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ABSTRACT 

We consider the problem of scheduling independent jobs in a two-machine open 

shop so as to minimize the maximum lateness with respect to due dates for 

the jobs. For the case in which preemption is allowed, a linear-time algo

rithm is preisented. For the nonpreemptive case, NP-hardness is established. 
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1. INTRODUCTION 

Consider the following open shop scheduling problem. There are n independent 

jobs J 1 , ••• ,Jn and two machines M1 ,M2• Each job Jj consists of two 

one of length aj which is to be executed on machine M1 and one of 

operations, 

length b. 
J 

which is to be executed on 

in which the operations of 

machine M2 • There is no restriction on the order 

a job are to be performed - hence the term open 

shop. Each job can be processed on at most one machine at a time, and either 

machine can process at most one operation at a time. No processing can occur 

prior to tim.e zero. 

A schedule is said to be nonpreemptive if each operation is executed 

continuously from start to completion. A schedule is preemptive if the ex

ecution of any operation may arbitrarily often be interrupted and resumed 

at a later time; the periods in which the operations of a given job are 

performed may be interleaved in time. 

Each schedule defines a completion time C. for each J .• Given a due 
J J 

dated. for each J., we define its lateness L. = C.-d .• Common optimality 
J J J J J 

criteria involve the minimization of the maximum completion time C = max 
maxl<"< {c.} or the maximum lateness L = maxl<"< {L.}. 

-J-n J max -J-n J 
In this paper we shall be concerned with the minimization of L in max 

a two-machine open shop. We present a linear-time algorithm for the pre-

emptive case and, by contrast, we establish NP-hardness for the nonpreemp

tive case. our algorithm presupposes that the jobs are ordered according 

to nondecreasing due dates; if this is not the case, its running time would 

be O(n log n) rather than O(n). An O(n2) algorithm for this problem was 

obtained in [2]. our NP-hardness result is "strong" in the sense that it 

holds even with respect to a unary encoding of the problem data [4]. It 

should be apparent that both results also apply to the minimization of C max 
in a two-machine open shop subject to arbitrary release dates for the jobs. 

In the literature on open shop scheduling, most attention has been 

paid to the minimization of C in the absence of release dates and due max 
dates. In .the case of two machines, there is no advantage to preemption, 

and there exists a linear-time algorithm to find an optimal nonpreemptive 

schedule [6;7]. In the case of m machines, the preemptive problem can be 

solved in polynomial time for arbitrary m [5;6;8], whereas the nonpreemptive 
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problem is binary NP-hard for any fixed m ~ 3 [6] and unary NP-hard for 

arbitrary m [7]. 

The most general preemptive problem in this context is the minimiza-

tion of L in an m-machine open shop subject to release dates. This prob-
max 

lem can be formulated as a linear program [2]. Thus, the recent development 

of a polynomial-time algorithm for linear programming [1;3] is of interest 

to the area of open shop scheduling as well. 
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.2. THE PREEMPTIVE CASE 

We shall first describe a procedure to determine the existence of a schedule 

with value L $ O; that is, we will view the due dates as absolute dead-max 
lines and test these deadlines for feasibility. We shall then modify this 

procedure to compute the minimum value of L • We shall also show how to 
max 

construct a schedule with that value. Finally, we shall determine the maxi-

mum number of preemptions introduced into such a schedule. 

Testing for feasibility 

We assume that the jobs are indexed according to their due dates, i.e., 

d 1 $ $ dn, and define Aj = It=l ~, Bj = li=l bk (j = 1, ••• ,n). We now 

view the due dates as absolute deadlines and ask whether or not there exists 

a feasible schedule. 

