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Complexity of location problems on networks 

by 

Antoon Kolen 

ABSTRACT 

We consider some well-known location problems, namely, the p-center 

problem (with mutual communication), the p-median problem (with mutual com

munication), the simple (capacitated) plant location problem, the location 

set covering problem and the maximal covering problem. We show that all 

these problems are NP-hard. 

KEY WORDS & PHRASES: location problems, computational complexity, NP

hardness, NP-completeness. 
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1. INTRODUCTION 

For some specially structured problems such as network flow and match~ 

ing, polynomial-time algorithms (i.e., algorithms whose running time is 

bounded by a polynomial function of problem size) have been developed. 

However, for a large class of problems no polynomial-time algorithms are 

known. The theory of computational complexity showed the existence of a 

class of "NP-complete" problems, which are equivalent in the sense that 

(a) either all or none of them are solvable in polynomial time; 

(b) none of them is known to be solvable in polynomial time. 

In addition, thE;!re is a class of "NP-hard" problems, which are, loosely 

speaking, as least as hard as the NP-complete problems. Many combinatorial 

problems that are notorious for their computational intractability such as 

graph coloring, set covering and travelingsalesman problems, are NP-hard. 

It is commonly conjectured that no polynomial-time algorithm exists for an 

NP-hard problem. Therefore establishing NP-hardness of a problem serves as 

a justification for the use of tedious enumerative optimization methods or 

of fast approximation algorithms. 

In Section 2 we shall briefly discuss the concepts of complexity theory; 

this section is borrowed from the paper by LENSTRA and RINNOOY KAN [12]. 

The reader who is interested in details is referred to the recent book by 

GAREY and JOHNSON [6], which also contains an extensive listing of NP-com

plete problems. The reader who would like to know more about complexity 

theory without going into details is referred to the papers by KARP [11] 

and LENSTRA and RINNOOY KAN [12]. 

In section 3 we shall formulate some location problems on networks and 

discuss some relevant literature. 

In Section 4 we review the complexity of th.e location problems formu

lated. The fact that the p-center problem, the p-median problem, the simple 

(capacitated) plant location problem, the location set covering problem and 

the maximal covering problem are NP-hard is well-known. This paper provides 

a uniform framework for the quite straightforward proofs of th.ese results. 

In addition we establish NP-hardness for the p-center and p-median problems 

with mutual communication. The proofs of these results are more involved. 
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2. CONCEPTS OF COMPLEXITY THEORY [12] 

A formal theory of NP-completeness would require the introduction of 

Turing machines [1] as theoretical computing devices. A deterministic Turing 

machine is a classical model for an ordinary computer, which is polynomial

ly related to more realistic models such as the random access machine. It 

can be designed to recognize languages; the input consists of a string, 

which is accepted by the machine if and only if it belongs to the language. 

A nondeterministic Turing machine is an artificial model, which can be 

thought of as a deterministic one that can create copies of itself cor

responding to different state transitions whenever convenient. In this case, 

a string is accepted if and only if it is accepted by one of the determinis

tic copies. P and NP are now defined as the classes of languages recognizable 

in polynomial time by deterministic and nondeterministic Turing machines, 

respectively • 

. For the purposes of exposition, we will expound the theory in terms of 

recognition problems, which require a yes/no answer. A string then corre

sponds to a problem instance and a language to a problem type or, more 

exactly, to the set of all its feasible instances. The feasibility of an 

instance is usually equivalent to the existence of an associated structure, 

whose size is bounded by a polynomial in the size of the instance; for ex

ample, the instance may be a graph and the structure a Hamiltonian circuit 

[11]. A recognition problem is in P if, for any instance, one can determine 

its feasibility or infeasibility in polynomial time. It is in NP if, for 

any instance, one can determine in polynomial time whether a given structure 

affirms its feasibility. 

Problem P' is said to be reducible to problem P (notation: P' tt P) if 

for any instance of P' an instance of P can be constructed in polynomial 

time such that solving the instance of P will solve the instance of P' as 

well. Informally, the reducibility of P' to P implies that P' can be con

sidered as a special case of P, so that Pis at least as hard as P'. 

