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1. Introduction.

Consider the M/G/c queue with ¢ > 2 servers where customers arrive in
accordance with a Poisson process with rate A and the service times of the
customers are independent and identically distributed. Denote by S the
service time of a customer and let F be the probability distribution of the
service time. It is assumed that F(0) = O, ES2 < o and p < | where the

traffic intensity p is defined by
p = AES/C.

An infinite capacity queueing system is considered. Hence an arriving
customer joins the queue if he finds all c servers occupied or else he is
served immediately by one of the free servers. A server will never remain
idle if customers are waiting in the queue. We note that the analysis to
be given carries over to the finite capacity case.

The purpose of this paper is to derive various approximations for the
steady-state probabilities of the queue size. Although several good
approximation formulae for the mean queue size have been obtained (e.g.
Boxma, Cohen and Huffels (1979), Cosmetatos (1976) and Nozaki and Ross
(1978)), the paper by Hokstad (1978) seems to be the only one so far in
which approximations for the steady-state probabilities in the M/G/c queue
with general service times have been obtained. These approximations derived
by using the supplementary variable technique involve the Laplace transform
of the service time distribution. An exact method for the steady-state
probabilities in the M/D/c queue with deterministic times has been given by
Crommelin (1932). This method involves the solution of an infinite system
of linear equations and gives numerical difficulties when ¢ is large and
the traffic intensity is close to 1, cf. also Kuhn (1976). An exact analysis
for the steady—-state probabilities in the M/Ek/c queue with Erlangian service
times was given by Heffer (1969) and Mayhugh and McGormick (1968) by using
the phase method, cf. also Yu (1977). In view of the fact that the
computational work required by this analysis is too sophisticated and
extensive that it can be routinely done by practitioners, Hillier and Lo
(1977) obtained and tabulated computational results for a number of cases
of the M/Ek/c queue.

In this paper we shall present various approximations for the steady-

state probabilities in the M/G/c queue with general service times. These



approximations are computed by numerically stable recursive schemes which

can be easily applied in practice. Our numerical experience reveals that the
approximations for the cumulative steady-state probabilities are very

accurate with errors fypically below 57 and in many cases within 0-2%.

The resultiné'approximatibns for the délqy probgbiliéy either give the

Erlang delay probability or improve in many cases this widely used approxi-
mation for the delay probability for general service times. Further, the
resulting approximations for the mean queue size either coincide with or
differ only by a multiplicative factor tending to 1 as p » I from the accurate
approximation for the mean queue size given in Nozaki and Ross(1978).

In section 2 we shall present the main lines of our approach which uses
simple arguments from the theory of regenerative processes. This regenerative
approach was introduced 1in Hordijk and Tijms (1976) for the M/G/1 queue
and further studied in Federgruen and Tijms (1978) for the M/G/1 queue with
variable service rate. For clarity of presentation we first discuss the
M/D/c queue for which the analysis is facilitated by the fact that for the
case of deterministic service times a new service cannot be completed
earlier than services already in progress. Next in section 4 we treat the
M/G/c queue with general service times. Finally, in section 5 we discuss

some numerical results.
2. The regenerative approach.

We first introduce some notation. Denote the steady-state

probabilities by

p; = lim Pr{at time t there are i customers in the system}, i = 0.
t->o

Since p < 1, these limits exist and Z:=0 pi=1. Define the delay probability

P, and the mean queue size Lq by

d
c-1 o
Pd =1- I P and Lq = I (n—c)pn.
n=0 n=c

In general no explicit expressions for the steady-state probabilities can
be given except for the M/M/c queue. We write p; = pi(exp) and Pd = Pd(exp)

when F is an exponential distribution function with mean ES. Denote by



c—-1 k c
@.1) o= (3 QEO_, QFS) 4 -1

k=0 k! cl(1-p)
then

i i
AE .
(2.2) pi(exp) = S—I%l—- Q for 0 < i < ¢, pi(exp) = SAE%%E Q for i =2 ¢
cle
_ (Es)

(2.3) Pd(eXp) mﬂ

The right hand side of (2.3 ) is called the Erlang delay probability and
this probability is widely used as an approximation for Pd when the service
time has a general distribution. Numerical experience shows that the Erlang
delay probability is a good approximation, cf. Palm (1957) and Krampe,
Kubat and Runge (1973). A theoretical support for this empirical result may
be found in the generally valid formula (e.g. cf. Nozaki and Ross (1978))

c-1 c-1
(2.4) AES = I np_+c{l - I p},

n n

n=0 n=0
which relation can be directly verified from Little's formulae L = AW and
L = AW_.
q q

We shall now discuss the regenerative approach for obtaining a recursive

scheme by which approximations for the steady-state probabilities can be
computed. We need the following notation. Given that at epoch 0 a customer

arrives who finds no other customers in the system, define the following

random variables.

T = the next epoch at which a customer arrives who finds no other
customers in the system.

T.= amount of time during which i customers are in the system in the
busy cycle (0,T), i=0,1,...

N = number of customers served in the busy cycle (0,T).

N.= number of service completion epochs at which i customers are left

behind in the system in the busy cycle (0,T), i=0,1,...

