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EFFICIENT IMPLEMENTATION OF DYNAMIC PROGRAMMING ALGORITHMS 
FOR SEQUENCING PROBLEMS 

E. L. LAWLER 
Computer Science Division, University of California, Berkeley, CA 94720, USA 

ABSTRACT 

Dynamic programming has proved to be a fruitful approach for the solu~ 

tion of a variety of sequencing problems, including single-machine sequencing 

problems and assembly line balancing problems. However, ce~tain technical 

difficulties have been experienced in fully exploiting the reduction in com­

putational complexity which should result from the existence of precedence 

constraints in these problems. In particular, no completely satisfactory 

technique has existed for generating "feasible" sets of jobs, as determined 

by precedence constraints. In this paper we present a simple computer imple­

mentation of the dynamic programming algorithms which overcomes these diffi­

culties. The implementation permits sequencing problems with precedence con­

straints to be solved in O(Kn) time, where K is the number of feasible sets, 

and in O(n+k ) space, 
max 

and k = max {k }. It 
max m m 

where k 
m 

is the number of feasible sets of size m 

is also shown how similar techniques can be applied 

to improve the efficiency of dynamic programming computations for the travel-

ing salesman problem, when the network is sparse or when there are precedence 

constraints. 

KEY WORDS & PHRASES: dynamic programming, sequencing problems, assembly-line 

balancing, linear arrangement, traveling salesman problem, precedence con­

straints, computer implementation, data structures, computational complexity. 

NOTE: This report is not for review; it will be submitted for publication in 

a journal. 
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1. INTRODUCTION 

Dynamic programming has proved to be a fruitful approach for the solu­

tion of a variety of sequencing problems [4]. However, certain technical 

difficulties have been encountered by BAKER and SCHRAGE [2], HELD, KARP and 

SHARESHIAN (6], and others, in implementing the dynamic programming algo­

rithms when the sequencing problems are to be solved subject to precedence 

constraints. In this paper we present a simple and efficient computer im­

plementation which overcomes there technical difficulties. 

The general type of sequencing problem we are concerned with is to find 

a permutation TI _of then elements of a set N such that the value of a speci­

fied objective function f(TI) is minimized. When precedence constraints are 

specified by an acyclic digraph G = (N,A), the minimi~ation is to be carried 

out over admissible permutations, where a permutation TI is admissible only 

if (i,j) EA implies that i precedes j in TI. 

It is well known that a number of important special cases of this gen­

eral problem can be solved by dynamic programming. We are concerned with 

those cases in which dynamic programming calls for the computation of F(N) 

by recursion over subsets S s N, subject to equations of the general form 

F (S) = min. 8{g(F(S-j),S,j}}, 
JE 

F((ll) = 0, 

(1.1) 

where g is a readily computed function derived from the objective function 

f. (Here, and below, we let S+j denote su{j} and S-j denote s-{j}.) 

For example, suppose n jobs are to be sequenced for processing by a 

single machine. For each job j, j = 1,2, ••• ,n, there is a specified process­

ing time p. ~ 0 and a penalty function f .• A given permutation TI induces 
J J 

a ·completion time C~ for each job j. The objective is to find an·aamissi­
J 

ible permutation TI which minimizes 

In TI 
f(TI) = . l f,(C.). 

J= J J 

For this problem, 
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and F(S) is the cost of an optimal sequence for the jobs in S, where the 

first job starts at time t = 0 [S,7]. 

A similar treatment can be given to problems in which 

7f 
f(rr) = max.{f.(C.)}, 

J J J 

by letting 

This approach is of no value, if the functions fj are monotone nondecreasing, 

since such problems can be solved much more efficiently by other means [8]. 

However, dynamic programming can be worthwhile for related minmax problems. 

For example, whereas the "cumulative cost" or "initial resource requirement" 

problems can be efficiently solved for series parallel precedence constraints 

[ 1, 11, 12], these same problems are NP-hard for arbitrary precedence constraints 

and dynamic programming may then be worthwhile. 

Another problem admitting of solution by recursion equations of the gen­

eral form (1.1) is the linear arrangement or one-dimensional module place­

ment problem [9]. For this problem, 

g(F(S-j),S,j) = F(S-j) + c(S,N-S), 

where c(S,N-S) is the capacity of cutset (S,N-S) in a specified graph. The 

bin packing, one dimensional stock cutting and assembly line balancing prob­

lems also yield to this approach [S,6]. For these problems, 

g(F(S-j),S,j) = F(S-j) + 8(F(S-j),p.), 
J 

where p. is a specified parameter and 8 is a certain readily computed func­
J 

tion. 