Pis called NP-hard if P' tt P for every P' E NP. In that case, Pis at 

least as hard as any problem in NP.Pis called NP-complete if Pis NP-hard 

and PE NP. Thus, the NP-complete problems are the most difficult problems 

in NP. 
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A polynomial-time algorithm for an NP-complete problem P could be used 

to solve all problems in NP in polynomial time, since for any instance of 

such a problem the construction of the corresponding instance of P and its 

solution can be both effected in polynomial time. Note the following two 

important observations. 

The 

It is very unlikely that P = NP, since NP contains many notorious com

binatorial problems, for which in spite of a considerable research 

effort no polynomial-time algorithms have been found so far. 

It is very unlikely that PEP for any NP-complete P, since this would 

imply that P = NP by the earlier argument. 

first NP-completeness result is due to COOK (1971). He designed a 

"master reduction" to prove that every problem in NP is reducible to the 

SATISFIABILITY problem. This is the problem of determining whether a bool

ean expression in conjuctive form assumes the value true for some assignment 

of truth values to the variables; for instance, the expression 

(x 1} A (x1 x2 x3 } A (x3} is satisfied if x 1 = x2 = x3 =true.Given this 

result, one can establish NP-completeness of some PE NP by specifying a 

reduction P' a: P with P' already known to be NP-complete: for every P" E UP, 
P" a: P' and P' a: P then imply that P" a: Pas well. In Section 4 we shall 

present several such proofs. 

As far as optimization problems are concerned, we shall reformulate a 

minimization (maxi~ization) problem by asking for the existence of a feasible 

solution with value at most (at least} equal to a given threshold. It should 

be noted that membership of NP for this recognition version does not imme

diately imply membership of NP for the original optimization problems as 

well. In particular, proposing a systematic search over a polynomial number 

of threshold values, guided by positive and negative answers to the existence, 

is not a valid argument. This· is because.a nondeterministic Turing machine 

is only required to give positive answers· in polynomial time. Indeed, no 

complement of any NP-complete problem is known to be in NP: 
As an obvious consequence of th.e above discussion, NP-completeness 

can only be proved with respect to a recognition problem. However, the 

corresponding optimization problem might be called NP-hard in the sense 

that the existence of a good algorithm for its solution would imply that 

P = NP. 
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3. FORMULATION OF LOCATION PROBLEMS 

In the first part of this section we shall formulate the location 

models to be considered and briefly discuss some relevant literature. In 

order to establish NP-hardness for the location problems considered we have 

to prove NP-completeness for the corresponding recognition problems. In the 

second part of this section we shall formulate these recognition problems. 

Let G = (V,E) be a graph with vertex set V = {v1 , ••• ,vn} and edge set 

E = {e1 , ••• ,e }. A weight w(v.} ~ 0 is associated with each vertex 
m J. 

v. (i = 1,2, ••• ,n). A length i(e.) > 0 is associated with each edge 
J. J 

e.(j = 1,2, ••• ,m). A point x on the graph G is defined to be a vertex or a J . 
point along an edge. The distance d(x,y) between two points x and yon G is 

defined to be the length of the shortest path between x and y. Let 

X = {x1 , ••• ,x} be a set of p points on G. Then we define the distance 
p p 

d(z,X) between a point z on G and the set X as 
p p 

d(z,x) = p 
d(z,x.). 

J 

The p-center problem is to locate p objects (points) on G so as to 

minimize the maximum of the weighted distances between the objects and the 

clients (vertices) assigned to be served by them, where each client is 

served by the object closest to it. 

Let 

F(x) = 
p 

max 
1SiSn 

w(v. )d(v. ,X ) • 
J. J. p 

'* Then the p-center problem is to find a set X on.G such that 
p 

* Fcx > = 
p 

min 
X onG 

p 

Fcx >. 
p 

The min-max objective function is often appropriate in the formulation of 

emergency problems, e.g., regarding police, fire and ambulance services. 

