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The Stochastic Filtering Problem for Point Processes*) 

by 

J.H. van Schuppen 

ABSTRACT 

The purpose of this paper is to give a brief exposition of the stochas­

t1c filtering problem in the case of point process observations. Some exam­

ples of these problems will be presented. We discuss the modelling of point 

processes and formulate the associated stochastic dynamical systems. Two 

methods to resolve the stochastic filtering problem will be given, namely 

the semimartingale representation method and the measure transformation 

method. For several examples the solution to the stochastic filtering prob­

lem will be given. Some open questions are mentioned. 

KEY WORDS & PHRASES: Point processes, Marked point processes, stochastic 

analysis, stochastic dynamical systems, stochastic 

filtering problems. 

*) This report will appear in the Proceedings of the meeting on "New Trends 
in Filtering and Identification of Stochastic Systems", held on January 
23, 1980, at the Erasmus University, Rotterdam, The Netherlands. 
Not for review. 
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1. INTRODUCTION 

The purpose of this paper is to give a brief exposition of the stochas­

tic filtering problem for point process observations. No proofs and few de­

tails will be presented. However, references to the literature have been 

provided. 

For many practical filtering problems the observations are not contin­

uous processes, but point processes or marked.point processes. Examples of 

such problems arise in the areas of optical communication, nuclear medicine, 

urban traffic control, and operations research. Many questions in these 

areas may be formulated as stochastic filtering problems or stochastic con­

trol problems. 

What results have been obtained for these problems? Representations for 

point processes have been obtained using concepts from the theory of stochas­

tic processes. These representations may be considered to be stochastic dy­

namical systems. For the stochastic filtering problem for these systems two 

methods have been developed. Both of these meth~ds yield general representa­

tion results that have to be applied to specific models. For several models 

filtering algorithms have been obtained. A brief summary of these results 

is presented below. 

For the material on point processes we refer to the books [16, .18, 24], 

and for application oriented books.we suggest [21, 35]. 

2. MOTIVATING EXAMPLES 

Some examples of stochastic filtering problems with point process ob­

servations are presented below. 

EXAMPLE 2.1. Optical Communication 

The physical model is as follows. A signal modulates an optical source, 

which in turn generates an optical beam. The beam, after travelling acer­

tain distance, is incident on a detector. The optimal detector produces an 

electric current which we regard as the observed process. 

The problem then is to estimate the signal on the basis of the observed 
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process. 

Particular cases of the above problem occur in: 

1) experiments in nuclear physics; 

2) light scattering studies; 

3) optical communication with lasers. 

For references on these problems see [19, 20, 22, 33]. 

EXAMPLE 2. 2. .An Industrial Problem 

The model is that of a machine that irregularly produces unit products. 

Initially the machine operates at full capacity. At some point in time the 

machine breaks down partially, with the effect that it yields output at a 

lower rate. One may then associate a cost function with this model, such 

that under normal conditions a profit is made and a loss when the machine 

is partially defective. 

Then problem is then: 

1) to estimate when the machine breaks down partially on the basis of the 

production data only; 

2) to resolve the stochastic control problem of when to shut down the ma­

chine so as to minimize the costs. 

The first problem mentioned above is also known as the Poisson disorder 

problem. For references see [12, 40]. 

EXAMPLE 2. 3 •. Traffic Estimation 

The model is that of an urban traffic network. Information on the traf­

fic flow is obtained from detection lines. The ultimate objective is com­

puter control of urban traffic. 

The problem here is to estimate and to predict traffic intensities. 

For some references on this problem see [1, 2, 36]. 

EXAMPLE 2.4. The Firefly Model 

The model is for a swarm of flireflies. Each of the fireflies irregular­

ly produces flashes of light. One assumes that the swarm has a Gaussian 
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density, and that the mean of this density moves around according to a Gauss­

Markov process. The authors of this model leave it to the imagination of the 

reader to think of other applications of this model. 

