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ABSTRACT 

Hierarchical planning systems have become popular for multi-level decision 

problems. After reviewing the concept of hierarchical planning and citing 

some examples, we describe a method for analytic evaluation of a hierarchical 

planning system. We show that multi-level decision problems can be nicely 

modeled as stochastic programs. Then any hierarchical planning system can 

be measured against the yardstick of optimality in this stochastic program. 

We demonstrate this approach on a hierarchical system that can be shown to 

be asymptotically optimal for a job shop design/scheduling problem. 

KEY WORDS & PHRASES: multi-level decision problem, hierarchical planning, 

stochastic program, analytic evaluation, aggregate/detailed production 
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1. INTRODUCTION 

Many operations management planning and control problems require a series of 

decisions over time at an increasing level of detail. For example, there are 

at least two distinct decision making levels in most production operations. 

At the lowest level, detailed production scheduling decisions determine who 

will do a particular job on what machine and when. Considerations at this 

level include minimizing setups and meetings due dates. At a higher level, 

aggregate planning decisions are made concerning hiring and layoffs, over­

time, production levels for product groups, ordering of raw materials, and 

due date setting. The time horizon for aggregate decisions ranges from a few 

months to one year. At the time aggregate decisions are made, much detailed 

information is not known with certainty. This can include future product 

demand, job processing times, machine breakdowns, worker availability, and 

raw material availability. In addition, other detail is intentionally ig­

nored at the aggregate level. For example, the sequence dependent nature of 

setups is usually ignored, and product groups are used rather than individ­

ual stock-keeping units. 

Hierarchical planning systems are becoming increasingly popular for 

multi-level decision problems like this. General discussions of hierarchical 

planning are given by Bitran and Hax [2] and Bradley, Hax and Magnanti 

[3,pp.212-213]. A hierarchical system uses separate mathematical programming 

models to make the decisions at each level. The solution of a higher level 

model creates a portion of the constraints for the model below it. Of course, 

there is nothing new about using interacting optimization models. What seems 

to be new in the hierarchical approach is the explicit emphasis on the link­

ages between the models and on designing all models in the system simulta­

neously so that they fit well together. 

There are two fundamental reasons for using a hierarchical approach. 

(1) Reducing complexity. Breaking a problem into subproblems is a standard 

method for simplifying the solution process. A tenet of hierarchical planning 

is that this partitioning can be done so that the interaction effects be­

tween subproblems are acceptably weak. 

(2) Coping with uncertainty. It is important to realize that the decisions 

at the various levels in the planning process need to be made at different 
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points in time. For example, aggregate planning decisions are made early 

enough to implement plans for hiring/layoff, raw materials acquisition, etc. 

On the other hand, a decision to assign a particular job to a specific ma­

chine can be postponed until the instant before the job begins processing. 

This is important in light of the fact that much data at the detailed level 

is uncertain at the time aggregate decisions are made. If detailed and aggre­

gate decisions were combined in a single giant optimization model, as is 

sometimes proposed, the detailed decisions would be made earlier than 

necessary and hence would be based on less reliable forecasts of the uncer­

tain data. The hierarchical approach postpones the detailed decisions as 

long as possible so that they can be based on more timely and hence more 

accurate data. 

Past work in hierarchical planning has consisted mainly of building 

clever systems. This paper considers the question of how one decides whether 

one system is better than another. To obtain an objective standard of per­

formance, we introduce a stochastic programming model that encompasses the 

entire multi-level decision process. At each level we model lower levels 

accurately, but with stochastic parameters. The objective at each level is 

to minimize current costs plus the expected objective value of an optimal 

lower level solution. The performance of a hierarchical planning system can 

be studied analytically by determining how close it comes to optimality in 

this stochastic programming model. 

In Section 2 we provide a rich set of examples of hierarchical planning 

systems. Section 3 describes the analytic evaluation approach in detail. In 

Section 4 we illustrate this approach by analyzing a hierarchical system for 

one of the examples given in Section 2. This hierarchical system is shown to 

have the desirable property of being asymptotically optimal as the number of 

jobs in the problem approaches infinity. This result provides concrete sup­

port for the concept of hierarchical planning. 