A vertex of a graph then corresponds to a population center. The weight of 

a vertex can be interpreted as a measure of its importance or the probabili

ty of an emergency occurring, and will therefore often be a function of the 
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size of the 

·problem the 

call it the 

population. If X is restricted to be a subset of V we call this 
p 

vertex p-center problem. If X is not restricted we sometimes 
p 

absolute p-center problem. Algorithms to solve the p-center 

problem can be found in CHRISTOFIDES [2], HANDLER [9], and KARIV and 

HAKIMI [ 10] • 

The p-median problem is to locate p objects on G so as to minimize the 

sum of the weighted distances between the objects and the clients served by 

them, where each client is served by the object closest to it. 

Let 

Hex> = 
P. 

n 

I 
i=l 

wev. )dev. ,X ) • 
1 1 p 

* Then the p-median problem is to find a set X on G such that 
p 

* Hex> = p 
min 

X on G 
p 

* HAKIMI [8] has shown that there exists an optimal subset X s V. Therefore 
p 

we can formulate the p-median problem as an integer progranuning problem ep) 

using the variables x .. ei,j = 1,2, ••• ,n), where 
' 1J . 

{: 
if an object is located at vertex v., 

J 
x .. = 

JJ 
otherwise, 

.. _.,, 

and for i * j 

{: 

if client i is assigned to vertex V., 
J 

x .. = 
1J 

otherwise: 

n n 
(p) min z = i: i: wev.)dev.)vi,v.)xi. 

i=l j=l 1 1 J J 

n 
e 1) s.t. i: x .. = 1, i = 1,2, .•• ,n, 

j=l 1J 

e2) x .. ~ X .. , i,j = 1,2, ••• ,n, 
1J JJ 
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n r xjj = p, 
j=1 

X,. E {0,1}, 
l.J 

i,j = 1,2, ••• ,n. 

The constraints (1) ensure that each client is assigned to a vertex. Con

straints (2) ensure that client i is only assigned to a vertex where an ob

ject is located. The min-sum objective is often appropriate when one wants 

to minimize the total cost of a transportation network. The clients weight 

then correspond to the amount to be shipped between the clients and their 

associated (closest) object, the distance d(v.,v.) between vertex v. and v. 
l. J l. J 

corresponds to the cost of transporting one unit between vertex v. and v .• 
l. J 

The p-medium problem is often solved as a linear programming by relaxation 

of the integer constraints, in combination with branch and bound. Solving 

the linear programming often results in an optimal solution with integer 

values of the variables. Another solution method is Lagrangean relaxation 

(NARULA et.al.[13]). KARIV and HAKIMI [10] give an O(n2p 2) algorithm for 

finding a p-median in a tree network. 

In contrast with the p-center and p-median problem, the p-center and 

the p-median problem with mutual communication involve weighted distances 

between all pairs of clients and objects, and all pairs of objects. Let 

a(v.,j) be the weight corresponding to client i and object j (1SiSn,1SjSp). 
l. 

Let S(j,k) be the weight corresponding to object j and object k (1Sj<kSp). 

Let 

and let 

Kcx > p 
= max{ max 

1SiSn 
1SjSp 

a(v. ,j)d(v. ,x.), 
l. l. J 

L(X) = 
p I ! a(v. ,j)d(v. ,x.) + 

l. l. J i=1 j=l 

max S(j,k)d(xj'¾)} 
1Sj<kSp 

* Then the p-center problem with mutual communication is to find a set X 
p 

on G such that 

* Kcx) = 
p 

min 
X on G 

p 

Kcx >. p 
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* The p-median problem with mutual communication is to find a set X on G such 
p 

·that 

* L(X) = 
p 

min 
X on G 

p 

L (X ) • 
p 

It can be shown for the p-median problem with mutual communication that 

* there exists an optimal solution XP EV (FRANCIS and WHITE [5]). The p-cen-

ter problem with mutual communication on a tree network can be solved by an 
3 

O(n+p) log(n+p)) algorithm based on the result on distance constraints for 

tree networks given by FRANCIS et.al.[4]. The p-median problem with mutual 

communication on a tree network can be solved by the O(p3n) algorithm of 

PICARD and RATLIFF [15]. For general networks these two problems have not 

yet received much attention. 

