
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
{DEPARTMENT OF OPERATIONS RESEARCH)

BW 112/79

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN

MINIMIZING MAXIMUM LATENESS
IN A TWO-MACHINE OPEN SHOP

Preprint

~
MC

SEPTEMBER

2e boerhaavestraat 49 amsterdam

W-6U.0Ttil:'.£cr:.. M;\f Hc P:l:\ r t:>Cl·l i,.;i;.il 1, ivlv,
At111STE.RD,'u\\

P.tunte.d a.t .the. Ma.thematic.al Ce.n.tlc.e., 49, 2e. Boell.ha.avu.tluult, Am-0.tell.dam.

The. Ma.thematic.al Ce.n.tlc.e., 6ou.nde.d .the. 11-.th 06 Fe.b11.u.aJty 1946, ,if., a. n.on.
p11.06U in.J.i.:f.i.tl.Lti..on. aiming a.t .the. pll.omo:Uon. 06 pllll.e. ma.thema.tic.J.i a.n.d i:t6
a.pp.U.c.a.tionJ.i. I.t ,if., .6pon.J.io11.e.d by :the. Ne.:theJri.a.n.dJ.i Govell.n.me.nt :thfl.ou.gh :the.
Ne.:theJri.a.n.dJ.i 011.ga.n.iza.tion. 6011. :the. Adva.n.c.eme.nt 06 PWte. Ru e.a.11.c.h (Z. W. 0) •

1980 Mathematics Subject Classification: 90B35, 68C15, 68C25

MINIMIZING MAXIMUM LATENESS IN A TWO-MACHINE OPEN SHOP

E.L. LAWLER

University of California, Berkeley

J. K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

ABSTRACT

We consider the problem of scheduling independent jobs in a two-machine open

shop so as to minimize the maximum lateness with respect to due dates for

the jobs. For the case in which preemption is allowed, a linear-time algo

rithm is preisented. For the nonpreemptive case, NP-hardness is established.

KEY WORDS & PHRASES: two-machine open shop, due dates, maximum lateness,

preemptive scheduling, nonpreemptive scheduling, linear-time algorithm,

NP-hardness.

NOTE: This report is not for review; it has been submitted for publication

in a journal.

1

1. INTRODUCTION

Consider the following open shop scheduling problem. There are n independent

jobs J 1 , ••• ,Jn and two machines M1 ,M2• Each job Jj consists of two

one of length aj which is to be executed on machine M1 and one of

operations,

length b.
J

which is to be executed on

in which the operations of

machine M2 • There is no restriction on the order

a job are to be performed - hence the term open

shop. Each job can be processed on at most one machine at a time, and either

machine can process at most one operation at a time. No processing can occur

prior to tim.e zero.

A schedule is said to be nonpreemptive if each operation is executed

continuously from start to completion. A schedule is preemptive if the ex

ecution of any operation may arbitrarily often be interrupted and resumed

at a later time; the periods in which the operations of a given job are

performed may be interleaved in time.

Each schedule defines a completion time C. for each J .• Given a due
J J

dated. for each J., we define its lateness L. = C.-d .• Common optimality
J J J J J

criteria involve the minimization of the maximum completion time C = max
maxl<"< {c.} or the maximum lateness L = maxl<"< {L.}.

-J-n J max -J-n J
In this paper we shall be concerned with the minimization of L in max

a two-machine open shop. We present a linear-time algorithm for the pre-

emptive case and, by contrast, we establish NP-hardness for the nonpreemp

tive case. our algorithm presupposes that the jobs are ordered according

to nondecreasing due dates; if this is not the case, its running time would

be O(n log n) rather than O(n). An O(n2) algorithm for this problem was

obtained in [2]. our NP-hardness result is "strong" in the sense that it

holds even with respect to a unary encoding of the problem data [4]. It

should be apparent that both results also apply to the minimization of C max
in a two-machine open shop subject to arbitrary release dates for the jobs.

In the literature on open shop scheduling, most attention has been

paid to the minimization of C in the absence of release dates and due max
dates. In .the case of two machines, there is no advantage to preemption,

and there exists a linear-time algorithm to find an optimal nonpreemptive

schedule [6;7]. In the case of m machines, the preemptive problem can be

solved in polynomial time for arbitrary m [5;6;8], whereas the nonpreemptive

2

problem is binary NP-hard for any fixed m ~ 3 [6] and unary NP-hard for

arbitrary m [7].

The most general preemptive problem in this context is the minimiza-

tion of L in an m-machine open shop subject to release dates. This prob-
max

lem can be formulated as a linear program [2]. Thus, the recent development

of a polynomial-time algorithm for linear programming [1;3] is of interest

to the area of open shop scheduling as well.