By the theory of regenerative processes (cf. Ross (1970) and Stidham
(1972)), we have



ETi
(2.5) P: = FT for i = 0,

ET
Moreover, since Poisson arrivals see time averages, we have that p; is
equal to the long-run expected fraction of customers who find upon arrival
i other customers in the system (cf. Theorem 3 in Stidham (1972)). Further,
the long-run expected fraction of customers who find upon arrival i other
customers in the system is equal to the long-run expected fraction of
customers who leave upon service completion i other customers behind in the
system. By tﬁe theory of regenerative processes, this latter fraction is

given by ENi/EN and so

ENi
’ = —_—— 1 >
(2.6) P =y for i = 0.
Since EN/ET equals the long-run expected average number of customers served

per unit time, we have EN/ET = ) and consequently
(2.7) EN, = AETp, for i >o0.

Throughout the analysis to follow we make an approximation assumption.
. . ‘o . . . . *
In this assumption probability distribution functions F., j = 1 appear and
the various approximations to be discussed in the next sections depend on

the specification of these probability distribution functions.

AP?ROXIMATION ASSUMPTION. For any service completion epoch at which j
customers are left behind in the system, the smallestof the remaining service
times of the min(j,c-1) services already in progress has probability
distribution function F? independently of what occurred at previous service

completion epochs.
Define now the following quantities. For any n > I, let
An = the expected amount of time during which n customers are in the system
until the next service completion epoch given that at epoch 0 a

customer arrives who finds no other customers in the system.

For any j 2 1 and n 2 j, let



An,j = the expected amount of time during which n customers are in
the system until the next service completion epoch given that at
epoch 0 a service completion occurs and j customers are left
behind in the system where the smallest of the remaining service
times of the services already in progress at epoch 0 has

probability distribution function F;.

We are now in a position to state our basic recursion scheme. Using the

approximation assumption and Wald's equation, we have approximately

n
(2.8) ET = A + T EN.A . forn=1,2,...,
n n i=1 ] n,J

and so, by (2.5.) and (2.7.)

(2.9) anT = An +

n~MB

Ap.ETA_ . for n = 1,2,...
j=1 ] n,]

This approximative relation suggests the following recursion scheme.

n
(2.10) q, = A.n + jzlkqun,j for n = 1,2,...

Je can recursively compute the quantities QpsGgse-- from this relation.

Define q by

(2.11) = 1/x

9

and note that, by ET, = 1/A, we have pOET =4, We can now approximate the

0
steady-state probabilities P;> i =20 by

(o]

(2.12) pi(appr) = qi/niO q, for 1 =2 0.

Clearly, the approximations are determined by the quantities A,n and A
3

which in turn depend on the specification of the probability distribution.

hnl

. * . . . . .
functions nj. In the next sections we shall give various approximations

where we first discuss in section 3 the case of deterministic service times.

REMARK. The above approach carries over to the finite capacity case in which
the queueing system has only place for M < « customers. The relation (2.8 )

again applies for n = 1,...,M where however, the expressions for AM and AM i
H



need some obvious modifications. The relation (2.6 ) is not longer

valid. It now follows that the long-run expected fraction of entering
customers who find i other customers in the system equals ENi/EN for
0 < i < M. Hence pi/(l
= A(1

—pM) = ENi/EN for 0 < i < M. However, by EN/ET =
-pM), we have that also in the finite capacity case the relation (2.7.)
applies for 0 < i < M.

3. The M/G/c queue with deterministic service times.

We first define the well-known equilibrium distribution of F by

t
(3.1)  F_(t) =gz S (I-FG))dx, t = O.

ES 0

In this section we now consider the case where
F(t) =0 for t < Dand F(t) =1 for t = D

with D = ES. In this case Fe is the uniform distribution function on (0,D).
Since for deterministic service times a new service cannot be
completed earlier than sercices already in progress, we have

o

(3.2) A = [ (1-F(t))e
o9

-t )l D

-1
-t ()™
(n=-1)! €

de = DT

dt, n = 1.

O -

To explain this relation, note that (l—F(t))e—At(At)n—]/(n—l)! is the
probability that at epoch t the first service is still in progress and n

customers are in the system given that at epoch 0 a customer arrives who

finds no other customers in the system. Assuming that F;(D) = 1 for all j,
we find in the same way that
D n—j
* -at (At) . .
3.3 A . =7 1-F.(t))e ———— dt for > 1] and n > j.
(3.3) ni "] ( J( )) =) ] ]

We first consider the following seemingly reasonable choice for F;.

Case A. For all j =z 1, let

(I—t/D)min(j’C_]), 0

IA
ot
A
)

1-F} (2) = (- (e

0, t

1\
o



That is, we assume that at any service completion epoch the remaining
service times of the services still in progress are independent random
variables with F, as common probability distribution. A very similar
assumption was made in Molina (1927) (cf. also Syski (1960)) and in Nozaki
and Ross (1978). Note however, that in these references the assumption
about remaining service times was made for services still in progress at an
arbitrary epoch whereas we make an assumption for services still in progress
at a service completion epoch. It turned out that the approximations
resulting from Case A were rather unsatisfactory, in particular when the
traffic inteﬂsity p is close to 1. For that reason we considered also the

following two cases B and C.

Case B. For 1 £ j £ c-1, let
(1-t/D)3, 0 <t <D
*
1-F.(t) =
J( )
0, t > D,

and for j = c, let
0, O

IA

t < D/c
*
F.(t) =
J
1, t

[\

D/c.

Case B can be motivated by replacing the M/G/c queue with service time S by
an M/G/1 queue with service time S/c when all servers are occugied, cf.
also Hokstad (1977) and Stoyan (1977). Case C only differs from case B by

taking F:—l(t) =F(ct) with the same mean D/c as F:_](t) in Case B.

