
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

BW 106/79

E. L. LAWLER

MEI

EFFICIENT IMPLEMENTATION OF DYNAMIC PROGRAMMING ALGORITHMS
FOR SEQUENCING PROBLEMS

Preprint

~
MC

2e boerhaavestraat 49 amsterdam

SIBLIOTHEEK M.\THEMP.,TISCH CENTRUM
-AMSTEf-iDMvl-

Punted a.t .the Ma.thema:tic.ai. Centlr.e, 49, 2e BoeJLhaa.vu:tJr.aa;t, Am.6.te/ld.a.m.

The Ma.thema.:Uc.ai. Cerwr.e, 6ou.nded .the 11-.th 06 Feb.w.aJr.y 1946, .l6 a. n.on.­
p1r.06U .ln6.tUr.Ltlon. a.,im,ln.g a.t .the pllomo:tlon. 06 pUll.e ma.thema:tic.6 a.n.d ..l:t6
a.ppU.cati.on6. Lt .l6 .6pon6oJr.ed by .the Ne.theJti.a.n.d6 GoveJLn.ment .thJr.ough .the
Ne.theJti.a.n.d6 0.1tga.n,lza:tion. 6oJr. .the Adva.n.c.ement 06 PUll.e RuetVr.c.h (Z. W. 0) •

AMS subject classification scheme (1979): 90B35, 90C39; 68C05, 68C15, 68C25

EFFICIENT IMPLEMENTATION OF DYNAMIC PROGRAMMING ALGORITHMS
FOR SEQUENCING PROBLEMS

E. L. LAWLER
Computer Science Division, University of California, Berkeley, CA 94720, USA

ABSTRACT

Dynamic programming has proved to be a fruitful approach for the solu~

tion of a variety of sequencing problems, including single-machine sequencing

problems and assembly line balancing problems. However, ce~tain technical

difficulties have been experienced in fully exploiting the reduction in com­

putational complexity which should result from the existence of precedence

constraints in these problems. In particular, no completely satisfactory

technique has existed for generating "feasible" sets of jobs, as determined

by precedence constraints. In this paper we present a simple computer imple­

mentation of the dynamic programming algorithms which overcomes these diffi­

culties. The implementation permits sequencing problems with precedence con­

straints to be solved in O(Kn) time, where K is the number of feasible sets,

and in O(n+k) space,
max

and k = max {k }. It
max m m

where k
m

is the number of feasible sets of size m

is also shown how similar techniques can be applied

to improve the efficiency of dynamic programming computations for the travel-

ing salesman problem, when the network is sparse or when there are precedence

constraints.

KEY WORDS & PHRASES: dynamic programming, sequencing problems, assembly-line

balancing, linear arrangement, traveling salesman problem, precedence con­

straints, computer implementation, data structures, computational complexity.

NOTE: This report is not for review; it will be submitted for publication in

a journal.

1

1. INTRODUCTION

Dynamic programming has proved to be a fruitful approach for the solu­

tion of a variety of sequencing problems [4]. However, certain technical

difficulties have been encountered by BAKER and SCHRAGE [2], HELD, KARP and

SHARESHIAN (6], and others, in implementing the dynamic programming algo­

rithms when the sequencing problems are to be solved subject to precedence

constraints. In this paper we present a simple and efficient computer im­

plementation which overcomes there technical difficulties.

The general type of sequencing problem we are concerned with is to find

a permutation TI _of then elements of a set N such that the value of a speci­

fied objective function f(TI) is minimized. When precedence constraints are

specified by an acyclic digraph G = (N,A), the minimi~ation is to be carried

out over admissible permutations, where a permutation TI is admissible only

if (i,j) EA implies that i precedes j in TI.

It is well known that a number of important special cases of this gen­

eral problem can be solved by dynamic programming. We are concerned with

those cases in which dynamic programming calls for the computation of F(N)

by recursion over subsets S s N, subject to equations of the general form

F (S) = min. 8{g(F(S-j),S,j}},
JE

F((ll) = 0,

(1.1)

where g is a readily computed function derived from the objective function

f. (Here, and below, we let S+j denote su{j} and S-j denote s-{j}.)

