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PREEMPTIVE SCHEDULING OF UNIFORM PARALLEL MACHINES 

TO MINIMIZE THE WEIGHTED NUMBER OF LATE JOBS 

E. L. LAWLER 
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ABSTRACT 

We show that it is possible to preemptively schedule n jobs on m uniform 

parallel machines so as to minimize the weighted number of late jobs in time 
2 2 2 3m-5 

of O (W n ) , for m = 2 , and of O (W n ) , for m ~ 3, where W is the sum of 

the integer weights of the jobs. For fixed m this constitutes a pseudopolyno­

mial time bound, .and for fixed Iii and unweighted jobs, i.e. W = n, a strictly 

polynomial time bound. It is also shown that for fixed m there is a fully 

polynomial approximation scheme. 
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1. INTRODUCTION 

One possible objective in scheduling jobs for processing within a given 

machine environment is to minimize the (weighted or unweighted) number of 

jobs which are late with respect to specified due dates. In this paper we 

deal with this objective in the context of preemptive scheduling of "uniform'' 

parallel machines. We show that for any fixed number of machines it is pos­

sible to obtain an optimal schedule for unweighted jobs in polynomial time 

and for weighted jobs in pseudopolynomial time. We also obtain a fully poly­

nomial approximation scheme for the latter case. 

These results can be compared with known results on nonpreemptive sched­

uling of parallel machines with respect to the same objective. The unweighted 

single machine problem can be solved by a procedure due to Moore in O(nlogn) 

time, where n is the number of jobs [4,7]. The weighted single machine prob­

lem is NP-hard, but can be solved by dynamic programming in O(Wn) time, where 

Wis the sum of the integer job weights [6]. The unweighted problem is well 

known to be NP-hard for even two identical machines [2]. However, dynamic 

programming can be applied to solve the weighted problem in O(nPm) time for 

m uniform parallel machines, where Pis the sum of the integer job process­

ing requirements [2,8]. For any fixed number of machines, this constitutes 

a pseudopolynomial time solution procedure. 

It is not difficult to demonstrate that in the case of a single machine 

there is no advantage to be gained from preemption. That is, for any preemp­

tive schedule, there is a nonpreemptive schedule which is at least as good. 

Thus, the O(n log n) and O(Wn) procedures cited above also apply to preemp­

tive scheduling of a single machine. Moreover, the NP-hardness result con­

cerning the weighted nonpreemptive scheduling of a single machine also ap­

plies to the preemptive scheduling of a single machine and, a fortiori, to 

the preemptive scheduling of any number of uniform parallel machines. 

The results presented in this paper are obtained by the application of 

dynamic programming techniques to preemptive scheduling procedures derived 

from those of GONZALEZ and SAHNI [1] and SAHNI and CHO [9]. We are able to 

solve the weighted scheduling problem in pseudopolynomial time for any fixed 
2 2 2 3m-5 

number of uniform parallel machines: O(W n) form= 2, and O(W n ) for 

m ~ 3. When the jobs are unweighted, i.e. W = n, these running times are 
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strictly polynomial. A fully polynomial approximation scheme is also obtained 
2 · 2 

in which n /£ replaces W in each of the running times cited above for the 

weighted problem. 



3 

2. DEFINITIONS 

We make the usual assumptions of parallel scheduling: a machine can 

process at most one job at a time and a job can be processed by at most one 

machine at a time. The schedules we consider are preemptive, in that the pro­

cessing of a job can be interrupted at any time t and processing resumed at 

any time t' ~ton the same machine, or a different machine, without penalty. 

We find it convenient to generalize the usual definition of uniform 

parallel machines so as to allow the speeds of the machines to be time vary­

ing. Lets. (t), i = 1,2, •.. ,m, denote the instantaneous speed of machine i 
1. 

at time t and assume, for all t, that s 1 (t) ~ s 2 (t) ~ ... ~ sm(t). The pro-

cessing capacity of machine i in the time interval [t,t'] .is 

t' 

f 
t 

s.(u)du. 
1. 