Let us consider the running time required to solve equations (1.1) for 

F(N), subject to the assumption that g can be computed in constant time. In 

the absence of precedence constraints, there is an equation for each subset 

S ~ N and F(N) can be computed in time proportional to 
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n or O(n2) time. Although this time bound is exponential, it does represent 

very much less running time than would be required for an exhaustive exami­

nation of n! permutations. 

When precedence constraints are added, the computational complexity is 

in principle reduced. Let us call a set S s N feasible if j ES implies that 

all predecessors of j in the digraph G = (N,A) are contained in S. It is well 

known that equations (1.1) need be solved only for feasible sets s, with the 

minimization in each equation only over j ES such that S-j is also feasible. 

It follows that the time required to compute F(N) should be bounded by O(Kn), 

where K is the number of feasible sets. Moreover, it has been shown that in 
n practice K is o£ten very much smaller than 2 [2]. 

However, there are a number of questions of implementation that need 

to be resolved, in order to take complete advantage of the reduction in com­

plexity that should result from precedence constraints. In particular, one 

must have an efficient procedure for generating the K feasible sets and, 

for a given feasible sets, identifying and locating in memory the feasible 

sets S-j. 

Various schemes have been proposed for generating and addressing feasi­

ble sets. BAKER and SCHRAGE [2], for example, proposed an approach whereby 

each element j is assigned an integer label a .• Each feasible set Sis then 
J 

assigned an index equal to the sum of the labels of the elements contained 

within it. Ideally, these indices should provide a one-one mapping of the 

feasible sets onto the integers 0,1, ••• ,K-1, so that no space is wasted when 

these indices are used to determine memory addresses. It remains an open 

question whether a labelling with this property exists for all precedence 

digraphs, and it appears that the labeling procedure proposed in [2] does 

waste an indefinite amount of space for some digraphs. In the opinion of the 

present author, the labeling approach is inherently more cumbersome and time 

consuming than is necessary to effect an efficient implementation of the 

dynamic programming algorithms. 

In this paper we present a simple and efficient computer implementation 

whereby the dynamic programming computations can be carried out in O(Kn) 

time, and more significantly, in only O(n+k ) space, where max 
ber of feasible sets of size m and k = max {k }. Not only max m m 
plementation overcome the difficulties encountered in [2,6], 

k is the num­
m 

does this im-

but it provides 
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an answer to the observation in [2] that "There are a number of algorithms 

in the literature for generating subsets ••• However, we are unaware of any 

efficient algorithms for generating subsets subject to precedence restri­

tions". 

In the final section of this paper we indicate how the implementation 

can be extended to solve the traveling salesman problem. The approach pres­

ented may be especially useful in cases where the network over which the 

problem to bE~ solved is sparse, or where precedence constraints exist. 



2. GENERATING FEASIBLE SETS 

We asswne that we are dealing with a computer with binary word length 

at least n. 'rhis is actually not a very restrictive assumption, and it is 

5 

one which appears to have been made, at least implicitly, by previous authors. 

Note that at least log2K bits are required to address K feasible sets. Thus, 
1 . n 

if K = -- .2 , a word length of n-10 is required to store a single address. 
1024 

From a strictly theoretical point of view, our assumption enables us to ob-

tain time and space bounds that are smaller by a factor of n than those which 

would otherwise be obtained. 

We shall represent the precedence digraph G = (N,A) by its adjacency 

matrix and store each colwnn of the matrix in a separate word. Thus, column 

4 of the adjacency matrix of the digraph pictured in Figure 1 is stored as: 

(110000). 

1 2 3 4 5 6 

( 2. 1) 

We shall represent a set S by its incidence vector on N and store this 

vector in a single word. The incidence vector for S has numerical value 

n (S) l n-j = 2 • 
jES 

Thus the set S = {1,2,3} ~ {1,2, ••. ,6} is represented by the vector 

(111000), (2.2) 

1 2 3 4 5 6 

and this vector has value 56. 

Figure 1. Digraph for example. 
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We assert that each feasible set of size m+l is of the form S+j, where 

sis a feasible set of size m, j is, and there is no arc (i,j) in G such 

that ii s. Given a set S of size m, it is easy to verify whether S+j satis­

fies these conditions. First check that element j of the incidence vector 

for Sis zero. Then compare the incidence vector for S with column j of the 

adjacency matrix for G, to see if the incidence vector for S has a one in 

each position that column j has a one. Thus, for example, comparison of the 

vectors (2.1) and (2.2) shows that {1,2,3,4} is a feasible set for the digraph 

in Figure 1. 