The jobs are scheduled in order of nondecreasing deadlines. Suppose 

that J 1, ••• ,Jj-l have been successfully scheduled and that Jj has to be 

scheduled next. Let x. (y.) denote the total amount of time prior to d. 
J J J 

that M1 (M2) is idle while M2 (M1) is busy, and let zj denote the total 

amount of time prior to dj that M1 and M2 are simultaneously idle. Note 

that x.,y.,z. are not independent, inasmuch as 
J J J . 

x.+z. = d.-A. 1 , 
J J J J-

y.+z. = d.-B. 1 • 
J J J J-

The minimum amount of processing of the operation of Jj on M1 (M2 ) that 

must be done while both machines are available is max{O,a.-x.} 
J J 

(max{O,bj-yj}). It follows that Jj can be successfully scheduled if and 

only if 

max{O,a.-x.} + max{O,b.-y.} $ z .• 
J J J J J 

This inequality is equivalent to the four inequalities 

0 $ z., 
J 

a.-x. $ z., 
J J J 

(1) 

(2) 
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bj-yj 

a . -x . +b .. -y . 
J J ] J 

::;; Z, I 

J 
::;; z .• 

J 

Discarding the first of these inequalities as vacuous and applying (1) and 

(2) to the re~maining ones, we see that J. can be successfully scheduled if 
J 

and only if each of the following feasibility conditions holds: 

A. ::;; d., (3) 
J J 

B. ::;; d., ( 4) 
J J 

A.+B. ::;; 2d .-z .. (5) 
J J J J 

These inequalities also tell us that in order to obtain a feasible schedule 

we should attempt to minimize the value of z. at each iteration. It is eas
J 

ily seen that the smallest possible values of z 1 , ... ,zn are defined recur-

sively by 

z. = d.-d. 1+max{0,z. 1-a. 1-b. 1 } 
J J J- J- J- J-

( j = 2, ••• , n) • ( 6) 

We have thus arrived at an O(n) procedure to determine the existence of a 

feasible schedule: for j = 1, .•. ,n, compute z. by (6) and test (3), (4) and 
J 

(5). There exists a feasible schedule if and only if all these tests succeed. 

Minimizing maximum lateness 

We propose to determine the minimum value of 1max by carrying out a 

parametrized version of the preceding computation. Each d. is replaced by 
J 

d.+L, where Lis a free parameter. The smallest value of L for which there 
J 

exists a feasible schedule with respect to the deadlines d.+L is evidently 
J 

equal to the minimum value of L that can be achieved with respect to the 
max 

original due dates d .. 
J 

Let us first rewrite the z., as defined by (6), for deadlines d.+L in 
J J 

such a way that L does not appear in the recursive part of the expression. 

We claim that 

z. = max{d.+L-A. 1 -B. 1 ,z'.} (j = 1, •.. ,n), 
J J J- J- J 

(7) 

where AO BO = 0 and 



zi = -oo, z~ = d.-d. 1+max{0,z'. 1-a. 1-b. 1} 
J J J- J- J- J-

( j = 2 , ••• , n) • 

This is easily proved inductively: (7) is clearly true for j = 1, and 

assuming (7) is true for j-1, we get 

z. = (d.+L)-(d. 1+L)+max{0,max{d. 1+L-A. 2-B. 2 ,z~ 1}-a. 1-b. 1} 
J . J J- J- J- J- J- J- J-

= max{d.+L-A. 1-B. 1 ,z~}. 
J J- J- J 

(8) 

By substituting (7) into (5), we can write the feasibility conditions (3), 

(4) and (5) for deadlines d.+L as follows: 
J 

A. :s; d.+L, 
J J 

B. :s; d.+L, 
J J 

a.+b. :s; d.+L, 
J J J 

A.+B. :s; 2(d.+L)-z~. 
J J J J 

The smallest value of L for which these inequalities are satisfied for j = 

1, .•. ,n is given by 

* L = max . { max{ A . , B . , a . +b . , ½ (A . +B . +z ~ ) }-d . }. 
J J J J J J J J J 

(9) 

We have thus obtained an O(n) procedure to determine the minimum value of 

L : for j = 1, •.. ,n, compute 
max 

We note that, in the case 

z'. by (8), and compute L* by (9). 
J 

that all d. = 0, (9) reduces to 
J 

* L = max{A ,B ,max.{a.+b.}}, 
n n J J J 

which is the minimum value of C as given in [6;7]. 
max 

Constructing an optimal schedule 

* 

5 

Suppose we have determined L as above and we now wish to actually construct 

a schedule with that value, i.e., a feasible schedule with respect to dead

* lines d.+L. We will show how this can be accomplished in linear time as 
J 

well. 