The location set covering problem (LSCP) and the maximal covering 

problem (MCP) are problems formulated by REVELLE. Again a number of emergen

cy facilities has to be located on vertices of a network. A vertex v. with 
l. 

population w(v.) is said to be covered if there is an emergency facility 
l. 

within a predescribed distances. The location set covering problem is to 

determine the minimal number of emergency facilities and their location such 

that every vertex is covered. The maximal covering problem is to determine 

the location of a predescribed number of p facilities such that the total 

population covered is maximal. 

Define 

N. = {v.ld(v.,v.) ~ s}, 
l. J l. J 

{1 if a facility x. = 
J 0 otherwise, 

r if vertex v. 
l. 

Yi = 
0 otherwise. 

Then (LSCP) can be formulated as 

n 
min z = l 

j=1 
x. 

J 

is 

is 

(i = 1,2, ... ,n) 

located at vertex V.' 
J 

covered, 
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s.t. r X. ;?: 1, 
jENi J 

i = 1,2, ••• ,n, 

x. E {0,1}, 
J 

j = 1,2, ••• ,n. 

(MCP) can be formulated as 

Revelle 

n 
max z = l 

i=l 

s.t. I x. 
jEN. J 

l. 

n 
r x. 

j=l J 

x. 
J 

solved problems 

w(v.)y. 
l. l. 

;?: y., 
l. 

= p, 

E {0,1}, 

of these 

i = 1,2, ••• ,n, 

j = 1,2, ••• ,n. 

types by relaxing the integer constraints. 

The corresponding linear programming problem frequently has an optimal so

lution with integer values of the variables. If this is not the case, 

REVELLE [16] adds a cut or uses branch and bound. 

Given a set of possible locations for establishing new facilities• 

(plants, warehouses, etc.), the plant location problem deals with the supply 

of a single commodity from a subset of these locations to a set of clients 

with a predescribed demand for the commodity:-Given the cost structure, a 

minimum cost production/transportation plan has to be determined in terms 

of the number of facilities established, their location and the amount 

shipped from each facility to each client. We define the following data: 

m 

n 

f. 
l. 

pi 

t .. 
l.J 

D. 
J 

s. 
l. 

and the 

the number of potential facilities, indexed by i EI= {1,2, ••• ,m}, 

the number of clients, indexed by j E J = {1,2, ••• ,n}, 

the nonnegative fixed cost for establishing facility i, 

the per unit cost of operating facility i, 

the transportation cost of shipping one unit from facility i to 

client j, 

the number of units demand by client j, 

the capacity of facility i, 

following variables: 



s .. 
1.J 

X,. 
1.J 

Yi 

number of units produced at facility i and shipped to client j, 

the fraction of D. supplied by facility i, 
J 

y. = 1 if facility i is established and O otherwise. 
1. 

9 

If each facility has unlimited capacity we refer to the problem as the 

simple plant location problem (SPLP). If each facility has a finite capacity 

we refer to the problem as the capacitated plant location problem (CPLP). 

(SPLP) can be formulated as 

min z = I I 
iEI jEJ 

s.t. I X,. 

iEI l.J 

x .. 
1.J 

(p.+t .. )D.x .. + 
1. 1.J J 1.J 

= 1 , j E J, 

::; Yi, i E I, 

I 
iEI 

j E 

f,y. 
1. 1. 

J, 

x .. 2 0 , 
1.J 

i E I, j E J, 

Yi E {0,1}, i EI. 

The constraints x .. ::; y, ensure that x .. = 0 if facility i is not established. 
1.J 1. 1.J 

Note that there always exists an optimal solution with x .. E {0,1}. 
1.J 

(CPLP) can be formulated as 

min z = I I (p. +t .. ) s . . + I 
iEI jEJ 1. 1.J l.J 

iEI 

s.t. I 
iEI 

I 
jEJ 

s .. = D., j E J, 
1.J J 

s .. ::; Siyi, i E I, 
1.J 

s .. 2 o, i E I, 
1.J 

y, E {0,1}, i E I. 
1. 

j 

f.y, 
1. 1. 

