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*
The p-median problem with mutual communication on a tree )

by

Antoon Kolen

ABSTRACT

This paper considers the problem of locating p new facilities on a
tree, where each vertex represents an existing facility, in order to
minimize the total weighted sum of distances between all pairs of new and
existing facilities and between all pairs of new facilities.

We present a polynomial-time algorithm for its solution. This
algorithm generalizes the well-known algorithm for the l-median problem

on a tree.

KEY WORDS & PHRASES: p-median problem (with mutual communication), tree,

location theory.
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1. INTRODUCTION

Let T be a tree with vertex set V = {vl,v ,..,vn} and edge set

2

E = {el,e "'en—l}' Each edge (vi,vj) € E has a nonnegative length

2’
£(i,j). A point x on the tree can be a vertex or a point anywhere along
an edge. The length of the shortest path between the points x and y on T
is denoted by d(x,y).

The p-median problem with mutual communication is to find p new

facility locations xl,xz,..,xp such that
;3 L%
Z a,, d(v,,x.) + = B., d(x.,x,)
izl §=1 AT 2 40,0 3k 3Tk

is minimal, where aij(i=1,..,n,j=1,..,p) and Bjk(=8kj)(j=1,..,p,k=1..,p)
are given nonnegative weights. It is well known that an optimal solution
exists with X, € vV (i=1,..,p) [31.

We can think of the vertices of the tree as locations of existing
facilities. Let aij represent the amount of travel between existing
facility i and new facility j, and let Bjk represents the amount of
travel between new facilities j and k. The tree T corresponds to a
transportation network and the p-median problem with mutual communication
is to find the new facility locations such that the total travelled distance
is minimal.

The p-median problem with mutual communication in the plane using
rectilinear distances has received much attention. This problem is to
find new facilitiy locations (xl,yl),..,(gp,yp) in the plane such that

n p b

b
1
izl jil aygllegmagl + lyypy b+ 5 0 kZ1 Bl lxsx [+ lys-v 1)

is minimal, where (ai,bi)(i=1,..,n) are the existing facility locations.
This problem can be decomposed into two independent problems on the line.
We mention the following references for the p-median problem with mutual
communication on a line: PRITSKER & GHARE [9], Rao [10], JUEL & LOVE [5],
SHERALI & SHETTY [11], CABOT, FRANCIS & STARY [1], WESOLOWSKY & LOVE
[12,13], PICARD & RATLIFF [8], and KOLEN [7].

The only algorithm we know of which solves the p-median problem with
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mutual communication on a tree is due to PICARD & RATLIFF [8]. In Section
2 we will prove a theorem which characterizes the optimum solution value
to this problem. This theorem was already known to FRANCES [2] for the
very easy case that p = 1. It provides the basis for our algorithm to
solve the problem) presented in Section 3. This algorithm differs from

the algorithm by PICARD & RATLIFF [8] but has the same time complexity. In
the case that p = 1, our algorithm reduces to the well-known algorithm by

GOLDMAN [4] to solve the l-median problem on a tree.
2. CHARACTERIZING THE OPTIMUM VALUE

Let us start with the simple case that the tree has 6nly a single
edge (vl,vz). Let P denote the set {1,2,..,p}, let X € P be the index set
of the facilities located at Vl' and let X = P\X. In this case, the

objective function is given by

Yoo d(v,,v,) + ) o . dv,v.) + ) )_ B, d(v,,v,)
2 1 = 2 1
jeX J 2 jeX 1J 172 jeX keX ik 2

£(1,2)W12(X),

where

W, (X) = y oy + ) o .+ 7T B
jex jex 7 3ex kex I

Hence the value of the objective function is minimal for that subset of P

which minimizes W12(X) over all subsets X < P. This leads to the following

characterization of the optimum value: the minimum value of the objective

function is equal to

£(1,2) min Wio(X).
XCP

We now generalize this result to an arbitrary tree T. Let (vs,vt)

be an arbitrary edge of T. Deletion of (vs,vt) with the exception of v



and vt from T results in two subtrees. Let TS(Tt) be the subtree
containing vs(vt). We define Wst(X) as the total amount of travel between
facilities in Ts and facilities in Tt if X denotes the index set of new

facilities in TS;

W (X)= ) ) a,.+ ) ) o+ Y ¥ B..
st jex vieTt 1) jeﬁ vieTS +J jeX keX ik

We now state our characterization of the optimum value in Theorem 1.

THEOREM 1.
n
1

min Y)Y e, d(v,,v,) += ) Y B. dlx,,x) =

Kpreeor®y =1 jep M o 2 jép kep K 3Tk
b

z L(s,t) min W | (X).

(v ,v, )eE X<p
st —

Before proving this theorem we prove the following lemma.