2. EXAMPLES OF HIERARCHICAL PLANNING SYSTEMS 

Examples are provided of hierarchical systems for four types of problems. 

Specific implementations of each type are also referenced. 

2.1. Aggregate/detailed production scheduling 
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This example has already been discussed at some length in the introduction. 

The aggregate planning problem is usually modeled as a multiperiod linear 

program with a planning horizon of about.one year. The basic decision vari­

ables are target production and inventory levels by period for aggregated 

groups of products. These target levels are fed to the detailed production 

scheduling model which is concerned with scheduling the actual production 

of each stock-keeping unit over a relatively short horizon. This detailed 

model is usually an integer program solved by a heuristic. It may be run 

much more often than the aggregate model. 

Hax and Meal [14] and Hax and Golovin [12;13] have designed and suc­

cessfully implemented a system of this type. They distinguish three increas­

ingly aggregated product units: items, families and types. At the type level, 

they use a linear program to set long range target production levels that 

minimize production, overtime, and inventory carrying costs. At the family 

level, the production target for a type is allocated to the families within 

that type considering setup costs. At the item level, item production is 

planned over a short planning horizon using recent demand data. 

Jaikumar [15] has developed a system for the Booth Fisheries Division 

of Consolidated Foods that has many novel features and has achieved impres­

sive economic results. At the aggregate level, a linear program is used to 

determine levels of production, marketing promotions, and raw material ac­

quisitions that maximize sales revenue minus the cost of inventory holding, 

overtime, hiring/layoff, production and raw materials. This model has a 26 

week planning horizon with time periods varying from one to six weeks. The 

detailed model is an integer program with a planning horizon of one week and 

time periods of two hours. This model allocates the production of particular 

products to individual production lines. 

A novel feature of Jaikumar's system is the use of a dual method to 
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link the aggregate and detailed models. Dual variables on the production ca­

pacity, raw material and manpower constraints in the aggregate model are fed 

to the detailed model and used in the objective function to cost out usage 

of those resources. 

2.2. Job shop design/scheduling 

This problem is concerned with specifying the number of machines of various 

types to have in a job shop and the scheduling of work on those machines to 

minimize the total of machine costs and some job based measure of perfor­

mance such as average job tardiness. The first algorithmic approach to this 

problem was given by Fisher [6]. 

In a hierarchical approach, the higher level decision is obviously how 

many machines to have, and the lower level decision is how to sequence jobs 

in the shop. Armstrong and Hax [1] and Shwimer [16] have described hierarchi­

cal systems that use an integer programming model and a simulation with an 

embedded heuristic sequencing rule to make the higher level decision. The 

lower level decision is made with the heuristic sequencing rule. 

2.3. Distribution system design/control 

The higher level problem includes the distribution design questions of where 

to locate plants and warehouses, whether to expand capacity at existing 

plants and warehouses, whether to install automatic materials handling equip­

ment, etc. Thie lower level problem concerns such questions as the allocation 

of customers to warehouses and the determination of commodity flows through 

the system. 

Hax [11] descrites a system that he developed in the aluminum industry. 

The higher level problem is a linear program that is run a number of times 

for different cases. In addition to the standard distribution system design 

questions, this model is concerned with whether or not the firm should enter 

into long term product swapping contracts with competitors. The lower level 

problem is concerned with which sources should supply a set of orders in 

hand. It is modeled as a linear program with a heuristic post-adjustment of 

the solution to eliminate order splitting. 
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Glover et al. [9] describe a comprehensive production and distribution 

planning model developed for the Agrico Chemical Company. This is a network 

flow model explicitly concerned with the lower level decision of scheduling 

the flow of shipments from plants through the distribution system to ware­

houses. The model has also been successfully used in a case-study mode to 

analyze higher level decisions on capacity expansion and equipment moderni­

zation at the plants and warehouses. 