At the time that J. is to be scheduled, the available idle time on the 
J 

two machines has the following structure (cf. Figure 1). There are various 

intervals during which M1 is idle but M2 is busy, and other intervals in 
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which the reverse is true; these intervals have total lengths x. and y. 
J J 

respectively. The last of them is of the latter type and is denoted by Yj. 

This interval is immediately followed by a single interval Z. of length z., 
J J 

* just prior to d.+L, during 
J 

which both M1 and M2 are idle. 

We schedule J. in such 
J 

a way that this structure is preserved at the 

time that J. 1 is to be scheduled. Recall that we must utilize as much as 
J+ 

possible of the interval Z. in order to minimize z. 1 . This period can be 
J J+ 

used in its entirety if and only if a.+b. ~ z .• If a.+b. < z., we schedule 
J J J J J J 

J. as indicated schematically in Figure 2. If a.+b. ~ z., we attempt to 
J J J J 

perform as much as possible of the operation of Jj on M1 during zj. The 

maximum amount of this operation that can be performed during Z. is given 
J 

by 

aJ~ = min{a.,z.,z.-(b.-y.)}. 
J J J J J 

In each of the three cases a~= a., a~= z., a'.= z.-(b.-y.), we schedule 
J J J J J J J J 

Jj as indicated schematically in Figure 3. The reader should verify that 

the resulting idle time structure facing Jj+l satisfies the above descrip

tion. 

All the intervals during which either M1 or M2 is available, except Yj, 

can be maintained in a LIFO stack. It should be apparent how the necessary 

operations can be implemented without further comment. The analysis of the 

number of preemptions below will confirm that our schedule construction 

procedure requires O(n) time. 

The number of preemptions 

In order to analyze the maximum number of preemptions created, we introduce 

the notion of an active period (cf. [8]). An accive period is a maximal 

interval of time during which a machine continuously performs the same oper

ation. The number of preemptions in a schedule is equal to the number of 

active periods in excess of the number of operations. 

Consider the situation immediate·ly after J. has been scheduled. Let 
J 

there be p, active 
J 

p . +o . • Examination 
J J 

periods and o. intervals in the two stacks, and let•·= 
J J 

of our schedule construction procedure shows that 



7 

Y---Z. 
j j 

d .+L*-z. d .+L* 
j j j 

Figure _1 Typical arrangement of idle intervals. 

M1D CJ 
M2 D □ 
Figure 2 Schedule for J. if a.+b. < z .• 

J J J J 

M1D 

M2 D [I 
CJ 

(a) a~ = a .. 
J J 

M1D 

D □ M2 

{b) a~ = z .• 
J J 

M1[1 
I M2 

(c) a~ = zj-(bj-yj). 
J 

Figure 3 Schedule for J. if a.+b. ~ z .• 
J J J J 
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'[ . ~ '[ . 1+4 
J J-

(j > 1), 

so that -r. ~ 4j-1. It is also easily seen that 
J 

P . ~ P . l +er . l + 2 = T . l + 2 J J- J- J-
(j > 1), 

and hence p. ~ 4j-3 for j > 1. 
J 

It follows that the number of preemptions introduced into an optimal 

schedule cannot exceed p -2n ~ 2n-3 for n > 1. It should be evident from 
n 

this result that our schedule construction procedure requires O(n) time. 

Although our algorithm can actually produce schedules with 2n-3 pre

emtions, it remains an open question whether this bound is tight. We have 

been unable to find problem instances that require more than 2n-5 preemp

tions. 