Each job j, j = 1,2, ... ,n, has a specified processing requirement pj > 0. In 

order for a job to be completed, it is necessary that the sum of the process­

ing capacities in the time intervals in which the job is processed should 

equal its processing requirement. For example, if job j is processed on ma­

chine 1 in interval [t1 ,ti] and on machine 2 in interval [t2 ,t2J, then this 

processing is sufficient to complete the job if 
t' t' 

J 1 
s 1 (u)du + f 2 

s 2 (u)du = pj. 

t1 t2 
In addition to machine speeds and job processing requirements, a due 

date d. > 0 and a weight w. > 0 are specified for each job j. We assume that 
J J 

job weights are integers. However, no such assumption is made about process-

ing requirements and due dates. 

With respect to a given feasible schedule, a job is on time if its pro­

cessing is completed by its due date and late otherwise. Our objective is 

to minimize the sum of the weights of the jobs which are late. Thus our 

problem is E~quivalent to that of finding a subset of jobs of maximum total 

weight such that there exists a schedule in which all the jobs in the sub­

set are completed on time. 
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3. SCHEDULING J9BS WITHIN A FIXED TIME INTERVAL 

Let us first consider the problem of constructing a feasible schedule 

for n given jobs within a specified time interval. The procedure we present 

is a modification of a procedure due to GONZALEZ and SAHNI [1]. (A differ­

ent type of procedure is described in [3,10].) 

Lets., i = 1,2, ••• ,m, denote the processing capacity of machine i in 
l. 

the interval [O,T]. Assume p 1 ~ p2 ~ ••• ~ Pn• In order for there to exist 

a feasible preemptive schedule within the interval [O,T] it is necessary that 

( 3 .1) 

We assert that not only are conditions (3.1) necessary for the exis­

tence of a feasible schedule, but they are sufficient as well. We shall 

prove sufficiency of conditions (3.1) by describing a procedure for actu­

ally constructing a schedule within the interval [O,T]. 

The procedure schedules the jobs one at a time, in arbitrary order. 

Let us suppose we first choose to schedule job j. We find the machine with 

largest index k such that Sk ~ pj. There are three possible cases: 

Case 1: Sk = pj. In this case we simply schedule job j to be processed by 

machine k for the entire period [O,T]. We then eliminate job j and machine 

k from the problem, leaving a problem with n-1 jobs and m-1 machines. 

Case 2: ks m-1, Sk > pj > Sk+l· We assert that there exists a time t', 

0 < t' < T, such that 
t' T 

pj = J sk(u)du + j sk+l (u)du. 

0 t' 
To convince ourselves of this fact, we need only consider the plot of the 

curves for 



t T 
r r 

f (t) = J sk(u)du, g(t) = J sk+l (u)du, 

0 t 
and f (t) +g (t) , as shown in Figure 1. 

It is apparent that there must be at least one point t', 0 < t' < T, 

such that f (t') +g (t') = pj. This is guaranteed by the facts that f (T) = Sk 

5 

> pj > Sk+l = g(O), f(O) = g(T) = 0, and that f and g are continuous functions. 

We now propose to schedule job j for processing on machine kin the 

interval [O,T] and on machine k+l in the interval [t',T]. We then create 

a composite machine from the remaining available time on the "elementary" 

machines k and k+l. This new composite machine has speed sk+l (t) in the in­

terval [O,t"] and speed sk(t) in the interval [t',t]. The capacity of this 

composite ma.chine in the interval [O,T] is thus 
t' T 

Sk + s - p, = J sk+l (u)du + J sk(u)du. k+l J 
0 t' 

We then replace the elementary machines k and k+l by the new composite ma-

chine and eliminate job j from the problem, leaving a problem with n-1 jobs 

and m-1 machines. 

Case 3: S > p .• In this case we simply schedule job j in the available 
m J 

time on machine m, thereby reducing the capacity of that machine to S -p .. 
m J 

The problem is thus reduced to one involving n-1 jobs and m machines. 

It is seen that in each of the three cases the problem is reduced to 

one of the same type involving machines with time-varying speeds, but with 

only n-1 jobs. It is possible to verify that conditions (3.1) are satisfied 

for each of these smaller problems, and we leave this as an exercise for the 

reader. We thus can obtain a proof that repeated application of this proce­

dure yields a feasible schedule of then jobs within the time interval [O,T]. 