The problem is to estimate the mean of the density on the basis of the 

observations of the light flashes [41]. 

EXAMPLE 2.5. Filtering ir. Queueing Problems 

Consider a model for a waiting line, in which we distinguish an arrival 

and a departure process, and the queue process. One may also consider a net­

work of queues • 

The problem is to estimate the queue process on the basis of the de­

parture process. The theory of stochastic filtering is also used to prove 

a certain result for so-called Jackson networks. 

For references on the application of stochastic filtering to queueing 

problems see [7, 9]. 

EXAMPLE 2.6. A Miscellaneous Model 

We finally mention a model that has been addressed in the literature. 

Here the signal process xis a finite state or denumerable state Markov pro­

cess. The observed process y is denumerably valued and related to x by the 

equation yt = h(t,xt). 

The problem then is to estimate the signal process given past observa­

tions. For references on this problem see [25, 26]. In this paper we will 

not discuss this model any further. 

3. MODELLING OF JUMP PROCESSES 

In this section we answer the question: How to model a jump process? 

In the sequel we limit attention to continuous time processes. We assume given 

a complete probability space (Q,F,P). In this paper we will not be very de­

tailed about technical conditions. The reader is referred to the references 

[3, 10, 13, 18, 21, 23] for definitions and results. 
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3.1. Single Unit Jump Case 

We start the modelling of jump processes with a rather elementary case. 

Let x: Q x T + R, on T = R+' be a process with a single unit jump, with 

x0 = 0. Define the jump time as 

T (w) := [inf{t E T I xt (w) -/- x0 (w)}, 

+00 if xt(w) = xo(w) for all w E Q, 

and the jump distribution function as f ( t) :;: P ( {T ::; t}) . 

We then have the following characterization. 

THEOREM 3.1. 

(a) Given the single unit jump process described above. Then there exists 

an unique process x: Q x T + R+ such that 

X = X + ID 

where (mt,Ft,tE T) E M1 , meaning it is a martingale. Actually xis given 

by 

I 
(0,tAT] 

-1 
[1-f(u-)J. f(du). 

Here (Ft, t E T) is an increasing a-algebra family. 

(b) The process x uniquely characterizes the measure P. [11, 18:III]. 

The decomposition (*) above is called the special semimartingale de­

composition. This decomposition will play a fundamental role throughout this 

discussion. 

To further clarify jump processes with a single unit jump, we illustrate 

the classification of jump times, as introduced in [13], with some examples. 

1. Totally inaccessible jump times. Example: f(t) = 1 - exp(-t). Here the 

distribution of the jump is diffuse on R+. 

2. Predictable jump times. Example: Jump distribution f (t) = I[ ) (t) , 
C ,ro 

for some c ER+. Intuitively this jump can be predicted with certainty. 
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n 
3. Accessible jump times. Example: Jump distribution f(t) = Ek=l akI[uk,"")(t) 

with O < u 1 < u2 < ••• < un < 00 , and ~ E R with E~=l ak = 1. In this case the 

jump is not predictable but can only occur at certain time moments. 

From the above classification one may deduce that in general one uses 

totally inaccessible jump times. 

3.2. The Counting Process Case 

The modelling of jump processes introduced above may be extended to 

counting processes. A stochastic process is a counting process if it starts 

at time zero, is piecewise constant, and has positive unit jumps. By conven­

tion it is taken to be right continuous. A counting process is also called 

a point process. 

THEOREM 3.2.1. Given a counting process (nt,Ft,tE T). 

(a) There exists an unique increasing predictable process a: Q x T + R+ 

such that 

n = a + m 

with (mt,F t't ET) E Mluloc' mealiing m is a local martingale [23]. 

(b) If there exists a process A: Q· x F ➔ R+ such that 

t 

a = f Ads t s 
0 

then we call A the rate process associated with (nt,F t't ET). In this 

case we obtain the representation 

= 0. 

