of optimal policies as the original SMDP. 
~ ,...., """'k 

The tilde value-iteration scheme v(n+l) = Qv(n) where Qx. = max [q. + 
* 1 kEK(i) 1 

' B~ . x. ] , 1 ::;; i ( 1J J 
J 
v(n+l) = Qv(n). 

::;; N may converge to v quicker than the original scheme 

~ 
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In addition, applying MacQueen's bounds to the operator Q, we obtain 

* new bounds on the fixed point v 

(6.9) x. + min 
l. 

r 

::;; x. 1 

[ k 

N k 
~ + I B .x. 

j=l rJ J 
max 

kEK(i) 1 - Bk 
r,sum 

[l• 
N 

I r j=l + max max 
kEK(i) 1 -r 

k B .x. 
rJ J 

Bk 
r,sum 

* ::;; v. 
1 

N for any x EE These bounds are invariant when replacing x by x + a!, 

* sharp when x approaches v, and move monotonically inward when xis replaced 

~ by Qx. They k reduce to MacQueen's bounds if every B. = 8; e.g., if 1,swn 
k k 

B. . = 8P ..• 
lJ lJ 

If the row swns are unequal, the bounds in (6.9) appear to be 

tighter than those due to Porteus and Hastings. 
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These examples illustrate the usefulness of data-transformations in 

painlessly extending algorithms and bounds from one model to an "equivalent" 

one (especially from MDPs to SMDPs). 
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