(It is also possible to show that the feasible schedule constructed contains 

no more than 2 (m-1) preemptions. ) 
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P· j 

Figure 1 Plots of f(t), g(t), f(t}+g(t). 
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4. SCHEDULING JOBS SUBJECT TO DEADLINES 

Now let us consider the problem of scheduling n jobs, subj.ect to abso­

lute deadlines d., j = 1,2, ... ,n, on the times at which the jobs must be 
J 

completed. We shall present a modified version of a procedure due to SAHNI 

CHO [8]. 

Assume,, without loss of generality, that 0 ::5: d 1 ::5: d 2 ::5: ••• ::5: dn. We 

try to schedule the jobs one by one, in deadline order, from earliest to 

latest. In the interval [0~d1], them machines have processing capacities 
d 

s~l) = f 1 
s. (u)du, i = 1,2, ••. ,m. 

l l 

0 
If job 1 is to be completed on time, it must be scheduled within the inter-

val [0,d1]. Hence we apply the procedure described in the previous section, 
-(1) 

obtaining rmnaining composite processing capacities s. , i = 1,2, ... ,m, 
l 

where 

- (1) s (1) s. = . , 
l l 

- ( 1) s (1) + s(l) 
Sk = p., k k+l J 
- (1) s(l) S. = 

l i+l' 
- (1) 

0, s = 
ID 

- (1) 
if Cases 1 or 2 apply, ands. 

l 

Case 3 applies. 

i ::5: k-1, 

k+l ::5: i ::5: m-1, 

= s~l), 1 
l 

::5: i ::5: m-1 , S ( 1) 
ID 

For thE~ time interval [ 0, d 2 J , we now have composite machines with 

capacities 

d2 

s ~ 2 ) = s ~ 1 ) + f s . ( u) du. 
l l l 

dl 
If job 2 is to be completed on time, it must be scheduled within the inter-

val [0,d2]. Hence we again apply the procedure described in the previous sec­

tion, obtaining remaining composite processing capacities s~ 2 ), i = 1,2, •.. ,m. 
l 

We continue in this way until either job n has been scheduled, or until 

for some j we find that pj >- s;j). We assert that in this latter case no 

feasible schedule exists. 
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It is not qifficult to prove that this procedure yields a feasible 

schedule if one exists. Note that if a feasible schedule does exist, then 

processing requirements Pi= p 1 , pj ~ pj, j = 2, ••• ,n, are processed within 

the interval [O,d1]. Since it is possible to schedule n jobs with require­

ments pj, j = 1,2, ••• ,n, within [O,d1], it is certainly possible to schedule 

them with job 1 scheduled as we did, by the arguments of the previous sec­

tion. This observation suggests the form of an inductive proof, the details 

of which we leave to the reader. 



5. A NUMERICAL EXAMPLE 

As a simple numerical example, consider a problem with four uniform 

processors, with constant speeds s 1 = 4, s 2 = 3, s 3 = 2, s 1 = 1, i.e. 

s~t,t'] = s. (t'-t), and with seven jobs with deadlines and processing re-
l. l. 

quirements as follows: 

j pj d, 
J 

1 1 1 

2 6 2 

3 1 3 

4 11 4 

5 2 5 

6 1 6 

7 20 7 

9 

Let S~j) denote the capacity of composite processor 

is s~heduled, and S~j) the capacity of processor i 
l. 

i at timed. before 
J 

job j at time dj after 

job j is sch1~duled. Then, applying the procedure of the previous section, we 

obtain the following composite processor capacities: 

i 
(1') -(1) (2) -(2) s~3) -(3) s~4) -(4) s(5) -(5) s~6) -(6) s~7) -( 7) s .. S. s. S, S, S, S. s. S, 
l. l. l. l. l. l. l. l. l. l. l. l. l. l. 

1 4 4 8 8 12 12 16 15 19 19 23 23 27 21 

2 3 3 6 4 7 7 10 5 8 8 11 11 14 6 

3 2 2 4 1 3 3 5 1 3 2 4 4 6 1 

4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

The actual schedule constructed is indicated by the Gannt chart in Fig­

ure 2, in which the shaded areas indicate machine idle time. 
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1 4 7 

2 2 

3 7 4 

4 1 

0 ½ 1 2 3 5 

Figure 2 Schedule obtained for example. 