E J, 

(SPLP) can be considered as a special case of (CPLP) with all capacities 

large enough. Therefore we have only to show that (SPLP) is NP-hard. Simple 

plant location problems are usually solved efficiently by the algorithm of 
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ERLENKOTTER [3]. An extension of this algorithm given by GUIGNARD and 

_SPIELBERG [7] can also handle mixed plant location problems, i.e. plant 

location problems where some facilities have capacity constraints and others 

do not. The (CPLP) can also be solved using Lagrangean relaxation (NAUSS 

[14]). 

We conclude this section by formulating the recognition problems cor

responding to the above location problems. 

MIN-MAX MULTICENTER 
+ INSTANCE: A graph G = (V,E), a weight w(v) € 71: for each V € v, 

+ a length l(e) € 71: for each e EE, a positive integer p s lvl, 
a positive rational number B. 

QUESTION: Is there a set X of p points on G such that 
p 

w(v)d(v,X) SB for all v € V? 
p 

MIN-SUM MULTICENTER 
+ INSTANCE: A graph G = (V,E), a weight w(v) € 71: for each v € V, 

+ a length l(e) E 71: for each e EE, a positive integer p s lvl, 
a positive rational number B. 

QUESTION: Is there a set X of p vertices on G such that 
p 

l w(v)d(v,x) s B? 
p 

VEV 

MIN-MAX MULTICENTER WITH MUTUAL COMMUNICATION 

INSTANCE: A graph G = (V,E) with vertex set V = {v1 , ••• ,v }, a positive in

teger·p s lvl, weights a.(v. ,j) E 71:+ (1Si~n, lS;·Sp), S(j,k) E :z+ 
1 + 

{lSj<kSp), a length l(e) E 71: · for each e E E, a positive rational 

number B. 

QUESTION: Is there a set X 
p 

a.(v. ,j)d(v. ,x.) s 
1 1_ J 

= {x1 , ... ,xp} of p points on G such that 

B (lSiSn, lSjSp), 

S(j,k)d(xj'¾) SB (lSj<kSp)? 

MIN-SUM MULTICENTER WITH MUTUAL COMMUNICATION 

INSTANCE: A graph G = (V,E) with vertex set V = {v1 , ••• ,v }, a positive in-
n + 

teger p s lvl, weights a.(v.,j) E 71:+(lSiSn, lSjSp), S(j,k) E 71: 
1 + 

(lSj<kSp), a length l(e) E 71: for each e EE, a positive rational 



number B. 

·QUESTION: Is there a set X = {x1, ••• ,x} of p vertices on G such that 
p P. p 

r~ l r:J? l a. ( v . , j ) d (v . , x . ) + .. '~ . l rPk . + l 8 ( j , k) d ( x . , x. ) S B? l1= l]= 1 1 J lJ= l =J J K 

LOCATION SET COVERING 

INSTANCE: A graph G = (V,E), a positive integers p s lvl and S. 

QUESTION: Is there a subset V' EV,' lv'I s p, such that for every vertex 

v EV there is a vertex u EV' such that 

d(u,v) s S? 

MAXIMAL COVERING 

INSTANCE: A graph G = (V,E), positive integers p s lvl ands, a weight 
+ w(v) E 2Z for all v Ev, a positive rational number B. 

QUESTION: Is there a set V' EV, IV' I= p, such that l T w(v) ~ B, where 
VE 

Tis the set of vertices with the property that d(v,V') s S for 

all v ET? 

SIMPLE PLANT LOCATION 

11 

INSTANCE: A complete bipartite graph K · with vertex sets v1 clv1 1 = m) and m,n 
v2 clv2 1=n), nonnegative integers c .. ,f. (1SiSm, 1SjSn), a positive 

1] 1 

rational number B. 