Case C. For 1 < j < c-2, let
((1-t/D)}, 0<t <D

1-F, (t) = 4
o

0, t > D,

and for j z c-1, let

(0, 0 <t <D/e
F;(t) - l
ll, t > D/c.



In the sequel we write q, = qA, L (appr) L (appr), (appr)
(appr), P (appr) = PA(appr) for case A, etc. However, we will suppress
the dependence of the quantities An . on the case considered. The next two

b
theorems specify the approximations resulting from the various cases.

THEOREM 3.1. Let Q be defined by (2.1 ). Then

n
A B 1 (AD
(3.4 9 T4, =5 (nf) , 0<n<c-1,
(q®, 0<n<ec2
c n
(3.5) q, = D
B c—1 -\t p
q. . {1- X/ (1-t/D) e ""dtle", n = c-1,
c-1
0
(3.6) z qﬁ = I qﬁ = I qg =-£§,
n=0 n=0 n=0

1 1
A (AD)*ig B (Mg 1
(3.7) L (appr) =— 5> L (appr) = -*———————~—{1+(1 p) (C )}
4 (c+1)!(1-p)° 4 9c.cl(1-p)2
C ()¢ ig
(3.8) L((appr) = -
L 2e.c!(1-p)

PROOF. Fix 1 < n < c-1. By (2.10.),

n-1
(3.9) (I—AAn’n)qn = An + jzl quAn,j'
For each of the cases A-C we derive from (3.3 ) by partial integration with
respect to the function e->\t that for j=1,...,n-1
- -4

where yj(n) for j=0,...,n-1 is defined by

D . n-j-1

(3D y.@ =/ (-g/pyd MO8

—— e dt,
0 (n-3-1)!

Observe from (3.2 ) that

(3.12) Yo(n) = A



Hence, by (3.9 )-(3.10 ),

1 .
- 1 -
qu{yj(n) ADYj—l(n)} for 1 €< n < c-1.

(3.13)  (I=MA_ )a_ =4+ z

Further, from (3.3 ) we derive by partial integration that for the cases

A-B,

(3.14) ]->\An’n =-% (j)'I)(l—t/D)n_le—>‘t = %‘Yn_](n) for 1 < n < c-1
and for case C
, (n/D)Yn_l(n) for 1 € n < c-2
(3.15) 1—)\An,n = D/e
e for n = c-1

Using (3.12 )-(3.15 ), we now get (3.4 )-(3.5 ) by induction. Next define
the generating function Q(x) by

n
qx for x| < 1.

Q(x) =

W™ 8

n=1

Using (2.10 ), (3.2 ) and (3.3 ) we derive for each of the cases A-C,
D

Qx) = x J ekt(x—l)dt + I
0 j=

D

ALxd T (=Fr ()t D
iy j

dt, |x| <1
1

from which we get after some algebra for each of the cases A-C,

c-1 1 1
(1-p)Q(1) =D + AD jil GG~ 2
and
2 c-1 D
(1-0)Q" (1) = D + -+ 4 5 ja e - D) v o) 1 eO-FL(D)de +
j=1 = 3] ¢ 0 ¢
o c—-1 D * N
+ 27 q. S t(F_()-F.(t))dt.
521 40 7]

Using these relations, (3.4 )-(3.5 ) and (2.11 ), we get after some

straightforward calculations the relations (3.6 )-(3.8 ).
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By Theorem 3.1. we have the remarkable result that P (appr)
=P, (appr) (exp) for 0 £ n < c 1 and P (appr) (exp) for
0 <n < c-2 Consequently both P (appr) and P (appr) are equal to P (exp)
However, P (appr) is a new approxlmatlon for the delay probability and is
equal to the Erlang delay probability minus a positive correction factor.
Although in case C the approximations for the steady-state probabilities
violate relation (2.4.), it turns out from numerical investigations that
(appr) 1mproves the Erlang delay probability approximation. We further
have that L (appr) is equal to the approximation for L_found by Molina
1) /(1-p%) . This

approximation is known to be rather poor, in particular when the traffic

(1927) except a multiplicative factor of (l-p

intensity p is close to 1. In view of the rather unsatisfactory results
we found for case A, we shall not discuss this case further. For case C
we have the remarkable result that LS(appr) is equal to the approximation
for Lq given by Nozaki and Ross (1978). This approximation for the mean
queue size is quite accurate. Further, we have that L (appr) is equal to
Lq(appr) except a simple multiplicative factor tendlng to 1l as p > 1.
Numerical experience with the approximations for the cases B and C will be
further discussed in section 5. We mention that we also investigated the
case in which F;(t) = F(min(j+1,c)t) for all j. However, this case yielded
unsatisfactory approximations.

We conclude this section by showing that for the cases A-C the
recursion (2.10) can be further simplified where we only discuss the

simplifications for cases B and C.
THEOREM 3.2, For all n = c,

D

B P - n n-j _ k
(3.16) @& =adb_, 5 -/l A T gy 5 B - pe T 2
n c-1 (n-c)! . k!
0 j=c k=0
and
D n-c+1
C c- 2 -2t (At)
.1 = ~
(3.17) q_ f (1-t/D) oo T 4t

n n-] _ k
bX qg(l— r e P ELO.
j=e=1 1 k=0

+

PROOF. Consider case B. We first note that for j >¢ and n > j,

D/C n-j n-j k
- At Q) (173 (1- g
(3.18) A ; /e n_j),dt—( IN(= 5 e =),

3 0 ( . k=0 k.!
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In the same way as (3.10) , we derive from (3.3) that for any n 2 c,

- _ 3 ‘ -
An,j = Yj(n) D Yj-l(n) for j=1,...,c-1
where yj(n) is again defined by (3.11.). Together this relation and (3.4.)
imply

ol g B

(3.19) An + I Aq.A = A

>
| P qc_]yc_l(n) for n 2 c.