3

.2. THE PREEMPTIVE CASE

We shall first describe a procedure to determine the existence of a schedule

with value L $ O; that is, we will view the due dates as absolute dead-max
lines and test these deadlines for feasibility. We shall then modify this

procedure to compute the minimum value of L • We shall also show how to
max

construct a schedule with that value. Finally, we shall determine the maxi-

mum number of preemptions introduced into such a schedule.

Testing for feasibility

We assume that the jobs are indexed according to their due dates, i.e.,

d 1 $ $ dn, and define Aj = It=l ~, Bj = li=l bk (j = 1, ••• ,n). We now

view the due dates as absolute deadlines and ask whether or not there exists

a feasible schedule.

The jobs are scheduled in order of nondecreasing deadlines. Suppose

that J 1, ••• ,Jj-l have been successfully scheduled and that Jj has to be

scheduled next. Let x. (y.) denote the total amount of time prior to d.
J J J

that M1 (M2) is idle while M2 (M1) is busy, and let zj denote the total

amount of time prior to dj that M1 and M2 are simultaneously idle. Note

that x.,y.,z. are not independent, inasmuch as
J J J .

x.+z. = d.-A. 1 ,
J J J J-

y.+z. = d.-B. 1 •
J J J J-

The minimum amount of processing of the operation of Jj on M1 (M2) that

must be done while both machines are available is max{O,a.-x.}
J J

(max{O,bj-yj}). It follows that Jj can be successfully scheduled if and

only if

max{O,a.-x.} + max{O,b.-y.} $ z .•
J J J J J

This inequality is equivalent to the four inequalities

0 $ z.,
J

a.-x. $ z.,
J J J

(1)

(2)

4

bj-yj

a . -x . +b .. -y .
J J] J

::;; Z, I

J
::;; z .•

J

Discarding the first of these inequalities as vacuous and applying (1) and

(2) to the re~maining ones, we see that J. can be successfully scheduled if
J

and only if each of the following feasibility conditions holds:

A. ::;; d., (3)
J J

B. ::;; d., (4)
J J

A.+B. ::;; 2d .-z .. (5)
J J J J

These inequalities also tell us that in order to obtain a feasible schedule

we should attempt to minimize the value of z. at each iteration. It is eas
J

ily seen that the smallest possible values of z 1 , ... ,zn are defined recur-

sively by

z. = d.-d. 1+max{0,z. 1-a. 1-b. 1 }
J J J- J- J- J-

(j = 2, ••• , n) • (6)

We have thus arrived at an O(n) procedure to determine the existence of a

feasible schedule: for j = 1, .•. ,n, compute z. by (6) and test (3), (4) and
J

(5). There exists a feasible schedule if and only if all these tests succeed.

Minimizing maximum lateness

We propose to determine the minimum value of 1max by carrying out a

parametrized version of the preceding computation. Each d. is replaced by
J

d.+L, where Lis a free parameter. The smallest value of L for which there
J

exists a feasible schedule with respect to the deadlines d.+L is evidently
J

equal to the minimum value of L that can be achieved with respect to the
max

original due dates d ..
J

Let us first rewrite the z., as defined by (6), for deadlines d.+L in
J J

such a way that L does not appear in the recursive part of the expression.

We claim that

z. = max{d.+L-A. 1 -B. 1 ,z'.} (j = 1, •.. ,n),
J J J- J- J

(7)

where AO BO = 0 and

zi = -oo, z~ = d.-d. 1+max{0,z'. 1-a. 1-b. 1}
J J J- J- J- J-

(j = 2 , ••• , n) •

This is easily proved inductively: (7) is clearly true for j = 1, and

assuming (7) is true for j-1, we get

z. = (d.+L)-(d. 1+L)+max{0,max{d. 1+L-A. 2-B. 2 ,z~ 1}-a. 1-b. 1}
J . J J- J- J- J- J- J- J-

= max{d.+L-A. 1-B. 1 ,z~}.
J J- J- J

(8)

By substituting (7) into (5), we can write the feasibility conditions (3),

(4) and (5) for deadlines d.+L as follows:
J

A. :s; d.+L,
J J

B. :s; d.+L,
J J

a.+b. :s; d.+L,
J J J

A.+B. :s; 2(d.+L)-z~.
J J J J

The smallest value of L for which these inequalities are satisfied for j =

1, .•. ,n is given by

* L = max . { max{ A . , B . , a . +b . , ½ (A . +B . +z ~) }-d . }.
J J J J J J J J J

(9)

We have thus obtained an O(n) procedure to determine the minimum value of

L : for j = 1, •.. ,n, compute
max

We note that, in the case

z'. by (8), and compute L* by (9).
J

that all d. = 0, (9) reduces to
J

* L = max{A ,B ,max.{a.+b.}},
n n J J J

which is the minimum value of C as given in [6;7].
max

Constructing an optimal schedule

*

5

Suppose we have determined L as above and we now wish to actually construct

a schedule with that value, i.e., a feasible schedule with respect to dead

* lines d.+L. We will show how this can be accomplished in linear time as
J

well.