Exactly how these tests for S+j should be made depends upon the machine 

language instru~tions available in the computer we are dealing with. In any 

case, these tests can be assumed to be carried out, and the incidence vector 

for S+j formed, in constant time. 

We shall generate feasible sets in order of size, beginning with 0, 
then generating feasible sets of size one, size two, ••• , and ending with 

the set N. Suppose that there are k feasible sets of size m, and that these 
m 

ares., i = 1,2, ••• ,k, where 
i m 

n(S.) < n(S. 1), i = 1,2, ••• ,k -1. The k l i i+ m m+ 
feasible sets of size m+l are generated as follows. 

First make one list of all feasible sets of the form S,+1 and a second 
1 

list of all feasible sets of the form S,+2, with both lists in increasing 
1 

order of the index i, and therefore in increasing numerical order for the 

sets contained in them. Then merge the two lists, eliminating duplicate en­

tries in the course of the merge. Each of the two lists merged contains no 

more thank 1 entries, and the list resulting from the merge also contains m+ 
no more thank 1 entries. Next generate a list of feasible sets of the form m+ 
s.+3 and merge it (again eliminating duplicate entries) with the list pre-

1 

viously obtained. Continue in this way until the list s.+n has been merged. 
1 

The final list contains the k 1 feasible sets of size m+l. m+ 
As an example, consider the digraph depicted in Figure 1. There are five 

feasible sets of size three, and from these we obtain the list indicated 

below (dispensing with brackets and commas in the representation of sets): 



7 

s. s.+1 s.+2 s.+3 S,+4 S,+5 s.+6 
1 1 1 1 1 1 1 

123 1234 1235 1236 

124 1234 1245 

125 1235 1245 

235 1235 2356 

236 1236 2356 

Let us ignore the list for s.+2 since it is empty. 
1 

Merging lists s.+1 
1 

and s. 3 , we obtain a list containing 1234, 
1+ 1235, 1236, a duplicate entry 

for 1235 being discarded, merging this list with s.+4, we obtain 1234, 1235, 
1 

1236, 1245, eliminating a duplicate entry for 1234. Merging this list with 

s.+5, we obtain 1234, 1235, 1236, 1245, 2356, eliminating duplicate entries 
1 

for 1235 and 1245. Merging with s.+6, we obtain 1234, 1235, 1236, 1245, 2356, 
1 

eliminating duplicate entries for 1236, 2356. The final list contains all 

five feasible sets of size four. 

Each list containing feasible sets of the form S,+j can be obtained in . 1 

O(k) time and space, exclusive of space required to store the adjacency 
m 

matrix of G. Hence the generation of all n lists can be carried out in O(nk) 
m 

time and O(km) .space. Each list entering a merge contains no more than km+l 

entries. Hence each merge can be carried out with no more than 2k 1-1 nu­
m+ 

merical comparisons and in O(k 1) time and space. Hence all n-1 merges can 
m+ 

be carried out in O(nk 1) time and O(k 1) space. Taking account of time m+ · m+ 
and space requirements for both list generation and merging, the list of all 

feasible sets of size m+l can be obtained in O(nmax{k ,k 1}) time and 
m m+ 

O(max{km,km+l}) space. 

It follows from the above that the time required to generate all feas­

ble sets is bounded by O(Kn). If feasible sets of size mare outputted as 

soon as those of size m+l have been obtained, the space required to generate 

all feasible sets is bounded by O(n+k ), where O(n) space is required to max 
store the adjacency matrix of G. Otherwise space is bounded by O(K). 

The key idea which has enabled us to attain these time and space bounds 

is the generation of lists of the form S,+j and then merging them, with elim-
1 

_ination of duplicate entries. This is precisely the same technique employed 

by the present author to attain small time and space bounds for fast approx­

imation algorithms for knapsack problems [10]. 
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3. SOLVING TEE RECURRENCE EQUATIONS 

It is a simple matter to compute the values F(S) in the course of gen­

erating the feasible sets, as follows. 

Suppose with each sets., i = 1,2, ••• ,k, there is recorded the value 
i m 

F(S.). When forming the list of feasible sets of the form S,+j, make a single 
i i 

entry in the list for each feasible set S,+j consisting of its incidence vec­
i 

tor (in one word) and the computed value g(F(S.),S.+j,j) (in a second word). 
i i 

In the course of merging lists, whenever a given set is found to be duplicat-

ed, retain the list entry with the smaller g-value. When all lists have been 

merged, the g-value recorded for each (m+1)-element set Sin the final list 

is the value of F(S), as determined by (1.1). 