For example, suppose n jobs are to be sequenced for processing by a

single machine. For each job j, j = 1,2, ••• ,n, there is a specified process­

ing time p. ~ 0 and a penalty function f .• A given permutation TI induces
J J

a ·completion time C~ for each job j. The objective is to find an·aamissi­
J

ible permutation TI which minimizes

In TI
f(TI) = . l f,(C.).

J= J J

For this problem,

2

and F(S) is the cost of an optimal sequence for the jobs in S, where the

first job starts at time t = 0 [S,7].

A similar treatment can be given to problems in which

7f
f(rr) = max.{f.(C.)},

J J J

by letting

This approach is of no value, if the functions fj are monotone nondecreasing,

since such problems can be solved much more efficiently by other means [8].

However, dynamic programming can be worthwhile for related minmax problems.

For example, whereas the "cumulative cost" or "initial resource requirement"

problems can be efficiently solved for series parallel precedence constraints

[1, 11, 12], these same problems are NP-hard for arbitrary precedence constraints

and dynamic programming may then be worthwhile.

Another problem admitting of solution by recursion equations of the gen­

eral form (1.1) is the linear arrangement or one-dimensional module place­

ment problem [9]. For this problem,

g(F(S-j),S,j) = F(S-j) + c(S,N-S),

where c(S,N-S) is the capacity of cutset (S,N-S) in a specified graph. The

bin packing, one dimensional stock cutting and assembly line balancing prob­

lems also yield to this approach [S,6]. For these problems,

g(F(S-j),S,j) = F(S-j) + 8(F(S-j),p.),
J

where p. is a specified parameter and 8 is a certain readily computed func­
J

tion.

Let us consider the running time required to solve equations (1.1) for

F(N), subject to the assumption that g can be computed in constant time. In

the absence of precedence constraints, there is an equation for each subset

S ~ N and F(N) can be computed in time proportional to

3

n or O(n2) time. Although this time bound is exponential, it does represent

very much less running time than would be required for an exhaustive exami­

nation of n! permutations.

When precedence constraints are added, the computational complexity is

in principle reduced. Let us call a set S s N feasible if j ES implies that

all predecessors of j in the digraph G = (N,A) are contained in S. It is well

known that equations (1.1) need be solved only for feasible sets s, with the

minimization in each equation only over j ES such that S-j is also feasible.

It follows that the time required to compute F(N) should be bounded by O(Kn),

where K is the number of feasible sets. Moreover, it has been shown that in
n practice K is o£ten very much smaller than 2 [2].

However, there are a number of questions of implementation that need

to be resolved, in order to take complete advantage of the reduction in com­

plexity that should result from precedence constraints. In particular, one

must have an efficient procedure for generating the K feasible sets and,

for a given feasible sets, identifying and locating in memory the feasible

sets S-j.

Various schemes have been proposed for generating and addressing feasi­

ble sets. BAKER and SCHRAGE [2], for example, proposed an approach whereby

each element j is assigned an integer label a .• Each feasible set Sis then
J

assigned an index equal to the sum of the labels of the elements contained

within it. Ideally, these indices should provide a one-one mapping of the

feasible sets onto the integers 0,1, ••• ,K-1, so that no space is wasted when

these indices are used to determine memory addresses. It remains an open

question whether a labelling with this property exists for all precedence

digraphs, and it appears that the labeling procedure proposed in [2] does

waste an indefinite amount of space for some digraphs. In the opinion of the

present author, the labeling approach is inherently more cumbersome and time

consuming than is necessary to effect an efficient implementation of the

dynamic programming algorithms.

In this paper we present a simple and efficient computer implementation

whereby the dynamic programming computations can be carried out in O(Kn)

time, and more significantly, in only O(n+k) space, where max
ber of feasible sets of size m and k = max {k }. Not only max m m
plementation overcome the difficulties encountered in [2,6],

k is the num­
m

does this im-

but it provides

4

an answer to the observation in [2] that "There are a number of algorithms

in the literature for generating subsets ••• However, we are unaware of any

efficient algorithms for generating subsets subject to precedence restri­

tions".

In the final section of this paper we indicate how the implementation

can be extended to solve the traveling salesman problem. The approach pres­

ented may be especially useful in cases where the network over which the

problem to bE~ solved is sparse, or where precedence constraints exist.

2. GENERATING FEASIBLE SETS

We asswne that we are dealing with a computer with binary word length

at least n. 'rhis is actually not a very restrictive assumption, and it is

5

one which appears to have been made, at least implicitly, by previous authors.