1Yll!Ollll/l///l////////////J. 
0 

(a) Composite machine 1, prior to scheduling job 4. 

2L 2 moomi 
3 ! I !!//l!l!l!//J · 

0 

(b) Composite machine 2, prior to scheduling job 4. 

1 4 

2 

3 

0 

2 4 

4 

(c) Composite machine 1, after scheduling job 4. 

Figure 3 

6 7 



6. THE "SHAPE" OF A COMPOSITE MACHINE 

We wish to define the "shape" of a composite machine and the set of 

jobs which are "charged" to it. In order to motivate these concepts, we 
(') -(') 

shall first consider in detail how some of the s.J and S,J values were 
1. 1. 

obtained in the numerical example of the previous section. 

11 

Just prior to the scheduling of job 4, composite machine 1 is composed 

simply of elementary machine 1 in the interval [O,d4 ] and we have 

( 6. 1) 

Composite machine 1 is represented by the simple diagram in Figure 3(a). 

Also just prior to the scheduling of job 4, composite machine 2 is 

composed of elementary machine 3 in the interval [O,d2 ] and elementary 

machine 2 in the interval [d2 ,d4 ], from which it follows that 

The reason that elementary machine 3 is part of the composed machine 2 in 

the interval [O,d2 ] is that job 2 was scheduled on machine 2 in the inter-

val, making 

-(2) s(2) + s(2) 
s2 = - P2 2 3 

= s 2 (d2-O) + s 3 (d2-0) - P2, 

from which it follows that 

( 4) -(2) 
+ s2(d4-d2) s2 = s2 

= s 2 (d4 -O) + s 3 (d2-0) - P2· (6. 2) 

Composite machine 2 is represented by the diagram in Figure 3(b). 

After =iob 4 is scheduled, a new composite machine 1 is obtained, with 

(6. 3) 

The new composite machine 1 is represented by the diagram in Figure 3(c). 
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These exam~les suggest that for each composite machine at each point 

in time there is a well-defined set of time intervals on elementary machines 

corresponding to those indicated in the diagrams in Figure 3. These time in­

tervals will be said to determine the shape of the composite machine. The 

shape of a composite machine together with the subset of jobs whose process­

ing requirements are charged to that machine, determines the processing ca­

pacity of the machine, as in equations (6.1)-(6.3). 

Initially, at time a1 prior to scheduling job 1, the shape of composite 

machine i is specified by the interval [o,a1J on elementary machine i. The 

set of jobs J. charged to composite machine i is empty. Thereafter, as the 
1 

computation proceeds,the shape of each composite machine and the set of jobs 

charged to it is easily determined. For example, suppose that at timed. 
J 

job j is scheduled on composite machines k and k+l so that 

Then the shape of the new composite mqchine k is the union of the shapes of 

the previous machines k and k+l and 

In this case, we have 

~(j) = s(j) k < i < m. 
i i+l' 

Accordingly, the shape of each new composite machine i, is the shape of the 

previous machine i+l and J. := J. 1 • We also have 
1 1+ 

Accordingly, the shape of the new composite machine mis empty (or, equiv­

alently, consists of the interval [d.,d.J on elementary machine m) and 
J J 

Jm := ~. 

Corresponding 

(j+l) - S(j) s. - . 
1 1 

to the relations 

+ Jdj+l 
s 1 (u)du, 

d. 
the shape of compositeJmachine i is augmented by the interval [d.,d. 1J on 

J J+ 
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elementary machine i in moving from timed. to timed. 1• The set of jobs 
J J+ 

charged to the composite machine of course remains unchanged. 