At the time that J. is to be scheduled, the available idle time on the
J

two machines has the following structure (cf. Figure 1). There are various

intervals during which M1 is idle but M2 is busy, and other intervals in

6

which the reverse is true; these intervals have total lengths x. and y.
J J

respectively. The last of them is of the latter type and is denoted by Yj.

This interval is immediately followed by a single interval Z. of length z.,
J J

* just prior to d.+L, during
J

which both M1 and M2 are idle.

We schedule J. in such
J

a way that this structure is preserved at the

time that J. 1 is to be scheduled. Recall that we must utilize as much as
J+

possible of the interval Z. in order to minimize z. 1 . This period can be
J J+

used in its entirety if and only if a.+b. ~ z .• If a.+b. < z., we schedule
J J J J J J

J. as indicated schematically in Figure 2. If a.+b. ~ z., we attempt to
J J J J

perform as much as possible of the operation of Jj on M1 during zj. The

maximum amount of this operation that can be performed during Z. is given
J

by

aJ~ = min{a.,z.,z.-(b.-y.)}.
J J J J J

In each of the three cases a~= a., a~= z., a'.= z.-(b.-y.), we schedule
J J J J J J J J

Jj as indicated schematically in Figure 3. The reader should verify that

the resulting idle time structure facing Jj+l satisfies the above descrip

tion.

All the intervals during which either M1 or M2 is available, except Yj,

can be maintained in a LIFO stack. It should be apparent how the necessary

operations can be implemented without further comment. The analysis of the

number of preemptions below will confirm that our schedule construction

procedure requires O(n) time.

The number of preemptions

In order to analyze the maximum number of preemptions created, we introduce

the notion of an active period (cf. [8]). An accive period is a maximal

interval of time during which a machine continuously performs the same oper

ation. The number of preemptions in a schedule is equal to the number of

active periods in excess of the number of operations.

Consider the situation immediate·ly after J. has been scheduled. Let
J

there be p, active
J

p . +o . • Examination
J J

periods and o. intervals in the two stacks, and let•·=
J J

of our schedule construction procedure shows that

7

Y---Z.
j j

d .+L*-z. d .+L*
j j j

Figure _1 Typical arrangement of idle intervals.

M1D CJ
M2 D □
Figure 2 Schedule for J. if a.+b. < z .•

J J J J

M1D

M2 D [I
CJ

(a) a~ = a ..
J J

M1D

D □ M2

{b) a~ = z .•
J J

M1[1
I M2

(c) a~ = zj-(bj-yj).
J

Figure 3 Schedule for J. if a.+b. ~ z .•
J J J J

8

'[. ~ '[. 1+4
J J-

(j > 1),

so that -r. ~ 4j-1. It is also easily seen that
J

P . ~ P . l +er . l + 2 = T . l + 2 J J- J- J-
(j > 1),

and hence p. ~ 4j-3 for j > 1.
J

It follows that the number of preemptions introduced into an optimal

schedule cannot exceed p -2n ~ 2n-3 for n > 1. It should be evident from
n

this result that our schedule construction procedure requires O(n) time.

Although our algorithm can actually produce schedules with 2n-3 pre

emtions, it remains an open question whether this bound is tight. We have

been unable to find problem instances that require more than 2n-5 preemp

tions.

Comments

It has already been observed that our algorithm can also be applied to mini-

mize C subject to release dates for the jobs. Moreover, our techniques max
can be adapted to determine the existence of a feasible schedule with re-

spect to both release dates r. and deadlines d., provided that the inter-
] J

vals [r.,d.] are nested (i.e., for all j,k, [r.,d.]n[rk,dk] E {fll,[r.,d.],
J J J J J J

[rk,dk]}). This problem is solved by working from the innermost intervals

in the nesting outward; we leave details to the reader.

Our analysis allows no direct extension to the minimization of L
max

on three machines. In that case, the situation just before J. is to be
J

scheduled cannot be characterized by a single variable z. and an optimal
J

scheduling rule is not obviou~ at all. Nevertheless, the linear programming

formulation mentioned above proves that this problem is solvable in poly

nomial time.