If we seek only to compute the value F(N), then it is possible to dis­

card all feasible sets of size m (and their computed F-values) as soon as 

those of size m+1 have been obtained. The entire computation can thus be 

carried out in O(Kn) time and O(n+k ) space. However, if we wish to con-
max 

struct an optimal sequence 1T for which f(,r) = F(N), then it is necessary to 

elaborate the procedure a bit, especially if we are to attain the same time 

and space bounds. 
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4. CONSTRUCTING AN OPTIMAL SEQUENCE 

The most straightforward way to construct an optimal sequence is simply 

to record with each feasible set Sa sequence TI{S) yielding the value F(S). 

Suppose with each set S., i = 1,2, ••• ,k, there is recorded a sequence 
i m 

TI(S.) yielding the value F(S.). When forming the list of feasible sets of 
i i 

the form Si+j, the sequence TI(Si),j (sequence TI(Si), followed by j) is made 

part of the list entry for S,+j (in addition to the incidence vector for 
i 

S +j and the value g(F(S.),S.+j,j)). When all lists have been merged, as 
i i i 

described in the previous section, the desired sequence TI(S) is recorded 

in the entry for each (m+l)-element set Sin the final list. 

The difficulty with this straightforward approach is the amount of 

space required to store each TI(S). Since flog2nl words of length n are re­

quired to store a permutation of n elements, the space bound is increased 

to O(n+k log ).:·Moreover, the time bound ·is increased to O(Knlogn), because 
max n 

of the time required to record sequences in list entries and the extra time 

required to merge lists with the larger entries. 

The time bound is easily restored to O(Kn) by using pointers. Instead 

of recording the sequence TI(S.),j in the entry for s.+j, record the index 
i i 

j and a pointer to the sequence TI(S.). Then when the list of (m+l)-element 
i 

feasible sets has been obtained, use the index and the pointer recorded in 

the entry for each set S to obtain the sequence TI(S). 

It is possible to obtain a space bound of O(n+k ), while maintaining 
max 

the time bound at O(Kn). However, we admit that the "divide and conquer" 

technique we shall present may be of more theoretical than practical signif­

icance. 

Virtually all of the problems for which recursion equations of the 

form (1.1) have been formulated can be solved equally well by constructing 

ari optimal sequence in one direction or the other, i.e. first-to-last or 

last-to-first. For example, in the case of the single-machine problem dis­

cussed in Section 1, let 

F (S) = max. s{F(S-j) + f.(P-Lk s . Pk)}, 
]€ J € -J 

( 4 .1) 

with F(~) = O, where 
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p = \~ 1 p .. 
lJ= J 

If equations (4.1) are solved for sets S,S-j which are feasible with res­

pect to the precedence digraph G(N,A) obtained by reversing the directions 

of all arcs in G = (N,A), then F(S) is the cost of an optimal sequence for 

the jobs in S, with the completion of the last job at time P, and the other 

jobs immediately preceding. 

Let S (S) denote the family of sets of size m which are feasible 
m m 

with request to G (G). Note that SES if and only if N-S ES , hence 
m n-m 

k = IS I m m 

F(N) 

IS I. It should be clear that, for any m, 
n-m 

= min{F(S)+i(N-S) Is ES}. 
m 

(4.2) 

Assume, for simplicity, that n is a power of two. Taking m = n/2, it 

is a simple matter to compute F(N) by (4.2). Generate a list for Sn/2 , in 

increasing numerical order of the sets contained within it, and a list for 

Sn/2 , in decreasing numerical order. Form the sums indicated in (4.2) and 

choose the smallest. This can be done in O(Kn) time and O(n+k ) space. 
max 

* Let S be a set in Sn/2 yielding a minimum value in (4.2). There is an 

* * optimal sequence in which the jobs in S precede the jobs in N-S . We now, 

in effect, have two problems, each with n/2 jobs. We can now apply equation 

(4.2) with respect to each of these subproblems to obtain four problems each 

with n/4 jobs, and so forth. 

The time required to solve the first subproblem of size n/2 is propor­

tional to (n/2)K1 and the time required to solve the second subproblem is 

proportional to (n/2)K2 where K1+K2 ~ K+l. (K1+K2 can be expected to be 

considerably less than Kin practice). It follows that the time required 

to construct an optimal sequence by this method is bounded by a function 

of order 

Kn + (K+1)¥ + (K+3)~ + •.• + (K-n+l), 

which is, of course, O(Kn). 