Note that at least log2K bits are required to address K feasible sets. Thus,
1 . n

if K = -- .2 , a word length of n-10 is required to store a single address.
1024

From a strictly theoretical point of view, our assumption enables us to ob-

tain time and space bounds that are smaller by a factor of n than those which

would otherwise be obtained.

We shall represent the precedence digraph G = (N,A) by its adjacency

matrix and store each colwnn of the matrix in a separate word. Thus, column

4 of the adjacency matrix of the digraph pictured in Figure 1 is stored as:

(110000).

1 2 3 4 5 6

(2. 1)

We shall represent a set S by its incidence vector on N and store this

vector in a single word. The incidence vector for S has numerical value

n (S) l n-j = 2 •
jES

Thus the set S = {1,2,3} ~ {1,2, ••. ,6} is represented by the vector

(111000), (2.2)

1 2 3 4 5 6

and this vector has value 56.

Figure 1. Digraph for example.

6

We assert that each feasible set of size m+l is of the form S+j, where

sis a feasible set of size m, j is, and there is no arc (i,j) in G such

that ii s. Given a set S of size m, it is easy to verify whether S+j satis­

fies these conditions. First check that element j of the incidence vector

for Sis zero. Then compare the incidence vector for S with column j of the

adjacency matrix for G, to see if the incidence vector for S has a one in

each position that column j has a one. Thus, for example, comparison of the

vectors (2.1) and (2.2) shows that {1,2,3,4} is a feasible set for the digraph

in Figure 1.

Exactly how these tests for S+j should be made depends upon the machine

language instru~tions available in the computer we are dealing with. In any

case, these tests can be assumed to be carried out, and the incidence vector

for S+j formed, in constant time.

We shall generate feasible sets in order of size, beginning with 0,
then generating feasible sets of size one, size two, ••• , and ending with

the set N. Suppose that there are k feasible sets of size m, and that these
m

ares., i = 1,2, ••• ,k, where
i m

n(S.) < n(S. 1), i = 1,2, ••• ,k -1. The k l i i+ m m+
feasible sets of size m+l are generated as follows.

First make one list of all feasible sets of the form S,+1 and a second
1

list of all feasible sets of the form S,+2, with both lists in increasing
1

order of the index i, and therefore in increasing numerical order for the

sets contained in them. Then merge the two lists, eliminating duplicate en­

tries in the course of the merge. Each of the two lists merged contains no

more thank 1 entries, and the list resulting from the merge also contains m+
no more thank 1 entries. Next generate a list of feasible sets of the form m+
s.+3 and merge it (again eliminating duplicate entries) with the list pre-

1

viously obtained. Continue in this way until the list s.+n has been merged.
1

The final list contains the k 1 feasible sets of size m+l. m+
As an example, consider the digraph depicted in Figure 1. There are five

feasible sets of size three, and from these we obtain the list indicated

below (dispensing with brackets and commas in the representation of sets):

7

s. s.+1 s.+2 s.+3 S,+4 S,+5 s.+6
1 1 1 1 1 1 1

123 1234 1235 1236

124 1234 1245

125 1235 1245

235 1235 2356

236 1236 2356

Let us ignore the list for s.+2 since it is empty.
1

Merging lists s.+1
1

and s. 3 , we obtain a list containing 1234,
1+ 1235, 1236, a duplicate entry

for 1235 being discarded, merging this list with s.+4, we obtain 1234, 1235,
1

1236, 1245, eliminating a duplicate entry for 1234. Merging this list with

s.+5, we obtain 1234, 1235, 1236, 1245, 2356, eliminating duplicate entries
1

for 1235 and 1245. Merging with s.+6, we obtain 1234, 1235, 1236, 1245, 2356,
1

eliminating duplicate entries for 1236, 2356. The final list contains all

five feasible sets of size four.

Each list containing feasible sets of the form S,+j can be obtained in . 1

O(k) time and space, exclusive of space required to store the adjacency
m

matrix of G. Hence the generation of all n lists can be carried out in O(nk)
m

time and O(km) .space. Each list entering a merge contains no more than km+l

entries. Hence each merge can be carried out with no more than 2k 1-1 nu­
m+

merical comparisons and in O(k 1) time and space. Hence all n-1 merges can
m+

be carried out in O(nk 1) time and O(k 1) space. Taking account of time m+ · m+
and space requirements for both list generation and merging, the list of all

feasible sets of size m+l can be obtained in O(nmax{k ,k 1}) time and
m m+

O(max{km,km+l}) space.