QUESTION: Are there a non~empty subset I c {1,2, ••• ,m} and subsets 

J. c {1,2, ••• ,n} for all i EI such that {J. Ii EI} forms a par-
1 - 1 

tition of {1,2, ••• ,n} and r. Ir. J c .. + ·l1-~I f. s B? 1€ ]€ i 1] ~ 1 

4. COMPLEXITY OF LOCATION PROBLEMS 

As indicated in Section 2 we have to reduce some known NP-complete 

problem Q to problem Pin order to prove that Pis NP-complete. The NP

complete problems we shall use here for this purpose are the following. 

1 • VERI'EX COVER 

INSTANCE: A graph G' = (V',E') and a positive integer ks lv'I. 

QUES_TION: Is there a vertex cover of size at most k, i.e., is there a 

subset V" EV', lv"I s k, such that for every edge (u,v) EE' 

u or v belongs to V"? 
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2. CLIQUE 

INSTANCE: A graph G' = (V',E') and a positive integer k $ lv'I. 

QUESTION: Is there a clique of size at least k, i.e., is there a subset 

v" EV', lv"I ~ k, such that for all u,v € V" (u,v) € E'? 

3. DOMINATING SET 

INSTANCE: A graph G' = (V',E') and a positive integer k $ lv'I. 

QUESTION: Is there a dominating set of size at most k, i.e., is there a 

subset v' E V', Iv• I $ k, such that for every u E V'\V" there is 

av€ V' such that (u,v) € E'? 

We shall assume that G' = (V',E') does not contain self-loops. All forth

coming NP-completeness proofs have the same structure. Given an instance 

of one of the problems 1,2, and 3 we shall present a reduction which defines 

an instance of the problem under consideration such that solving the latter 

instance will solve the former instance. We shall leave it to the reader 

to prove that the recognition problems we will consider belong to NP, as 

well as that the reductions we present are polynomial bounded. 

THEOREM 1. MIN-MAX MULTICENTER is NP-complete. 

PROOF. Let an instance of DOMINATING SET be given by G' = (V',E') and k. 

The corresponding instance of MIN-MAX MULTICENTER is defined by V = V', 

E = E ' , w ( v) = 1 for al 1 v E V, l ( e) = 1 for all e E E, p = k, B = 1. 

Let V" be a dominating set of size at most k for G' = (V',E'). Then 

d(v,V") $ 1 for all v €Vin the graph G = (V,E). 

Let Xk = {x1 , ••• ,xk} be a set of k points on G = (V,E) such that 

d(v,Xk) $ 1 for all v Ev. Moving each point x. (1$jSk) to the vertex . J 

closest to it gives a set V" of vertices of size at most k such that 

d(v,V") $ 1 for all v EV. Hence V" is a dominating set of size at most kin 

GI = (V' , E I ) • □ 

THEOREM 2. MIN-SUM MULTICENTER is NP-complete. 

PROOF. Let an instance of DOMINATING SET be given by G' = (V',E') and k. 

The corresponding instance of MIN-SUM MULTICENTER is defined by V = V', 
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E = E', w(v) = 1 for all v Ev, l(e) = 1 for all e EE, p ·= k, B = !vi - k. 

Let V" be a dominating set of size at most k for G' = (V',E'). Then 

l , d(v,V") ~ !vi - k. 
VEV 

Let Xk be a se~ of k vertices on G = (V,E) with l d(v,Xk) ~ !vi - k. 
VEV 

Since for all v E V\Xk we have d(v,~) ;,: 1 we conclude that lvEV d(v,Xk) = 

= !vi - k and d(v,Xk) = 1 for all v EV\~-

Hence Xk is a dominating set of size kin G' = (V',E'). D 

We note that both MIN-MAX and MIN-SUM MULTICENTER are NP-complete even 

for w(v) = 1 for all v EV and l(e) = 1 for all e EE. The reductions used 

in Theorem 1 and Theorem 2 can also be found in KARIV and HAKIMI [10]. 

THEOREM 3. SE:T LOCATION COVERING is NP-complete. 

THEOREM 4. MAXIMAL COVERING is NP-complete. 

The proofs of Theorems 3 and 4 are left to the reader as exercises 

(hint: use DOMINATING SET). 