]

By (2.10) , (3.18) -(3.19) we get (3.16) . In the same way we derive
(3.17) -.

4. The M/G/c queue with general service times.

For the case of general service times a new service may be completed
earlier than services already in progress at the beginning of this new
service. This phenomenon has no effect on the determination of the
quantities An,j for j = ¢ but complicates the determination of the
quantities An and An,' for j < c.

Let F_ be defined by (3.1). The approximations resulting from the
extension of Jase A in section 3 to general service times appeared to be
rather unsatisfactory and will not be further discussed. To give the
generalisation of case B in section 3, we first make the following
observation. If at epoch 0 a new service is started when j 2 c customers
are present and the smallest of the remaining service times of the c-—1
services already in progress at epoch O has probability distribution
function F;(t), then the probability that at epoch t both these remaining
c—1 services and this new service will be still in progress is given by
(l—F;(t))(l—F(t)). To generalize case B in section 2, choose now the

probability distribution functions F; such that
4.1) (]—F;(t))(l—F(t)) = 1-F(ct) for j = c.
That is, for any j = c, (]-F;(t))(]—F(t)) = Pr{S/c>t} for all t where S is

the service time in the M/G/c queue. Therefore we consider as generalization

of case B in section 3 the following case.
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Case B. For 1 < j < c-1, let
* ]
I—Fj(t) = (I—Fe(t)) for all t
and for j z c, let
(I—F;(t))(l—F(t)) = 1-F(ct) for all t.

Note that for case B the approximation assumption exactly holds for

the M/M/c quéue. We have the following results.

THEOREM 4.1. For case B,

n
(4.2) qB = l.ﬁlﬁgl_

n 3 = , 0 £ n < c-1

o n-c
_ r oo c-1,. =it (At)
43 d = dagy £ R )T AR i ar +
n o _ n—j
+ L A S (1-F(e))e Mt %l§lyr- dt, n > c,
j=c 3o n=3).
(4.4) I 4 =73g°
n=0
2 c—-1_.2 ©
B AT (AES ES Q 2cES
4.5 L(appr) = 2B 0 () B8 o (1op_(6))%ae - 1)),
q 2c.c!(1-p) ES® 0
PROOF. We can easily give expressions for the quantities Al’ An n and
b

An ; for j 2 c¢. By the same argument as given below (3.2), we find
3

(o]

4.6 A = (1-F(t)e Mdt,
0
_ * _ n —-At _
(4.7) An’n = é (1 Fe(t)) e "7dt =
1 n n-1 -\t
= 3\- ".m é (]"Fe(t)) (l-F(t))e dt, 1 <n < c-1,
T -t (>\t)n_j )
(4.8) An,j = é (1-F(ct))e =T n=j=>ec,

where the second equality in (4.7 ) is obtained by partial integration and

using (3.1 ). By (2.10), (4.6 ) and (4.7 ) with n=1 we have
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. B _ _ _
(4.9) q = Al/(l AAI,I) ES

b

which verifies (4.2 ) for n=1. The determination of An for n =2 1 and An 3
b
An ; for j < ¢ is more complicated by the fact that a new service started

9

during the execution of other services may be completed earlier than these
services. Put for abbreviation for any m = 0,1,..., k=1,2,... and t > 0O

m
t vy, V-1 Ay, )
A dyl... dyk(l_F(yl))"'(l_F(yk)) =
0

Observe that for any m > 0

dam k(t)
(4.10) T (]-F(t))am,k—l(t) for k 21, t > 0,

where we define

o))"
(4.11) a_ 0(t) == form >0, t > 0.
9

Now, fix j and n with 1 € j < n < c-1. Suppose that at epoch 0 there are j
customers in the system and j services in progress. Under the condition
that the smallest of the remaining service timese of these j services 1is
equal to t and that in (0O,t) there are started n-j new services at times

0 < typ < eee < tn_j < t, the expected amount of time that n customers are
in the system during (0,t] until the first service completion, is given by

£ -y
p (t) = é (l-F(y))(l-F(y+xn_j)).-.(l-F(y+xn_j+--+x2))e dy,

where X, = t.ot. for 1 £ i < n-j with t0=0. Using this observation, it is

now easily seen that for 1 < j < n < c-1,

o t t-x t=(x,+..4x__. )
A L=f ariw) 5o s b I e ax L x
mIog 3 70 o0 0 b
N {An_Je-A(X1+'"+xn-j)px(t)}.

Now, let o(t) be an increasing continuous function with a(0) = 0 and
a(w) <o, then for any probability distribution function G concentrated on

(0,»), we have by partial integration
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[=2] [=]

S oa(t)dG(t) = S (1-G(t)) da(t).
0 0

Using this relation, we find after some algebra that

_ - j
(1) A= ()

-\t \B .
] O,H_j(t)dt, 1 <j<nc<ec-l.