Federgruen and Lageweg [5] describe a distribution system developed 

for a producer of industrial gases in the Netherlands. At the higher level, 

the number and locations of national distribution centers and the associated 

territories are determined. At the lower level, the commodity flows from 

distribution centers through regional depots to final customers are routed. 

The system is modeled as a network flow problem and uses a vehicle routing 

algorithm to calculate.the routing costs. 

2.4. Vehicle routing/scheduling 

Many organizations operate vehicle fleets to deliver their products to cus­

tomers. Frequently, for administrative convenience and other reasons, the 

fleet is scheduled using a fixed route system. In a fixed route system, par­

ticular customers are assigned to a vehicle and this assignment is revised 

infrequently (e.g., every 6-12 months). Daily customer orders are random. A 

customer orders on a given day with some probability, and the amount of any 

order is random. On any given day, a delivery schedule must be developed for 

the customers that have ordered for each vehicle. In this daily problem one 

can consider the possibility of delaying delivery of a customer order, or 

of using an alternative mode of delivery such as airfreight. 

This problem suggests an obvious hierarchical system in which one model 

is used to assign customers to vehicles to form the fixed routes, and an­

other model is used to solve the daily scheduling problem ("cluster first, 

route second"). Fisher and Jaikumar [8] have developed a partitioning algo­

rithm for vehicle routing which follows the hierarchical structure just out­

lined. Customers are assigned to vehicles using a generalized assignment 

model. Each vehicle is scheduled using a traveling salesman model with side 

constraints. Golden and Yee [10] have also suggested a general framework for 

this problem .. 
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3 . A STOCHAS'I'IC PROGRAMMING FRAMEWORK FOR EVALUATION OF HIERARCHICAL 

PLANNING SYSTEMS 

Past work on hierarchical systems has concentrated on building clever systems, 

many of which were chronicled in the previous section. We are interested in 

this paper in the question of how one evaluates the quality of the decisions 

produced by a hierarchical system. One is interested both in comparing dif­

ferent systems and in absolute evaluation of a single system. 

Some methods already exist for partially answering these questions. 

Different systems can be compared empirically by Monte Carlo simulation. In 

this approach, higher level models are run with forecasts of the uncertain 

lower level data. Lower level models are run with actual data values generat­

ed randomly by the Monte Carlo method. Hax and Golovin [13] have used this 

approach in evaluating.their system for different settings of various para­

meters. One can also evaluate either by analytic or empirical methods the 

degree of optimality in the solutions to the submodel at each level. 

All of these evaluation methods fail to answer the nagging question of 

how good a particular hierarchical system is when compared with an optimal 

system. To answer this we need a measure of optimality for the overall sys­

tem, not just for each subproblem. Put differently, hierarchical systems are 

often called suboptimizing systems. If so, what is the optimization problem 

being suboptimized? 

A little thought should make it clear that the answer to this question 

cannot be a deterministic mathematical programming model. Such a model could 

not encorporate the uncertainty that exists at lower levels of the global 

decision problem. This phenomenon can only be accurately modeled by a multi­

stage stochastic program. The stochastic program would model lower levels 

accurately, but with stochastic parameters. The objective at each level 

is to minimize known costs at that level plus the expected objective value 

of an optimal lower level solution. For example, consider the form such a 

model would take for the example given in Section 2.2. At the time the job 

shop is desigrned, only probabilistic information is available on the jobs 

to be processed by the shop. A two-stage stochastic programming model of 

this problem would select the machine configuration of the job shop so as 

to minimize the cost of machines plus the expected cost (e.g., job tardiness 
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or flow time) of operating the shop optimally with the given machine config­

uration. Similar stochastic programs can be created for all of the other 

examples given in Section 2. We note that all of these models would have 

integer variables at one or more of the levels. 

We are not suggesting that any of these models should be solved opti­

mally. Such an endeavor would be foolhardy given the reputation for intrac­

tability enjoyed by both integer programming and-stochastic programming. 

Rather, we suggest that a hierarchical system.for a multi-level decision 

problem can be usefully viewed as a heuristic applied to a stochastic pro­

gramming model of the problem. Analysis of heuristics is now a well-estab­

lished technique in the area of integer programming (e.g., see Fisher [7]). 