THEOREM 5. MIN-MAX MULTICENTER WITH MUTUAL COMMUNICATION is NP-complete. 

PROOF. Let an instance of CLIQUE be given by G' = (V',E') and k. The cor-

responding instance of MIN-MAX MULTICENTER WITH MUTUAL COMMUNICATION is 

defined by V = {s} u {s} u {;} u V'U V'U V', where V' = {v. I V. EV'} and 
· 1 1 

V' = {~. I V. E V'}, 
1 :L 

E = {(s,v.),(s,v.),(;,;,),(v,,v,),(v,,;,) Ii= 1,2, •.• ,n} 
1 1 1 1 1 1 1 

u {(v.,;,) I (v.,v.) 
1 J 1 J 

EE'}, p = 3k, [a(s,j) = 1, a(S,j+k) = 1, a(S,j+2k) = 

= 1, f3(j,j+k) = 1, f3(j+k,j+2k) = 1 for all j (j = 1,2, ••• ,k)], f3(i,j+2k) = 1 

for all i,j (1~i<j~k), all other weights are zero, l(e) = 1 for all e EE, 

B = 1. The graph G = (v,E) is illustrated in Fig. 1. 

Let x 1 , ... ,x3k be points on G = (V,E) satisfying the distance constraints 

(DC1) and (DC2) : 

(DC1) 

(DC2) 

d(s,x. k) ~ 
J+ 

{d(x.,x. 2k) ~ 1 
1 J+ 

for all j (j = 1,2, ••• ,k), 
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Since d(s,s) = d(s,~) = 3 it follows from (DCl) that x. EV', x. k EV', 
J J+ 

xj+2k EV' and that xj+k = xj, xj±2k = ~j for all j (j = 1,2, ••• ,k). 

From now on we will write x. and x. instead of x.+k and xJ.+2k respectively. 
J J - l 

Suppose xi= xk (=v) (j<k) in V'. Then also xj =¾·It follows from (DC2) 

that (xj,xk) EE or equivalently (v,v) EE'. Since G' = (V' ,E') does not 

contain self-loops we conclude that all points x 1 .•. xk are different vertices 

. V' v4 , ••• ,vq in • 
--1 k 

It follows from (DC2) that (xi,xj) EE (l~i<j~k) or equivalently (vqi'vqj> 

EE'. Hence vq1, ••• ,vqk constitute a k-clique in G' = (V',E'). 

Let vq1 , ••• ,vqk constitute a k-clique in G' = (V',E'). Then define 

Xj = Vqj' 

seen that 

. -
xj+k = vqj and xj+2k 

x1 ••. x3k satisfy the 

= vqj for all j (j = 1,2, ••• ,k). It is easily 

distance constraints (DCl) and (DC2). 

"' s 

Fig.1. The graph G = (V,E) corresponding to Theorem 5 arid Theorem 6. 

THEOREM 6. MIN-SUM MULTICENTER WITH MUTUAL COMMUNICATION is NP-complete. 

PROOF. Let an instance of CLIQUE be given by G' = (V',E') and k. The cor

responding instance of MIN-SUM MULTICENTER WITH MUTUAL COMMUNICATION is 

defined by V = {s} u {s} u V' u Vu V', where V' = {v. v. EV'} and 
1 1 



V' ={~.Iv.Ev•}, E = {(s,vi), (s,v.), (;,~_), (v.,v.), (v.,~.) 
1 1 1 1 1 1 1 1 

·1 = 1,2, ••. ,n} u {(v.,~.) I (v.,v.) EE'} (see Fig.1), p = 3k, [a.(s,j) = 
1 ] 1 ] 

= p-j+l, a.(s,j+k) = 2, a(;,j+2k) = j, f3(j,j+k) = 1, f3.(j+k,j+2k) = 1 

for all j (j = 1,2, .•• ,k)], 8(i,j+2k) = 1 for all i,j (lSi<jSk), all other 
2 

weights are zero, l(e) = 1 for all e EE, B = 3/2(k +3k). 