LEMMA 1. Let vy be a tip of the tree T, let v, be the vertex adjacent to

Vl' and let (VS,Vt) be an edge of T not equal to (Vl’v2) and such that

vy and v, are contained in TS. Let Q be such that W12(Q) = mlnx_c_-P W12(X),

Then there is a set R such that Q € R and W , (R) = min W (X).
. st XcP st

PROOF. Let R be a set such that Q N R = S1 # Q, i.e., there are subsets

S, (s, ¢ ¢) and S4

(X) we know that W

such that Q = Slu 82 and R = S1 U 83, Since W12(Q) =

(s, u 82).— W12(Sl) < 0 . We shall prove

ming p Wio 1251

below that Wst(s US,us;) - Wst($1US3) _<__W12(S1 S,) - W12(Sl)' This implies
2

1
_ < 0. . s
that WSt(Slus US3) Wst(81US3) < 0. Therefore if Wst(R) ming Wst(X),

then Wst(QUR) = Wst(R), i.e., without loss of generality we may assume
that Q ¢ R. Since
S

wst( 1 Y S

5 U S3) - Wst(s1 Uu s, =

Lo Le- L L e ) ) By
. . )
3652 vleTt 3651U52US3 k6381U32U83)



) Y B.,
. jk
Uus._. u
3651 S3 ke(S1 S3)

Us ) - -
W, (8Y8 w08y

5)

z Z aij - Z a].j + z
jeS2 vieT2 jeS2 jesluS2 k

and moreover 7T < T and v, € T Wwe have
t — "2 1 s

Us,) - U -
(W (SUSU33) = W (51US3)) = (W),
-1 L %15 7
jes, vieTz/Tt jes, vieTs/{vl}
This yields the desired result. Q.E.D.

We shall now give a proof of Theorem 1.

PROOF OF THEOREM 1. The proof is by induction on the

Y B.- ) 1

jk . =
E(Slusz) jes, kes

51U82) - W12(Sl)) =

a,, -2) ) B, <O0.
+J jeS2 k€S3 Ik

jk

number of vertices ]Vl

For the case IVI = 2, we have shown at the beginning of this section that

the theorem is true. Suppose the theorem is true for all trees with

|V| < n, and consider a tree T with n vertices

of the tree and let v2

facilities indicated by the index set X € P at v

the objective function with respect to the rema

indicated by X, which have to be located on the

T = T2. Deletion of an edge (Vs,vt) € ﬁ results

Tt containing respectively v and V- Given the

can write the objective function as

n

1
121 jgp @y Avyxg) + E-jg I By

be the vertex adjacent to v

(n > 3). Let v, be a tip

1
1

1
ining new facilities

tree T = (ﬁ,ﬁ), where
in two subtrees TS and

locations xj(j € X) we

d(xj,xk) =

. Assume we locate new

and we want to minimize



n
d(vi,xj) + z 2 a;jd(vi,vl) + z_ a

d(vl,x,) +
i=2 jex 1 jex J

n
zz ) %13 13

i jex I

1
2 z “B.. d(v,,x.) + = z_ Z B., d(x.,x ).
jeX kex & 13 2 4eX kex ¥ Ik

Since d(vi,xj) = d(vl,vz) + d(v2,vj) for all j € i, we can rewrite the

objective function as Q1 + Q2, where

n
0, = ) ) o dw,v) + [ o dlv,v)+ ) ]B8. dlv,v,).
Li2 gex 19 * jex 13102 jex kex 3K 12
° ~ 1
Q. = z z_ alj d(vi,xj) +~§ 2_ z_ B,k d(x.,xk),
i=2 jeX jeX keX J ]
0 = a + o + z Bjk for all j € i, and

23 = %23 TNy T L

a . o,, for i = 3,..,n, j € X.
aij i3 r i r Dy ]

Note that Q1 does not depend on the locations of the new facilities
J(3 € X). If we want to minimize Q1 + Q2 with respect to the new facility
locations xj(j € X), then we have to minimize Q.. The induction hypothesis

2
implies that the minimum value of Q2 is equal to

) . A(s,t) min wW_ (V) ,
Cvs,vt)eE Y<X
where
Wﬁt(Y) = Z 2- aij + z_ Z- &i' + Z z_ B'k ’
= jeY v, €T JeY v, eT_ ey key I

and



Y = X\Y.

Without loss of generality we may assume that v € is' Then the vertex

- 2
set of Tt is equal to the vertex set of Tt and if we add v1 to the
vertex set of Ts we get the vertex set of Ts. Substitution of the value

£ o . in W Y ive
o aij in St( ) gives

W)=Y ¥V a.+ ) Y a.+ ) Y B..-
st jey vieTt +J je§ vieTS 1 je (XuY) keY Jk

Taking a closer look at Ql’ we find that

n
Q= Z Z o, . + 2_ a, . + z_ Z B. .]d(v Vo) o+
! [i=2 jex 13 yex 13 yex kex KL 012
n
Y Y a..d(v,,v,)
i=2 jeX +J 2 1
= L,2)w ,(x) + ] _ A(s,t) ) Y oy
(VS,Vt)eE jex vieTt
vV.ET
S

The minimum value of the objective function with respect to new facilities

j e X is now equal to

£(1,2) w0+ ] L(s,t) min W__(X0Y) =
(v_,v, )€E ycx
s t —
v,eT
S
£(1,2) w (0 + ) - L(s,t) min w__(2).
(v ,v,) E Zcp
st ZD_X
v,.cT —
S
Since
(2.1) W, ,(X) = min W, (¥)

YcP



and
. o s
(2.2) min Wst(Z) = min Wst(Y)
ZC_‘P _ YSP
ZoX

it follows that the right-hand side of Theorem 1 is less than or equal

to the left-hand side. We know from Lemma 1 that equality holds in

12X = mingep W,
we have shown that the left-hand and right-hand sides of Theorem 1 are

(2.1) and (2.2) if we choose X such that W (Y) . Thus

equal. Q.E.D.