(c) The process a characterizes uniquely the measure P with respect to the 

counting process n. 

References [11, 18]. The decomposition (*) and(**) above are called 

special semimartingale decompositions. 
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EXAMPLE 3.2.2. Let n: Q x T ➔ R, >..: Q x T ➔ R be processes such that 
+ 

t 

E[exp(iv(nt-ns)) F: VF~]= exp((eiv_1) (J >..,d1)). 

s 

Thus, conditioned on F~, n is a Poisson process with rate>... Such a process 

is called a doubly stochastic Poisson process. This description is equiva­

lent with thei description 

with (m Fn V FA t ET) EM 
t' t 00 ' 1uloc· 

3.3. Arbitrazy Jump Processes 

We first mention several descriptions of jump processes. 

1. The marked point process description: given {x ,s ,n E z } , 
n n + 

presents the interarrival time between the n-1 and then-th 

the value or mark at the n-th jump. Let , 0 ::::; 0, ans for n E z + 

to be called then-th jump time. 

wheres re­
n 

jump, and x . n 
n 

'n = ~k=1 sk, 

2. The jump process description: given the process x: Q x T ➔ R such that 

I X I ( <t ) . n T - <T l nEZ+ n n-

3. The jump measure description: given the random measure p: Q x BT® B ➔ R +, 

p(w,A) = IA(T (w),x (w)). 
n n 

nEZ+ 

The above descriptions can be shown to be equivalent. The sought for 

characterization reads then as follows. 

THEOREM 3.3.1. Given a jump measure p: QxB ®B ➔ R. 
T + 

(a) There exists an unique predictable random measure p: Q x B ® B ➔ R such 
T + 

that 

p(w,dtxdz) = p(w,dtxdz) + q(w,dtxdz) 



with (q(w, 0,t]xA), Ft, t ET) E Mluloc for all A EB. 

(b) The random measure p uniquely characterizes the measure P. 

[18:III]. 

3.4. Modelling of the Rate Process 

7 

Consid1:!r a counting process n which admits a rate process A, say with 

representation 

= 0. 

The question then is how to model the rate process. We present several models 

for the rate process that are used in the literature. 

1. The constant rate process: At= AO for all t ET, with some distribution 

for AO specified. 

2. The rate process as a finite o.r denumerable state Markov process. 

3. The energy model: At= µ0 + µ 1 x~ with µ 0 ,µ 1 E (0, 00 ) and x a Gauss-Markov 

or a diffusion process. 

4. The linear model: At= µ0 + µ 1xt, with µ 0 ,µ 1 E (0, 00), and x a diffusion 

process. The problem with this model is that the rate process has to be 

stopped if it becomes negative; hence it is not a useful model. 

As an illustration we present one example of a model for a counting 

process. 

EXAMPLE 3.4.1. The Poisson-FSMP Model. Given the process, n: ~ x T + R, with 

no = 0, 

t 

E[exp(iv(nt-ns)) IF: v F~] = exp((eiv_l) (I 
s 

A dT) ) , 
T 

for all t > s, v ER, 

andtheprocess A: ~xT: X :~ {r1 ,r2 , ••• ,rm} c (0,oo) which is a finite state 

Markov process on (At,Ft v Ft, t ET). Under certain differentiability con­

ditions on the semigroup of the Markov process we may represent these pro­

cesses as 
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where 

0, 

n = 0, 
0 

mxm 
~: TXT ➔ R 

i 
if E[z] > 0, s ~ t, 

s 

otherwise, 

A(t) := lim [~(t,s) - I]/(t-s), 
s➔t 

n A 
(mt,Ft VFt' tE T) E Mluloc' 

3.5. Stochastic Dynamical Systems 

The preceding representations of jump processes may be considered as 

stochastic dynamical systems. The concept of a stochastic dynamical system 

we define below. For a discussion of this notion and a formulation of the 

stochastic realization problem see [37]. 