A related two-machine open shop problem involves the minimization of

the weighted number of late jobs. By means of relatively straightforward

dynamic programming techniques, it is possible to solve this problem by a

pseudopolynomial algorithm in O(nd3) time, provided that the data a.,b.,d.
n J J J

are integers.

We note that in preemptive scheduling it is often expedient to consider

9

the intervals between adjacent release dates or deadlines in succession.

In this paper, we have scheduled the jobs at each iteration in such a way

that the distribution of the remaininq machine capacities carried over to

the next iteration is optimal. An alternative approach would be to schedule

the jobs such that the distribution of their remaining execution require

ments is always as favorable as possible. Perhaps the latter strategy would

have to be followed in order to obtain similar results for a larger class

of problems.

10

3. THE NONPREEMTIVE CASE

In this section we complement the result of the previous section by estab

lishing NP-hardness for the minimization of Lmax in a two-machine open shop

when no preemptions are allowed. This result will be obtained by specifying

a polynomial transformation from the following NP-complete problem [4]:

3-PARTITION: Given a set S = {1, .•. ,3t} arrl positive integers

p 1 , ••• ,p3t,q with t < pj < 3 for all j ES and ljES pj = tq,

does shave a partition into t disjoint 3-element subsets s 1 , ••. ,st

such that I. S p. = q for i = 1, ••. ,t?
JE i J

Given any instance of 3-PARTITION, we define an instance of the two-machine

open shop problem as follows:

n = 4t;

aj = 0, bj = pj, dj = tq+t (j ES);

a3t+1 = O, b3t+1 = l, d3t+1 = l;
a3t+i = q+l, b3t+i = 1, d3t+i = (i-l)q+i (i = 2, .•• ,t).

We claim that 3-PARTITION has a solution if and only if there exists a non-

preemptive schedule with value L ~ 0, i.e., in which no job is late. max
Let us first investigate when the jobs J 3t+i (i = 1, ••• ,t) can be exe-

cuted in such a schedule. Clearly, J 3t+l has to be processed on M2 during

the interval [0,1]. In order for J 3t+2 to meet its due date, it has to

occupy M1 during the interval [O,q+l] and M2 during the interval [q+1,q+2].

A straightforwa~d inductive argument shows that J 3t+i has to be executed

on M1 during [(i-2)q+i-2, (i-l)q+i-1] and on M2 during [(i-l)q+i-1,(i-l)q+i],

for i = 2, ••• ,t (cf. Figure 4).

This leaves t intervals [(i-l)q+i,iq+i] (i = 1, ••• ,t), each of length

q, for the execution of the jobs Jj (j ES) on M2. It follows that there

exists a schedule with value L ~ 0 if and only if the jobs J. (j ES)
max J

can be divided into t groups, each containing 3 jobs and requiring q units

of processing time on M2 , i.e. , if and only if 3-PARTITION has a solution.

11

0 1 q+l q+2 ,tq+t

Figure 4 Illustration of the transformation.

12

ACKNOWLEDGMENTS

This research was partially supported by NSF Grant MCS76-17605 and by NATO

Special Research Grant 9.2.02 (SRG.7).

REFERENCES

1.
V

L.G. CHACIJAN (1979) Polynomial'nyr algoritm v lineinom programmiro-

vanii (A polynomial algorithm for linear programming; in Russian).

Doklady Akad. Nauk USSR 244,1093-1096.

2. Y. CHO, S. SAHNI (1978) Preemptive scheduling of independent jobs with

release and due times on open, flow and job shops. Technical Report

78-5, Computer Science Department, University of Minnesota,

Minneapolis.

3. P. GACS, L. LOVASZ (1979) Khachian's algorithm for linear programming.

Computer Science Department, Stanford University, California.

4. M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a Guide

to the Theory of NP-Completeness, Freeman, San Francisco.

5. T. GONZ.ALEZ (1976) A note on open shop preemptive schedules. Technical

Report 214, Computer Science Department, Pennsylvania State University.

6. T. GONZALEZ, S. SAHNI (1976) Open shop scheduling to minimize finish

time. J. Assoc. Comput. Mach. ~,665-679.

7. R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Optimization and approximation in deterministic sequencing and schedul

ing: a survey. Ann. Discrete Math. 2_,287-326.

8. E.L. LAWLER, J. LABETOULLE (1978) On preemptive scheduling of unrelated

parallel processors by linear programming. J. Assoc. Comput. Mach.

25,612-619.