By taking j=1 and replacing FT(t) = Fe(t) by F(t) in this relation, we find

(4.13) A = [ (1-F(t))e
oo

-At 2\ 1
O,n—l(t) dt, 1 <n < c-1.

In the same way as (4.12) -(4.13) , we derive

(4.14) A I (I—Fe(t))Je—xtAc—Ja

c_j(t) dt, 1 <j<ec-1,nz=20,

At c—-1
(1-F(t))e a, C_](t) dt, n > 0.

(4.15) A = f
0 ’

n+c
We shall now verify (4.2) -(4.3) . Put for abbreviation, for 1 < n < c-1
and 0 < k < n-1,

o

(4.16) Yk(n) =/ (1- F, (t)) (1-F(t)) e
0

=-At. n -k-1

aO,n—k—l(t) dt.

Using (4.10) , we easily derive from (4.12) by partial integration with

. -\t
respect to the function e that

(4.17) An,j = Yj(n - ng j-l(n)’ 1 <j<nc<ec-l.

Further, observe that, by (4.13) and (4.7) ,

- - =B
(4.18) Yo(n) = An and 1-)A Y

< o=
n,n - ES (n), 1 <n < c-1.

n—1

By (2.10) and (4.17) ,

n—-1

(4.19) (I—AAn’n)qn =

[ ]

Kq (Y (n) - XEE Yj_l(n)), 1 <n<c-l

j=1

Using (4.9) , (4.18) =(4.19) we get (4.2) by induction. In the same way

as (4.17) we derive



(4.20) AL <=8, - 3 8, () for 1

ntc,] AES

where Sj(n) for 0 < j < c-1 and n = 0 is defined by

©o

.20 5@ =7 (l—Fe(t))j(l—F(t))e

0

Observe that

(4.22) An+c = Go(n) for n = 0.

By (4.2) , (4.20) and (4.22) ,

+ 5 At A = A

n+c 1 j “mtc,]

Together this relation, (2.10) , (4.8)

Next we consider the generalisation of Case C in section 3.

Case C. For 1 < j £ c-2, let

I—Fj(t)

Further, let

*
Fc—l(t)

F(Y_IESt) for all t,

where vy 18 defined by
4.23) v =7 (-t_(eN lar,
0 ¢

and for j = c, let

(I—F;(t))(l—F(t)) = 1-F(ct) for all t.

j £c-1, n

-)\tkc—_]—la

C_16C_1(n) for n > 0.

and (4.14)

using generating functions, we derive (4.4)-(4.5) from (4.2)-(4,3).

give (4.3)

(l—Fe(t))j for all t.

15

Note that in both cases B and C the probability distribution function
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F:_l(t) has the same mean Yy where y> ES/c. The cases B and C are identical

when F is exponential. Put for abbreviation,

ng=1-7 Q-F N Me™tde, n, =1 - f (1-F(y 'ESt))re Mat,
0 e 2 0
g, =7 (-F () U-6(e)de, g, =/ (I-F(y ESE)) (1-6(8))dt,
0 © 0

where the probability distribution function G is defined by

t
G(t) =/ F(t)ke_k(t_Y)dy, t > 0.
0

We can give N Nys El and 52 probabilistic interpretations. The quantity
gl represents the expected time until the first service completion epoch
given that at epoch 0 there are c-1 customers in the system and c-I
services in progress where the smallest of the remaining service times
of these services has survivor function (I—Fe(t))c—l. A similar
interpretation holds for &2. In view of these interpretations we may
expect that both El and 52 are approximately equal to vy in many cases, in
particular when c is sufficiently large. Note that 51 = 52 = vy = ES/c
when the service times are deterministic.

By making slight modifications on the proof of Theorem 4.1, we find
the relations below for qg and next, by using generating functions, we

get after some algebra the formula (4.24) below.

THEOREM 4.2. For case C,

n
qg = %.i&%%l_.’ 0 <n<ecl,
c _1 0t ™M
de—q A (e-1)! n, ’
C_C fmr(l—F () 2(1-F(t))e *E A ft (1-F(3)) O™ gy
an de-2 0 e 0 y (n-c)! y
n
+ z Aqq AC . > c,
j=C_] J n’J

where for all n = c,
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” -1 -, o o™
aC = -FGClESee A £ (-F(y)) X dy dt
n,c—1 0 0 (n-c)!
c -t )™ .
A n, j = f (1-F(ct))e —?E:?TT dt, c <] <nmn.
Moreover,
Gooby 3 Ol QEDTL o ES, o ES
: \qn (c—l)!nz(]—p) 1'°2 ¢ 2 21 /7

n=0

We omit the rather lengthy formula for Ls(appr). For both the M/D/c
queue and the M/M/c queue we have that Zm=0qg = 1/X82, but this relation
is not generally wvalid so that in general P C(appr) differs from P (exp) for
all 0 < n.< . c~1l. Since any. P (appr) for n>--¢- involwves-the-evaluation of
two double integrals, we have that Case C requires in general more
computational work than Case B. The recursion schem for Case B can be
rather easily used in practice. Another simple recursion scheme applies
to the following case that was derived from the recursion scheme for Case B
by replacing in (4.3) the survivor function (l-Fe(t))C_](l—F(t)) by 1-F(ct)

in accordance with (4.1). More precisely we define

Case D. Let the sequence {qg, n 2 0} be given by

D _ 1 (AES)"