It follows from the above that the time required to generate all feas­

ble sets is bounded by O(Kn). If feasible sets of size mare outputted as

soon as those of size m+l have been obtained, the space required to generate

all feasible sets is bounded by O(n+k), where O(n) space is required to max
store the adjacency matrix of G. Otherwise space is bounded by O(K).

The key idea which has enabled us to attain these time and space bounds

is the generation of lists of the form S,+j and then merging them, with elim-
1

_ination of duplicate entries. This is precisely the same technique employed

by the present author to attain small time and space bounds for fast approx­

imation algorithms for knapsack problems [10].

8

3. SOLVING TEE RECURRENCE EQUATIONS

It is a simple matter to compute the values F(S) in the course of gen­

erating the feasible sets, as follows.

Suppose with each sets., i = 1,2, ••• ,k, there is recorded the value
i m

F(S.). When forming the list of feasible sets of the form S,+j, make a single
i i

entry in the list for each feasible set S,+j consisting of its incidence vec­
i

tor (in one word) and the computed value g(F(S.),S.+j,j) (in a second word).
i i

In the course of merging lists, whenever a given set is found to be duplicat-

ed, retain the list entry with the smaller g-value. When all lists have been

merged, the g-value recorded for each (m+1)-element set Sin the final list

is the value of F(S), as determined by (1.1).

If we seek only to compute the value F(N), then it is possible to dis­

card all feasible sets of size m (and their computed F-values) as soon as

those of size m+1 have been obtained. The entire computation can thus be

carried out in O(Kn) time and O(n+k) space. However, if we wish to con-
max

struct an optimal sequence 1T for which f(,r) = F(N), then it is necessary to

elaborate the procedure a bit, especially if we are to attain the same time

and space bounds.

9

4. CONSTRUCTING AN OPTIMAL SEQUENCE

The most straightforward way to construct an optimal sequence is simply

to record with each feasible set Sa sequence TI{S) yielding the value F(S).

Suppose with each set S., i = 1,2, ••• ,k, there is recorded a sequence
i m

TI(S.) yielding the value F(S.). When forming the list of feasible sets of
i i

the form Si+j, the sequence TI(Si),j (sequence TI(Si), followed by j) is made

part of the list entry for S,+j (in addition to the incidence vector for
i

S +j and the value g(F(S.),S.+j,j)). When all lists have been merged, as
i i i

described in the previous section, the desired sequence TI(S) is recorded

in the entry for each (m+l)-element set Sin the final list.

The difficulty with this straightforward approach is the amount of

space required to store each TI(S). Since flog2nl words of length n are re­

quired to store a permutation of n elements, the space bound is increased

to O(n+k log).:·Moreover, the time bound ·is increased to O(Knlogn), because
max n

of the time required to record sequences in list entries and the extra time

required to merge lists with the larger entries.

The time bound is easily restored to O(Kn) by using pointers. Instead

of recording the sequence TI(S.),j in the entry for s.+j, record the index
i i

j and a pointer to the sequence TI(S.). Then when the list of (m+l)-element
i

feasible sets has been obtained, use the index and the pointer recorded in

the entry for each set S to obtain the sequence TI(S).

It is possible to obtain a space bound of O(n+k), while maintaining
max

the time bound at O(Kn). However, we admit that the "divide and conquer"

technique we shall present may be of more theoretical than practical signif­

icance.

Virtually all of the problems for which recursion equations of the

form (1.1) have been formulated can be solved equally well by constructing

ari optimal sequence in one direction or the other, i.e. first-to-last or

last-to-first. For example, in the case of the single-machine problem dis­

cussed in Section 1, let

F (S) = max. s{F(S-j) + f.(P-Lk s . Pk)},
]€ J € -J

(4 .1)

with F(~) = O, where

10

p = \~ 1 p ..
lJ= J

If equations (4.1) are solved for sets S,S-j which are feasible with res­

pect to the precedence digraph G(N,A) obtained by reversing the directions

of all arcs in G = (N,A), then F(S) is the cost of an optimal sequence for

the jobs in S, with the completion of the last job at time P, and the other

jobs immediately preceding.