Comments 

It has already been observed that our algorithm can also be applied to mini-

mize C subject to release dates for the jobs. Moreover, our techniques max 
can be adapted to determine the existence of a feasible schedule with re-

spect to both release dates r. and deadlines d., provided that the inter-
] J 

vals [r.,d.] are nested (i.e., for all j,k, [r.,d.]n[rk,dk] E {fll,[r.,d.], 
J J J J J J 

[rk,dk]}). This problem is solved by working from the innermost intervals 

in the nesting outward; we leave details to the reader. 

Our analysis allows no direct extension to the minimization of L 
max 

on three machines. In that case, the situation just before J. is to be 
J 

scheduled cannot be characterized by a single variable z. and an optimal 
J 

scheduling rule is not obviou~ at all. Nevertheless, the linear programming 

formulation mentioned above proves that this problem is solvable in poly

nomial time. 

A related two-machine open shop problem involves the minimization of 

the weighted number of late jobs. By means of relatively straightforward 

dynamic programming techniques, it is possible to solve this problem by a 

pseudopolynomial algorithm in O(nd3) time, provided that the data a.,b.,d. 
n J J J 

are integers. 

We note that in preemptive scheduling it is often expedient to consider 
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the intervals between adjacent release dates or deadlines in succession. 

In this paper, we have scheduled the jobs at each iteration in such a way 

that the distribution of the remaininq machine capacities carried over to 

the next iteration is optimal. An alternative approach would be to schedule 

the jobs such that the distribution of their remaining execution require

ments is always as favorable as possible. Perhaps the latter strategy would 

have to be followed in order to obtain similar results for a larger class 

of problems. 
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3. THE NONPREEMTIVE CASE 

In this section we complement the result of the previous section by estab

lishing NP-hardness for the minimization of Lmax in a two-machine open shop 

when no preemptions are allowed. This result will be obtained by specifying 

a polynomial transformation from the following NP-complete problem [4]: 

3-PARTITION: Given a set S = {1, .•. ,3t} arrl positive integers 

p 1 , ••• ,p3t,q with t < pj < 3 for all j ES and ljES pj = tq, 

does shave a partition into t disjoint 3-element subsets s 1 , ••. ,st 

such that I. S p. = q for i = 1, ••. ,t? 
JE i J 

Given any instance of 3-PARTITION, we define an instance of the two-machine 

open shop problem as follows: 

n = 4t; 

aj = 0, bj = pj, dj = tq+t (j ES); 

a3t+1 = O, b3t+1 = l, d3t+1 = l; 
a3t+i = q+l, b3t+i = 1, d3t+i = (i-l)q+i (i = 2, .•• ,t). 

We claim that 3-PARTITION has a solution if and only if there exists a non-

preemptive schedule with value L ~ 0, i.e., in which no job is late. max 
Let us first investigate when the jobs J 3t+i (i = 1, ••• ,t) can be exe-

cuted in such a schedule. Clearly, J 3t+l has to be processed on M2 during 

the interval [0,1]. In order for J 3t+2 to meet its due date, it has to 

occupy M1 during the interval [O,q+l] and M2 during the interval [q+1,q+2]. 

A straightforwa~d inductive argument shows that J 3t+i has to be executed 

on M1 during [(i-2)q+i-2, (i-l)q+i-1] and on M2 during [(i-l)q+i-1,(i-l)q+i], 

for i = 2, ••• ,t (cf. Figure 4). 

This leaves t intervals [(i-l)q+i,iq+i] (i = 1, ••• ,t), each of length 

q, for the execution of the jobs Jj (j ES) on M2. It follows that there 

exists a schedule with value L ~ 0 if and only if the jobs J. (j ES) 
max J 

can be divided into t groups, each containing 3 jobs and requiring q units 

of processing time on M2 , i.e. , if and only if 3-PARTITION has a solution. 
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0 1 q+l q+2 ,tq+t 

Figure 4 Illustration of the transformation. 
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