(4.25) I s 0 <n < c-l
D_.,D . -t )™ €
(4.26) q ch_] é (1-F(ct))e =T dt +
n L n=j
D . -t (At)
+ E qu S (1-F(ct))e _?E:EST.dt’ n==c.

j=c 0

Note that when F is exponential Case D is identical to Case B. Using

generating functions, we easily derive

THEOREM 4.3. For Case D,

D _ I
(4.27) x qn = oL
n=0
2 c-1_.2
\
(4.28) Lz(appr) _AOEs)” ES"

2c.c!(1—p)2



18

We easily obtain from (4.26) that for |x| < 1

(4.29)  F ) (appr)x™C = pg_, (appr) (1-F L0170 /) )/ F (L(13) /) -x)
n=c

where % denotes the Laplace-Stieltjes transform of F. Now, by (4.25),
(4.27), (4.29) and the relations (17)-(19) in Hokstad (1978), we find that
the approximations for Case D agree with those obtained in Hokstad (1978)
by a completely different approach which requires that F has a density.
Clearly the recursion relation (4.26) is much better suited for
computationai purposes than the representation (4.29) found in Hokstad
(1978).

We further have the remarkable result that L (appr) is equal to the
approximation for Lq given by Nozaki and Ross (1978) Note that L (appr)

is equal to this approximation except a multlpllcatlve factor whlch tends
to 1 as p > 1. We further have that P (appr) P (appr) =P, (exp) for
0 < n £ c-1 so that both P (appr) and pD (appr) are equal to the Erlang

delay probability. For case C we have as approximation for the delay

probability
Bin,—n,) c-1
_ C _ e 1 2”7 (AES)
(4.30) Pd(appr) = BPd(eXp) +1-8 m (=) " 2,
where
_ (AES) _ES \ _ _ES 47!

Note that for deterministic service times g] = 52 = ES/c and so B = 1.
5. Numerical results.

In this section we discuss our numerical experience with the various
approximations. We.consider both the M/D/c and M/Ek/c queueing systems for
which exact numerical results for the steady-state probabilities are
available. The tables 5.1 and 5.2 concern the M/D/c queue where we have
chosen the service time D=1. For the delay probability table 5.1 compares
the Erlang delay probability approximation (first number in box), the

approximation Pg(appr) (second number in box) and the exact value (third
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number in box) for a range of values for p and c. The exact values were
taken from Kuhn (1976) who computed the exact values by solving the system
of linear equations given by Crommelin (1932). It turns out that PC(appr)
which is below P (exp) considerably improves the Erlang delay probablllty
approximation P (exp) in all cases considered. The approximation P (appr)
for the delay probablllty is very accurate with errors typically O 5%

for all values of p when ¢ < 50 and with errors as large as 7-97% for p close
to 1 when ¢ = 100 which latter error percentage is still within the '
maximum tolerance used in most practical design problems. For the cumulative
steady-state probabilities Z?=O Ps with n 2 c-1, table 5.2 compares the
approximation of Case B (first number in box), the approximation of Case C
(second number in box), the approximation of Case D (third number in box)
and the exact value (fourth number in box). The exact values were found by
solving the system of linear equations given by Crommelin (1932). It is

by no means a simple matter to solve these equations in particular when c

is large and p is very close to 1 (cf. also Kuhn (1976)) whereas our

various recursion schemes can be easily applied for any p and c. Our
numerical results reveal that Case C gives the best approximation for

? oP; for all n = c—-1 when c < 20 whereas for c > 20 Case C gives the best
approximations for $0 1=0Pi with c¢-1 < n <c+2 and Case B gives the best
approximations for Z i=0Pi with n > c+2. These best approximations for
g j=0Pi’ > c—-1 are very accurate with errors below 3% when c < 50.
Further, our numerical results show that for the M/D/c queue Lq(appr) gives
a better approximation for the mean queue size than Lq(appr) for all values
of p when ¢ > 20 and for lower values of p when ¢ < 20.

The tables 5.3 and 5.4 concern the M/Ek/c queue where we have chosen
the arrival rate A=1. Exact numerical values for the steady-state
probabilities have been obtained in Hillier and Lo (1971) for 19 (k,c)
combinations. For the delay probability table 5.3 compares the Erlang delay
probability approximation (first number in box), the approximation Pg(appr)
(second number in box) and the exact value (third number in box) for a
number of these (k,t) combinations and several values of p. For all the
(k,c) combinations considered in Hillier and Lo (1971), both the Erlang
delay probability approximation and the approximation Pg(appr) turned out
to be extremely accurate for all values of p with errors typically below
37 and in many cases within 0-17. For the case of k 2 the Erlang delay
probability approx1mat10n is slightly better than P (appr) and for k 2 3

the approximation P (appr) improves in most cases the Erlang delay
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probability approximation. For the cumulative steady-state probabilities
Z?=0pi with n 2 c-1 table 5.4 compares the approximation of Case B (first
number in box), the approximation of Case D (second number in box) and the
exact value (third number in box). For all the (k,c) combinations considered
in Hillier and Lo (1971), both the approximations of Case B and those of
Case D turned out to be very accurate with errors typically below 37 and in
many cases within 0-1%. We found for the (k,c) combinations considered that

Case D gives slightly better approximations for Z 1 with ¢=1 < n £ c+2

=0
than Case B and that for I- p. with n > c+2 the average of the approximation

=071
of the Cases B and D is pr;cgically equal to the exact value. Further, we
believe that for c not too small (c = 20) Case B gives the best
approximations for iy i=0P; with n > c¢+2. This is supported by the
observation that our numer1ca1 results indicate that Lq(appr) gives a
better approximation for the mean queue size than Lq(appr) for all values
of p when ¢ is not too small (i.e. ¢ = 10 when k=2) and for lower values of
p when c is small. In view of the accuracy of the approximations of the
Cases B and D, and the fact that for Z Op , N > c the evaluation of an
approximation requires in Case C more computat10na1 work than in the
Cases B and D, it will suffice in many cases to evaluate only the
approximations of the Cases B and D. We emphasize that for the M/Ek/c
queue the various recursion schemes are computationally feasible for any
k and c whereas the computational approach used in Hillier and Lo (1971)
proved only to be computationally feasible for a restricted number of
(k,c) combinations.