Let S (S) denote the family of sets of size m which are feasible
m m

with request to G (G). Note that SES if and only if N-S ES , hence
m n-m

k = IS I m m

F(N)

IS I. It should be clear that, for any m,
n-m

= min{F(S)+i(N-S) Is ES}.
m

(4.2)

Assume, for simplicity, that n is a power of two. Taking m = n/2, it

is a simple matter to compute F(N) by (4.2). Generate a list for Sn/2 , in

increasing numerical order of the sets contained within it, and a list for

Sn/2 , in decreasing numerical order. Form the sums indicated in (4.2) and

choose the smallest. This can be done in O(Kn) time and O(n+k) space.
max

* Let S be a set in Sn/2 yielding a minimum value in (4.2). There is an

* * optimal sequence in which the jobs in S precede the jobs in N-S . We now,

in effect, have two problems, each with n/2 jobs. We can now apply equation

(4.2) with respect to each of these subproblems to obtain four problems each

with n/4 jobs, and so forth.

The time required to solve the first subproblem of size n/2 is propor­

tional to (n/2)K1 and the time required to solve the second subproblem is

proportional to (n/2)K2 where K1+K2 ~ K+l. (K1+K2 can be expected to be

considerably less than Kin practice). It follows that the time required

to construct an optimal sequence by this method is bounded by a function

of order

Kn + (K+1)¥ + (K+3)~ + •.• + (K-n+l),

which is, of course, O(Kn).

It is not hard to verify that if this approach is properly implemented,

space requirements are bounded by O(n+k).
max

11

5. PROVIDING FOR REPETITIVE COMPUTATIONS

There may be situations in which it is desired to carry out computations

for a large number of different objective functions, but with respect to the

same precedence digraph in each case. It may then be desirable to generate

the feasible sets once only, and to record the feasible sets in memory in

such a way that repetitive computations can be carried out as quickly as

possible.

As soon as feasible sets of size m+l have been generated, we propose

to assign them to consecutive memory addresses, immediately following those

for sets of size m. With each feasible set S we shall store a pointer to a

list of the addresses a(S-j) of feasible sets S-j. This data structure is

indicated in Figure 2.

1234

*

·~
~
ja(234)j *

(a) Data structure before elimination

of duplicate list entry.

Figure 2.

s1+J a(S1)

J.__1_23_4 _.__==--➔ 1 a (123) 1

(b) Data structure after elimination

of duplicate list entry.

This data structure is generated by a simple modification of the pro­

cedure presented in Section 2. When the list of feasible sets of the form

s,+j is generated, each entry in the list is provided with a pointer to a
1

record containing the address a(S.) and a special symbol*, as shown in
1

Figure 2(a). When duplicate entries are found in the course of merging list

Si+j, the entry in the list Si+j is retained, but the pointer in the other

12

entry is substituted for"*" in the record specified by the pointer in the

entry for S.+j. This procedure is indicated in Figure 2.
l.

It is thus possible, within O(Kn) time, to generate all feasible sets,

assign them to consecutive memory locations, and to provide, for each set S,

a list of addresses of sets S-j. The total space required is proportional

to the total number of pairs (S,S-j). Space may, of course, be compacted

somewhat by reforming the lists of addresses a(S-j) and eliminating pointers.

13

6. SOLVING THE TRAVELING SALESMAN PROBLEM

It is well known that the dynamic programming approach can be applied

to the traveling salesman problem [3,5]. Let H be an (n+l)-node network on

node set Nu{O} over which the problem is to be solved. For S s N, let F(S,j)

denote the length of a shortest path from node Oto node j which passes

through each of the nodes in S. Then the problem is solved by computing

F(N,0) by the recursion equations

F(S,j) -· min . S { F (S-i , i) + d . . },
lE l]

where d .. is the length of arc (i, j) in H.
lJ

(6. 1)

If His complete, the time required to solve equations (6.1) for F(N,0)

is O(n2 2n). However, if His sparse or if there are precedence constraints

specified by an acyclic digraph G = (N,A), the complexity of the computation

may be considerably reduced.