A convenient way to specify the shape of composite machine i is by 

two sets 

X = {x(i),x(i+l), ... ,x(g)} s {1,2, ••• ,n} 

and 

Y = {y(i+1),y(i+2), ••• ,y(n)} £ {1,2, ••• ,n}, 

where g ~ h s m. Assuming x(i) > x(i+l) > ••• > x(g) and y(i+2) > y(i+2) 

> ••• > y(h), the shape X,Y is indicated by Figure 4. If J. is the set of 
l. 

jobs charged to the composite machine, then 

/j g d d 

s~j) I y(k) h I y(k) 
= J s. (u)du + I sk(u)du + l sk(u)du - I p .• 

l. J l. k=i+l d k=g+l 0 jEJ, 
dx(i) x(k) l. 

(If X = 0, then the first integration_ is from Oto d.) • 
J 

Let x.,Y. be the shape of composite machine i in this notation. Ini-1. l. 

tially, at time d 1 prior to scheduling job 1, 

X. :=/0, Y. :=0, 1 Si Sm. 
l. l. 

Suppose job j is scheduled on composite machines k and·k+l. We assert that 

it is necessarily the case that Yk = Xk+l· The shape of the new composite 

machine k is determined by 

Fork< i < m, 

X. := X. l U {j}, Y. := Y. l U {j}. 
l. 1.+ l. 1.+ 

Finally, 

X :={j},Y :=0. 
m m 

Note that it is always the case that x1 

and Y = fiS. 
m 

= 0, Y. = X. 1 , for 1 s i < m, 
l. 1.+ 
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0 dx(g) 
I 

,,[ I 
I 
I 

,,[+1 I 
I 
I 
I 

I 

g 

n. 

Figure 4 Composite machine i with shape X,Y. 

dx(,,i,+I) 
I 
I 

I 

I 
I 

I 

dy(,,i,+2) 

dx(,,i,) d. 
j 

d. 
j 
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7. DYNAMIC PROG~ING FORMULATION 

Let us now turn the problem of minimizing the weighted number of late 

jobs. The values d, are now treated as due dates, rather than absolute dead­
J 

lines. We may choose to schedule job j, or not to schedule it at timed .• 
J 

(If job j is not scheduled at timed., it can be assumed to be processed at 
J 

some later date.) 
( . ) 

Let s.J (w,X,Y) denote 
l. 

composite machine i at time 

the maximum attainable processing capacity for 

d., before the possible scheduling of job j, 
J 

subject to the conditions that the composite machine has shape X,Y and has 
- ( . ) 

jobs with weights totalling exactly w charged to it. Let s.J (w,X,Y) be sim-
1. 

ilarly defined, after job j has been considered for scheduling. If a given 
(j). -(j) 

combination of i,j,w,X,Y is not feasible, we let S, (w,X,Y) or S, (w,X,Y)=-00• 

Initially, 

( 1) 
S. (w,X,Y) =0, ifw=0, X=Y=¢, 

l. 

= -oo, otherwise. 

l. l. 

From the principle of optimality of dynamic programming we have, for 

1 ~ i ~ m-1, j = 1,2, ••• ,n, 

-(j) { '} { (j) (j) S. (w,X,YU J ) = max S, (o,X,L\) + S, 1 (w-w.-o,L\,Y)}- p,, 
l. 0 ,L\ l. 1.+ J J 

(7.1) 

where it is understood that the maximization is carried out over values of 
(') (j) 

o such that 0 ~ o ~ w-w. and over pairs S, J :(o ,X, L\) and S. 1 (w-w. -o, L\, Y) 
J l. 1.+ J 

such that 

(') (j) s . J ( o , X, L\) ~ pJ. > S . ( w-w .- o , L\, Y) • 
l. l. J 

For j = 1,2, .•. ,n, we also have 

S(j) (w X Y) m , , 
(j) (') = S (w,X,Y), if SJ (w-w.,X,Y) < p., 

m m J J 
(j) (j) 

= max{S (w,X,Y),S (w-w.,X,Y) - p.}, otherwise. 
m m J J 

Also, 

S~j) (w,XU{j},Yu{j}) = 
l. 

(j) 
S. 1 (w,X,Y), 

1.+ 
1 ~ i ~ m-1. 
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s~j+l) (w,X,Y) 
]. 

-(j) = S. (w,X, Y) + 
]. 

dj 

s. (u)du. 
]. 