For service time distributions with variation.coefficient larger than I
no exact numerical results for the steady-state probabilities seem to be
known, However, limited simulation results for the hyperexponential
service time distribution indicate that for this distribution the various
approximations are also accurate.

We conclude by remarking that future plans concern an extensive
computational projcct for approximations for steady-state probabilities

in multi-server Ek/G/c queueing systems with Erlangian arrival times.
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Table 5.1.

Delay probabilities (Erlang, Case C, Exact) for the M/D/c queue.

o\c 2 3 4 5 10 15 20 30 40 60 80 100 200
.1 .01818 .00370 .00079 .00018
.01791 .00362 .00077 .00017
.01777 .00361 .00078 .00017
.2 .06667 .02466 .00958 .00383
.06489 .02369 .00914 .00364
.06449 .02362 .00917 .00368
.3 .13846 .07003 .03705 .02014 .00116
.13359  .06647 .03484 .01883 .00107
.13358 .06648 .03495 .01897 .00110
A .22857 .14118 .09070 .05970 .00881 .00149 .00026
.21936 .13303 © .08461 .05534 .00806 .00135 .00024
.22082 .13380 .08504 .05565 .00823 .00140 .00025
.5 .33333  .23684 .17391 .13037 .03611 .01129 .00373 .00044
231927 .22269 .16188 .12059 .03297 .01026 .00338 .00040
.32326 .22527 .16329 .12134 .03315 .01042 .00348 .00042
.6 .45000 .35474 .28704 .23615 .10130 .04823 .02413 .00653 .00187 .00017
43167 .33447 .26815 .21936 .09301 .04411 .02203 .00595 .00170 .00015
.43869 .33983 .27146 .22116 .09255 .04381 .02196 .00601 .00174 .00016
.7 57647 .49234 .42865 .37784 .22173 14115 .09356 .04392 .02168 .00572 .00159 .00046
.55579 .46778 .40415 .35457 .20612 .13080 .08657 .04057 .02001 .00527 .00147 ,00042
.56537 .47609 .40995 .35812 .20432 .12827 .08443 .03951 .01958 .00523 .00148 .00043
.8 J71111 64719  ,59643  ,55411 ,40918 .31919 ,25608 .17286 .12118 .06339 .03479 .01965 .00138
.69153  .62260 .57059 .52833 .38754 .30164 .24173 ,16300 .11421 ,,05971 .03276 .01850 .00130
.70190 .63254 .57828 ,53362 .38472 .29554 .23456 15616 .10864 .05652 .03107 .01762 .00127
.9 .85263 .81706 .78775 .76249 .66873 .60263 .55077 .47141 41156 .32456 .26307 .21694 .09447
.83931 .79959 .76862 .74265 .64905 .58422 .53364 .45649 .39843 31411 .25457 .20991 .09140
84711 .80769 .77544 74783 .64686 .57713 .52327 .44232 38248 .29738 .23864 .19534 .08368
.95 { .92564 .90701 .89142 .87780 .82559 .78696 .75540 .70453 .66364 .59904 .54835 .50646 .36526
.91798 .89676 .88000 .86577 .81282 .77434 .74307 .69283 .65253 .58893 .53906 .49785 .35903
- - - - - .76949 .73533 .68082 .63749 .56995 .51774 .47512 .33513
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Table5.2. Cumulative steady-state probabilities

c=5

c—1

Cc

c+1

c+2

c+3

c+4

(Case B, Case C, Case D, Exact) for theM/D/c queue

c+5

c+6

c+7

15

20

25

p=.9

.23751
.25735
.23751
.25217

c—1

.34132
37114
.36117
.36352

Cc

44797
.47825
47777
47054

c+1

54497
.57178
.57525
.56544

c+2

.62791
.65043
.65472
.64565

c+3

.69681
.71533
.71933
71177

c+4

.75331
. 76844
.77184
. 76571

c+5

.79941
.81172
.81453
.80957

c+6

.83692
.84693
.84923
.84521

c+7

.91239
91777
.91901
.91685

35

.96890
.97081
.97125
.97048

40

.98896
.98964
.98980
.98952

45

.49208
.50804
.49208
.52066

c—1

.55849
.58355
57445
.58709

Cc

.62707
.65372
.65213
.64875

c+l

.69041
. 71496
.71706
.70450

c+2

. 74545
.76669
.77000
.75373

c+3

.79179
.80962
.81303
.79633

c+4

.83019
.84492
.84801
.83258

c+5

.86172
.87380
.87645
.86299

c+6

.88749
.89735
.89957
.88823

c+7

.93951
. 94483
.94605
.93987

60

.97853
.98041
.98085
.97869

65

.99238
.99305
.99320
.99244

70

.63614
.64781
.63614
.66446

(2,2)