Let us call a path admissible if it passes through nodes in an order

consistent with the precedence constraints specified by G, and let us call

a pair (S,j) feasible if there exists an admissible path in H from node 0

to node j which passes through the nodes in S.

A feasible pair (S, j) is said to have size m if IS I = m. Feasible pairs

can be generated in order of size by a simple adaptation of the procedure

given in Section 2. Each feasible pair of size m+l is of the form (S+i,j),

where (S,i) is a feasible pair of size m, j i S+i, there is an arc (i,j) in

H, and there is no arc (k,j) in G such that k i S+i. If there are K feasible

pairs, they can be generated in O(Kn) time and O(n+k) space, where k is
max m

the number of feasible pairs of size m and k = max {k }.
max m m

The computation of the values F(S,j) can be carried out in the course

of state gene!ration. Moreover, the divide-and-conquer technique of Section

4 can be applied. Let

F(S,j) = min{i(s-i,i) + d .. },
Jl

(6. 2)

14

Let S (S) denote the family of feasible pairs with respect to Hand G
m m - -(Hand G). It is not necessarily true that (S,j) ES if and only if

m
(N-(S+j),j) ES 1. Nevertheless, we have by analogy with (4.2), for any m,

n-m-

F(N,0) = min{F(S,j)+F(N-(S+j),j)l(s,j) ES ,(N-(S+j),j) ES 1}. (6.3)
m n-m-

Using the approach of Section 4, equations (6.3) can be used to con­

struct an optimal sequence in O (Kn) time and O (n+k) space. {In fact, there
max

may be considerable advantage to this approach, resulting from the fact that

not both (S,j) and (N-(S+j),j) may be feasible.) In the (conventional) case

that His complete and G is empty, note that

k = kn/2 max

n n
= 2 (n/2)

~
v'n 2n
2 '

1/2 n
and an optimal sequence can be constructed in O(n 2) space.

ACKNOWLEDGMENTS

The author wishes to thank Kenneth Baker for suggesting this research

with his presentation at the POPCORN Festival (Prominent Open Problems in

Combinatorial Optimization (Relevant or Not)), held at the Mathematisch

Centrum, Amsterdam, April 6, 1979, and Jan Karel Lenstra and Alexander

Rinnooy Kan for organizing the festival.

This research was supported in part by NSF Grant MCS76-17605 and by

NATO Special Research Grant 9.2.02 (SRG.7).

15

16

REFERENCES

1. H.M. ABDEL-WAHAB, T. KAMEDA, Scheduling to minimize maximum cumulative

cost subject to series-parallel precedence constraints. Operations Res.

26(1978)141-158.

2. K.R. BAKER, L.E. SCHRAGE, Finding an optimal sequence by dynamic pro­

gramming: an extension to precedence-related tasks. Operations Res. 26

(1978) 111-120.

3. R.E. BELLMAN, Dynamic programming treatment of the traveling salesman

problem. J. Assoc. Comput. Mach. ~(1962)61-63.

4. R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, Optimization

and approximation in deterministic sequencing and scheduling: a survey.

Ann. Discrete Math., to appear.

5. M. HELD, R.M. KARP, A dynamic programming approach to sequencing prob­

lems. J. SIAM .!.Q.(1962)196-210.

6. M. HELD, R.M. KARP, R. SHARESHIAN, Assembly-line balancing - dynamic

programming with precedence constraints. Operations Res • .!.!_(1963)442-459.

7. E.L. LAWLER, On scheduling problems with deferral costs. Management Sci •

.!.!_ (1964) 280-288.

8. E.L. LAWLER, Optimal sequencing of a single machine subject to precedence

constraints. Management Sci • .!2_(1973)544-546.

9. E.L. LAWLER, The quadratic assignment problem: a brief review. In: B.

ROY (ed.), Combinatorial Programming: Methods and Applications, Reidel,

Dordreoht ,1975)351-360.

10. E.L. LAWLER, Fast approximation algorithms for knapsack problems. Math.

Oper. Res., to appear.

11. E.L. LAWLER, Sequencing problems with series parallel.precedence con­

straints. Proc. Summer School in Combinatorial Optimization, Urbino,

Italy, 1978,1 to appear.

12. C.L. MONMA, J.B. SIDNEY, Sequencing with series parallel precedence

constraints. Math. Oper. Res., to appear.