In order to justify equation (7.1) it is necessary to show that the 

sets of jobs charged to composite machines i and i+l are necessarily dis­

joint. This can be established by showing that job h can be charged to 

composite machine i with shape X,Y only if either 

(a) h € Y-X 

or 

(b) !xi= m-i+1, IYI = m-i, min X < h < min Y, 

or 

(c) Ix!< m-i+1, !YI= m-i, h < min Y. 

Since the shapes of machines i and i+l are X,6 and 6,Y, respectively, this 

shows that a given job h cannot be charged to both of the machines i and i+l. 
-(n) 

Now suppose thats. (w,X,Y) has been computed for all feasible combi­
l. 

nations of i,w,X and Y. Let 

-(n) 
F. 1 (w,Y) = max{F. (o,6) + S1.+1 (w-o,6,Y)}. 

i+ o,6 i 

The optimum value of w, i.e. the maximum total weight of jobs which can be 

scheduled on time, is given by the largest value of w such that F (w,0) is 
m 

finite. 

The actual subset of jobs yielding an optimal schedule can be deter-
(') -(') 

mined by recording with each s.J or s.J value in the computation the set 
]. ]. 

of jobs charged to the composite machine in question. 



8. COMPUTATIONAL COMPLEXITY 

It should be apparent that the complexity of the dynamic programming 

computation is determined by equation (7.1). Moreover, the computational 

bottleneck occurs either for i = 1, for which it is necessary to compute 

(7.1) only for X = 0, or for i = 2. 

Consideir the case i = 1. We have j = 1,2, ... ,n, 0 ~ w ~ W, X = ¢, 

IYI s m-2. Hence there are O(Wnm-l) equations for which the maximization 

indicated in (7.1) must be carried out. For each equation we have O::; 8::; 

w-w. < W, If, I s m-1 , or O (Wn m-l) combinations of cS and t:, to test. Hence 
J 

for i = 1, the computation required by equations (7.1) is bounded by time 

of O (W2n 2m-2'.) . 

For i == 2, we have j = 1,2, .•. ,n, 0 s w s W, lxl ::; m-1, IYI s m-3. 

Hence there are O(Wn2m- 3 ) equations for which the maximization indicated 

in (7.1) must be carried out. For each equation we have Os cS s w-w. < W, 
J 

!t::.I s m-2, or O(Wnm-2 ) combinations of cS and t:, to test. Hence for i = 2, 
. 2 3m-5 

the computation required by equation (7.1) is bounded by O(W n ). 

17 

For m ::::; 3, 2m-2 2': 3m-5, and 
2 2 

time is bounded by O(W n) form 

form 2': 3, 3m-5 2': 2m-2. Hence the running 
2 3m-5 

2, and by O(W n ) form 2': 3. In the 

unweighted case, where each w. 
J 

1 and W = n, n 2 can be substituted for w2 

in each of the running time bounds above. 

We havei thus established the result that, for any fixed number of ma­

chines, the unweighted problem can be solved in polynomial time and the 

weighted problem in pseudopolynomial time. 
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9. A FULLY POLYNOMIAL APPROXIMATION SCHEME 

We conclude by noting that, for any fixed number of machines, there ex­

ists a fully polynomial approximation scheme for the weighted problem. Such 

a scheme accepts as input the data for any given instance of the weighted 

problem and a real value£> 0, and produces as output a feasible solution 

of value w, such that 

* * W -W :,;; £W 1 

* where w is the value of an optimal solution. 

We propose to replace each job weight w. by 
J 

v. = r w ./Kl, 
J J 

(9 .1) 

where K is a suitably chosen scale factor. We can then replace W by W/K in 

each of the running time bounds we have obtained. 

In order for a value of K to be acceptable, i.e. in order for (9.1) to 

be satisfied, it is necessary that 

Kn::;; £LB, 

* where LB is the value of a lower bound on w [SJ. 

Let 

w = max.{w.}. 
max J J 

Clearly 

* w ::;; w ::;; w ::;; nw . 
max max 

(We assume that any single job can be scheduled to meet its due date.) Then 

setting 

£ K=-w , 
n max 

we have 

2 
W n ::;; 
K £ 
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2 
It follows that~ can be substituted for Win each of the time bounds 

€ 
obtained in the previous section, and this establishes the desired result. 
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