COROLLARY 1. Let X be such that W12(X) = mlnch W12

solution to the p-median problem with mutual communication can be found

(Y). Then an optimal

by locating new facilities j(jeX) at v, and subsequently finding new

1

facility locations xj(j€§) in T2 such that

n

L1

i=2 j€§ jeX keX

Q
ol
<

1
i,xj) + 5-2_ z_ Bjkd(xj,xk)

is minimal, where

I

o . a.. +a . + Z B. (jsi)
23 23 13 ex jk

and

aij = aij (i =3 ,..4n, J € X).

PROOF. We have shown in the proof of Theorem 1 that the optimum value of the

objective function, if X is such that W, (X) = minYcP W12(Y), is equal to

12

Q1 + mlan(jéi) QZI where Q1 and Q2 are defined in Theorem 1. Q.E.D.

We observe that the optimal solution only depends on the weights and

is independent of the edge lengths.
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3. A POLYNOMIAL-TIME ALGORITHM

Corollary 1 immediately suggests an algorithm in which we look at a

tip v adjacent to, say, v,:

2
W12(Y), locate all new facilities j € X at v

X determine the set X such that W12(X) =

mlanP add alj +
ZkeX Bjk to the weight a2j )

tree, and repeat the algorithm on the resulting tree with new facilities

1l

for all j € X, delete the edge (vl,v ) from the

j € X. This algorithm is polynomial bounded if we are able to determine the

set X such that W12(X) = minY W12(Y) in polynomial time.

Consider the following network (Fig.l), where we have two nodes

vy and v, and a node j for each new facility j(j = 1,2,..,m). We have

arcs from vy to all nodes j of capacity I

from all nodes j to v

V€T, aij (3 =1,2,..,m), arcs
2 of capacity alj (3 =1,2,..,m) and arcs from node

j to node k of capacity Bjk (j<k,j,k'= 1,2..,m).

A cut in the network given by Fig. 1 is defined to be a set of arcs between
A (vleA)and.K (vzei) such that every path from v1 to v2 in the network
contains at least one arc from this set. The capacity of a cut is the

sum of the capacities of the arcs contained in the cut. Since the maximum
flow from vy to v, in the network is equal to the minimum capacity of

a cut, we can determine a minimum cut in 0(m3) times [6]. We will now

show that a minimum cut in the network defines the set X such that

W12(X) = minY W12(Y); this observation is originally due to PICARD &

RATCLIFF [8].



The arcs between the sets v yX and v, y X form a cut for every

2 1
X ¢ {1,2,..,m}. Conversely, any cut determines a subset X E_{1,2,..,m}

such that the cut contains all arcs between the set v2 u X and vl'u X.
By an arc between a and b we mean that the arc goes from a to b or from

b to a. The capacity of the cut between v2 U X and vyu X is equal to

) Yoa.+ Lo .+ ) ) B. =W _(X.
jex vieT2 +J jei 1] jeX keX ik 12

The first term is the sum of the capacities of arcs from v1 to the set X.

The second term is the sum of the capacities of arcs from X to v The

third term is the sum of the capacities of arcs between X and §.2Therefore
determining the minimum of W12(X) over all subsets X ¢ {1,2,..,m} is equal
to determining a minimum cut in a corresponding network. It follows that
the p-median problem with mutual communication can be solved as a

sequence of at most n-1 minimum cut problems on a network with at most

p+2 vertices. The running time of the algorithm is O(np3).
We summarize the algorithm below.
ALGORITHM.

Initialize: Set m: = p , £: = n.
Iterate: If £ = 1, then locate all remaining facilites at the remaining
vertex: stop.

Otherwise, choose a tip v, of the tree; let v, be the vertex

1 2
adjacent to vy
Determine X < {1,2,..,m} such that W12(X) = minY W12(Y).
Locate all facilities j(jeX) at v,
Add alj + Ly ex Bjk to a2j for all j € X.

Set m: = m - Ix].
If m = 0, then all facilities are located: stop.
Otherwise, renumber the new facilities in X from 1 up to m.

Delete (vl,vz) from the tree, set £: = £ - 1, and iterate.

In the case that p = 1, we only have to compute W12(¢) = q and W12({1})

11
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Ei>2 e It is easily seen that in this case our algorithm corresponds to
the well-known algorithm due to GOLDMAN [4] .
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