.68347
.70189
.69515
.70938

(2,4)

.73238
.75207
.75079
.75051

(2,6)

.77761
.79585
.79731
.78758

(2,8)

.81699
.83284
.83523
.82054

(2,10)

.85021
.86356
.86606
.84945

(3,3)

.87777
.88883
.89112
.87450

(3,4)

.90042
.90952
.91149
.89597

.3. Delay probabilities (Evrlang, Case C, Exact) for the

(3,5)

.91896
.92639
.92805
.91418

M/Ek/c

(4,2)

.95642
.96043
.96135
.95284

queue

(4,3)

.98453
.98595
.98628
.98321

(6,2)

.99451
.99501
.99513
.99406

(8,2)

p=.99

.33333
.33239
.33083

.85263
.85269
.85117

.98503
. 98504
} .98486

.17391
.17378
.17105

. 78775
.78782
. 78435

.97791
.97790
97748

.09914
.09929
.09703

.74013
.74126
.73546

097242
.97257
97179

.05904
.05921
.05762

.70153
.70362
.69596

.96780
.96811
.96700

.03611
.03624
.03518

.66873
.67163
.66248

.96374
.96419
.96279

.23684
.23567
.23213

.81706
.81588
.81309

.98117

.98100

.98069

17391
. 17345
. 16946

.78775
. 18745
. 78248

97791
.97784
.97724

. 13037
. 13028
. 12650

.76249
.76311
.75617

.97503
.97509
.97420

.33333
.33009
.32842

.85263
.85034
.84981

.98503
.98474
.98470

.23684
.23525
.23212

.81706
.81538
.81309

.98117
.98093
.98069

.33333
.32925
.32723

.85263
.84933
.84916

.98503
.98461
.98462

.33333
.32883
.32651

.85263
.84880
.84877

.98503
. 98454
.98458
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Table 5.4. Cumulative steady-state probabilities (Case B, Case D, Exact) for the M/Ek/c queue.

c—1 c c+1 c+2 c+3 c+4 c+5 c+6 c+7 c+8

.66667 .86442 ,95114 .98349 .99459 .99825 .99944 .99982 .99994 .99998
.66667 .87472 ,95787 .98635 .99562 .99860 .99955 .99986 .99995 .99999
.67349 .87077 .95440 .98483 .99508 .99842 .99949 .99984 .99995 .99998

.86963 .94127 .97538 .99014 .99616 .99853 .99944 .99979 .99992 .99997
.86963 .94628 .97928 .99219 .99708 .99891 .99959 .99985 .99994 .99998
.87350 .94386 .97654 .99058 .99632 .99859 .99946 .99980 .99992 .99997

.96389 .98304 .99239 .99669 .99859 .99941 .99975 .99990 .99996 .99998
.96389 .98420 .99337 .99726 .99887 .99954 .99981 .99992 .99997 .99999
.96482 .98352 .99252 .99668 .99856 .99938 .99974 .99989 .99995 .99998

c—-1 c c+l c+2 c+3 c+4 c+5 20 25 30 40 50

. 14737 .26560 .38158 .48386 .57048 .64286 .70311 .97314 .98934 .99577 .99933 .99989
< 14737 .27492 ,39438 .49620 .58119 .65186 .71060 .97382 .98961 .99588 .99935 .99990
<15123 .27375 .39056 .49215 .57764 .64889 .70814 .97359 .98952 .99504 .99934 .99990

.23751 .32974 .41927 .50054 .57189 .63359 .68660 .93457 .97011 .98634 .99715 .99941
.23751 .33892 .43286 .51473 .58504 .64521 .69666 .93669 .97108 .98679 .99724 .99942
.24383 .33904 .42851 .50873 .57892 .63959 .69171 .93563 .97059 .98657 .99720 .99941

.33127 .40684 .47882 .54443 .60284 .65420 .69911 .85027 .92552 .96295 .99083 .99773
.33127 .41319 .48846 .55485 .61281 .66327 .70716 .85434 .92755 .96396 .99108 .99779
.33752 .41452 .48572 .55000 .60717 .65759 .70181 .85139 .92607 .96323 .99090 .99775

p=.99 jc-1 c c+1 c+2 c+3 20 30 50 100 150 250 350

.01497 .02915 .04523 .06181 .07832 .29475 .41000 .58709 .83081 .93067 .98836 .99805 .
.01497 .03033 .04708 .06388 .08043 .29637 .41137 .58804 .83120 .93083 .98839 .99805
.01542 .03024 .04661 .06329 .07982 .29591 .41098 .58777 .83109 .93079 .98838 .99805

5 1.02497 .03704 .05032 .06405 .07787 .23026 .33789 .51012 .76932 .89138 .97592 .99466
3; ={.02497 .03830 .05239 .06650 .08044 .23250 .33982 .51154 .76999 .89169 .97599 .99468
.02580 .03844 .,05191 .06568 .07948 .23160 .33905 .51097 .76972 .89157 .97596 .99467

.03626 .04732 .05913 .07125 .08343 .16532 .26995 .44150 .71411 .85366 .96165 .98995
.03626 .04828 .06075 .07319 .08551 .16735 .27172 .44285 .71480 .85401 .96175 .98998
.03721 .04866 .06053 .07257 .08465 .16626 ..27076 .44212 .71443 ,85382 .96170 .98996
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