There is no reason why this same technique could not be applied to stochas­

tic programming heuristics. This would allow objective statements about how 

closely a particular hterarchical system approaches the ideal of optimality 

in the appropriate stochastic programming model. In the following section 

we describe the results of such a study for a simplified version of the job 

shop design/scheduling example given in Section 2.2. 
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4. ANALYSIS OF A HIERARCHICAL SYSTEM FOR A JOB SHOP DESIGN/SCHEDULING PROBLEM 

.We are given n jobs to be processed on identical parallel machines. The prob­

lem is to decide how many machines to buy and how to sequence the jobs on the 

machines to minimize machine cost plus the maximum job completion time. Job 

processing times are independently distributed random variables whose values 

all become known with certainty at time t = 0 after a decision has been made 

on the number of machines to buy. 

Define 

c = cost of a single machine, 

m = number of machines to be bought, 

p. = processing time of job j, 
J 

p = (p 1 ' · • · 'p n) ' 

* C (m,p) = earliest time at which all jobs are completed when 

scheduled optimally on m machines, beginning at t = 0, 

and with known processing times p = (p1 , ..• ,pn). 

A tilde (~) under a variable will indicate that it is a random variable, 

and E will denote expected value. 

The problem is to choose m prior tot= 0 to solve 

* * Z = min {cm+ EC (m,p)}. (1) 
m 

* Let m denote the optimal solution to (1). Then at time t = 0, sequence n 

. * jobs with known processing times on m machines to achieve the optimal com-

* * pletion time C (m ,p). 

There is a natural two-stage hierarchical system for this problem in 

which the higher level problem is problem (1) and the lower level problem 

is sequencing the jobs once processing times are known. It is not obvious 

* how to solve (1) optimally. Determining C (m,p) for fixed m and pis itself 

* an NP-hard problem so find~ng EC (m,£) as a function of m seems virtually 

impossible. We circumvent this difficulty with an idea that is fundamental 

to all of the hierarchical systems described in Section 2. In solving the 

higher level problem we suppress the combinatorial fine structure 

lower level problem by replacing c*(m,p) with P/m, where P = I;=l 

of the 

p .• The 
J 
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* quantity P/m is a lower bound on C (m,p) for any m and p. This bound is quite 

good if n is large and p = max.{p.} is sufficiently small. This replace-
max J J 

ment leads to the higher level problem 

min {cm + EP/m}. 
m ~ 

The derivative of the objective function is zeroed by m = l(Et/c). Since m 

must be a positive integer, we choose mH = rl(EP/c)l, where ral denotes the 

smallest integer not less than a. 

The lower level problem is the problem of sequencing n jobs with known 

processing times on mH machines. In our hierarchical system, we simply solve 

this problem by list scheduling (LS). This heuristic assigns jobs in arbi­

trary order, placing each job on the machine that has the least processing 

already assigned. Let 

LS 
C (m,p) = earliest time at which all jobs are completed when 

scheduled by list scheduling on m machines, beginning 

at t = 0, and with known processing times 

P = (p 1 ' • • • 'P n) • 

The overall value achieved by our hierarchical planning system is 

H H LS H 
Z = cm + EC (m ,p) .. 

~ 

In [4] we show that 

ZH ~ 1 + E2max = 
z* 2 ✓ (cE£) 

We also show that, if the p, have independent identical distributions with 
~J 

finite second moment, then the hierarchical planning system is asymptoti-

cally optimal in the sense that 

ZH 
limn~*= 1. 

z 

Under the same assumption we have 

Plim n~ 

H LS H 
cm + C (m ,£) = 1 
cm*+ c*cm*,p) 

, 
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i.e., for any o,£ > 0 there exists an n0 such that for all n > n0 the ratio 

between approximate and optimal solution value is no more than l+o with prob­

ability at least 1-£. 

These results are extended in [4] to the case where the jobs are to be 

processed on uniform parallel machines (i.e., with different speeds) and 

the problem is to minimize machine cost plus the maximum job lateness with 

respect to a common constant due date. 
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