Let x 1 ••• x3k by vertices of G = (V,E) such that 

l~=l [(p-j+l)d(s,x.)+2d(s,x.+.> + jd(;,x,+2k)+d(x.,x.+k)+d(x.+k'x. 2k)] + 

15 

J k k J J J 2 J J J J J+ 
li=l lj=i+l d(x1 ,xj+2k) s 3/2(k +3k). (1) 

We have the following inequalities: 

d(s,s) S d(s,x.)+d(x.,x. k)+d(x.+k's) for all j (j = 1,2, •.• ,k), (2) 
- ] . ] J+ ] = 

d(s,;} S d(s,xj+k}+d(xj+k'xj+2k}+d(xj±2k,s} for all j (j = 1,2, ••• ,k}, (3) 

d(s,s} S d(s,x1 }+d(x1 ,xj+2k}+d(xj+2k,s} for all i,j (lSi<jSk}. (4) 

Summing inequalities (2) and (3) for all j (j = 1,2, ••• ,k), inequality (4) 

for all i,j (lSi<jSk) and adding gives 

l~ l [(p-j+l)d(s,x.}+2d(s,x.+k)+jd(;,j+2k)+d(x.,x. k)+d(x.+k'x. 2k)] + 
]= ] ] ] J+ ] ]+ 

\k \k - -· = k(k-1) = 2 
li=l lj=i+l d(x1 ,xj+2k} ~ k[d(s,s)+d(s,s}]+ 2 d(s,s) = 3/2(k +3k) (5) • 

~ We conclude from (1) and (5) that equality must hold in (1) and (5). 

Since equality holds in (5) equality holds in (2), (3) and (4). 

Equality holds in (2), (3) and (4) if and only if x. EV', x. k EV' 
] ]+ 

xj+2k EV', xj+k = xj, xj+2k = Xj. for all j (j = 1,2, ••• ,k) and (xi,xj) EE 

for all i,j (lSi<jSk). Analogously to Theorem 5 we can prove that x 1 , ... ,xk 

are different vertices in V' which constitute a k-clique in G' = (V',E'}. 

Let Vq , ••• ,v<Ik constitue a k-clique in G' = (V',E'). Then define 
1 - = 

xj = qj, xj+k = Vqj' xj+2k = vqj for all j (j = 1,2, ••• ,k). It is easily 

seen that equality holds in (2), (3) and (4). Therefore (1) is satisfied 

with equality. D 

THEOREM 7. SIMPLE PLANT LOCATION is NP-complete. 

PROOF. Let an instance of VERTEX COVER be given by G' = (V' , E' ) and k. The 

corresponding instance of SIMPLE PLANT LOCATION is defined by V 1 = V' , V 2 = E' , 

c .. = 1 if vertex v. is incidently with edge e., c .. = M (M very large) 
1] 1 ] 1] 

otherwise, f. = 1 for all i, !Bl= IEI + k. 
1 
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let J. (iEI) be sub-
l. 

Let I be a non-empty subset of {1,2, ••• ,lvl} and 

sets which form a partition of {1,2, ••• ,IEI} such that 

t_ f. ~ IEI + k. 
liEI ljEJi cij + 

l1.EI l. 

Then c .. 
l.J 

* M for all i EI, j E J .• Hence,c .. = 1 or equivalently edge 
l. l.J 

1:j is incident for all i EI, j E J,. Theretore 
l. 

with vertex v. 
l. 

V" = {v. I i € I} is a vertex cover of G' = (V' ,E'). Since r. I r. J 
l. l.€ JE i 

c. . = IE I , V" is a vertex cover of size at most k. 
l.J 

Let V" = {v1 ••• vp} be a vertex cover of G' = (V' ,E') with lv"I = p ~ k. 

Then each edge is incident with at least one vertex of V". We assign each 

edge to a vertex of V" incident with the edge. This defines a partition 

J 1 ••• Jp of {1,2, ••• ,IEI}. 

Hence r. Ir. J c .. + r. If,= IEI + p ~ IEI + k. D 
l.€ JE i l.J l.E l. 
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