It is not hard to verify that if this approach is properly implemented, 

space requirements are bounded by O(n+k ). 
max 
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5. PROVIDING FOR REPETITIVE COMPUTATIONS 

There may be situations in which it is desired to carry out computations 

for a large number of different objective functions, but with respect to the 

same precedence digraph in each case. It may then be desirable to generate 

the feasible sets once only, and to record the feasible sets in memory in 

such a way that repetitive computations can be carried out as quickly as 

possible. 

As soon as feasible sets of size m+l have been generated, we propose 

to assign them to consecutive memory addresses, immediately following those 

for sets of size m. With each feasible set S we shall store a pointer to a 

list of the addresses a(S-j) of feasible sets S-j. This data structure is 

indicated in Figure 2. 

1234 

* 

·~ 
~ 
ja(234)j * 

(a) Data structure before elimination 

of duplicate list entry. 

Figure 2. 

s1+J a(S1 ) 

J.__1_23_4 _.__==--➔ 1 a ( 123) 1 

(b) Data structure after elimination 

of duplicate list entry. 

This data structure is generated by a simple modification of the pro­

cedure presented in Section 2. When the list of feasible sets of the form 

s,+j is generated, each entry in the list is provided with a pointer to a 
1 

record containing the address a(S.) and a special symbol*, as shown in 
1 

Figure 2(a). When duplicate entries are found in the course of merging list 

Si+j, the entry in the list Si+j is retained, but the pointer in the other 
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entry is substituted for"*" in the record specified by the pointer in the 

entry for S.+j. This procedure is indicated in Figure 2. 
l. 

It is thus possible, within O(Kn) time, to generate all feasible sets, 

assign them to consecutive memory locations, and to provide, for each set S, 

a list of addresses of sets S-j. The total space required is proportional 

to the total number of pairs (S,S-j). Space may, of course, be compacted 

somewhat by reforming the lists of addresses a(S-j) and eliminating pointers. 
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6. SOLVING THE TRAVELING SALESMAN PROBLEM 

It is well known that the dynamic programming approach can be applied 

to the traveling salesman problem [3,5]. Let H be an (n+l)-node network on 

node set Nu{O} over which the problem is to be solved. For S s N, let F(S,j) 

denote the length of a shortest path from node Oto node j which passes 

through each of the nodes in S. Then the problem is solved by computing 

F(N,0) by the recursion equations 

F(S,j) -· min . S { F ( S-i , i) + d . . }, 
lE l] 

where d .. is the length of arc (i, j) in H. 
lJ 

( 6. 1) 

If His complete, the time required to solve equations (6.1) for F(N,0) 

is O(n2 2n). However, if His sparse or if there are precedence constraints 

specified by an acyclic digraph G = (N,A), the complexity of the computation 

may be considerably reduced. 

Let us call a path admissible if it passes through nodes in an order 

consistent with the precedence constraints specified by G, and let us call 

a pair (S,j) feasible if there exists an admissible path in H from node 0 

to node j which passes through the nodes in S. 

A feasible pair ( S, j) is said to have size m if IS I = m. Feasible pairs 

can be generated in order of size by a simple adaptation of the procedure 

given in Section 2. Each feasible pair of size m+l is of the form (S+i,j), 

where (S,i) is a feasible pair of size m, j i S+i, there is an arc (i,j) in 

H, and there is no arc (k,j) in G such that k i S+i. If there are K feasible 

pairs, they can be generated in O(Kn) time and O(n+k ) space, where k is 
max m 

the number of feasible pairs of size m and k = max {k }. 
max m m 

The computation of the values F(S,j) can be carried out in the course 

of state gene!ration. Moreover, the divide-and-conquer technique of Section 

4 can be applied. Let 

F(S,j) = min{i(s-i,i) + d .. }, 
Jl 

(6. 2) 
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Let S (S) denote the family of feasible pairs with respect to Hand G 
m m - -(Hand G). It is not necessarily true that (S,j) ES if and only if 

m 
(N-(S+j),j) ES 1. Nevertheless, we have by analogy with (4.2), for any m, 

n-m-

F(N,0) = min{F(S,j)+F(N-(S+j),j)l(s,j) ES ,(N-(S+j),j) ES 1}. (6.3) 
m n-m-

Using the approach of Section 4, equations (6.3) can be used to con­

struct an optimal sequence in O (Kn) time and O (n+k ) space. {In fact, there 
max 

may be considerable advantage to this approach, resulting from the fact that 

not both (S,j) and (N-(S+j),j) may be feasible.) In the (conventional) case 

that His complete and G is empty, note that 

k = kn/2 max 

n n 
= 2 (n/2) 

~ 
v'n 2n 
2 ' 

1/2 n 
and an optimal sequence can be constructed in O(n 2) space. 
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