DEFINITION 3 .. 5 .1. A stochastic dynamical system (in continuous time) is a 

collection 

{n,F,P,T,Y,B ,Y,X,B} 
y - X 

where {rl,F,P} is a complete probability space, Tc Ran interval, {Y,B} a 
y 

measurable space with Ya vector space, Y c {y: T ➔ Y}, {X,B} a measurable 
- X 

space, such that if x: n x T + X, y: n x T + Y are stochastic processes then 



for all t ET; equivalently, if 

Xt 
F = cr({xt}), Fx 

t 

t 
Ft:,y = cr({ys -yt' Vs 

FY V 
Ys 

= F 
t s:S;t 

X 

= V F s 
s:S;t 

> t})' 

X 
V F s 

s>t 
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NOTATIONS. (n,F,P,T,Y,B ,Y,X,B) € rs, and we call X the state process and 
y - X 

y the output process. 

In the sequel we assume that Y = Bk the Borel a-algebra on Y, 
n 

X = R, and B = B. 
X n 

The above definition expresses that the distribution of a future state 

and a future output increment conditioned on past states and past outputs, 

depends only on the current state; This property is the characteristic of 

a stochastic dynamical systems. An immediate consequence of this definition 

is that the state process is a Markov process. For a stochastic dynamical 

system one may also formulate the concepts of stochastic observability and 

stochastic reconstructability, see [37]. However for a number of concepts 

related to a stochastic dynamical system precise formulations are not yet 

clear. 

4. THE STOCHASTIC FILTERING PROBLEM 

DEFINITION 4.1. Given a stochastic dynamical system, 

(n,F,P,T,Y,B ,Y,X,B) € rs. 
y - X 



10 

(a) The stochastic filtering problem for this system is to determine 

n 
for all u ER, t ET. 

(b) A past output based filter system for the stochastic filtering problem 

defined above is a stochastic dynamical system 

cn,F,P,T,Y,B ,Y,Z,B) E ES 
y - z 

such that if y: n x T ➔ Y, z: n x T -+ z are the underlying processes then 

Fzt c F~ for all t ET. 

In part (a) above to determine the conditional characteristic function 

means to exhibit the analytic form of the map 

y ➔ E[exp (iu' xt) I ·Fyt]. [O,t] 

A filter system always exists, because we can take Z = Y. It is therefore 

of interest to find a filter state space Z which is in some sense minimal. 

The concept of the dimension of such a state space is not yet clear. For a 

stochastic filtering problem with ·continuous observations it has been sug­

gested to relate the dimension of a filter system to the dimension of the 

Lie algebra associated with the operators occurring in the equation for the 

conditional density. For this issue there still are many open questions. 

How to resolve the stochastic filtering problem? The general procedure 

is to derive an equation for E[exp(iu'xt) IF~], and to solve this equation. 

We present two methods to effect this program. 

5. THE SEMIM.i\RTINGALE REPRESENTATION METHOD 

In this section we present the semimartingale representation method 

to resolve the stochastic filtering problem. Initially we do not work with 

the state process but with an arbitrary special semimartingale process. The 

problem we then consider is to find the special semimartingale decomposition 
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of the projection of this process on the cr-algebra family generated by the 

observations. For specific stochastic dynamical systems this abstract re­

presentation can be applied to yield a partial stochastic differential equa­

tion for the conditional characteristic function. Below we first state two 

abstract representation results, and subsequently show how these results 

are applied to obtain filtering algorithms. 

5.1. The Counting Process Case 

We summarize the main result. For a precise statement see the refer­

ences mentioned below. 

MODEL 5.1.1. Given a counting process model 

where n represents a counting process, assumed to have totally inaccessible 

jump times, A the rate process, and xis a semimartingale with the indicated 

decompo_si tion. 

PROBLEM 5.1.2. To obtain the special semimartingale representation of the 
n projection of the process x on the cr-algebra family (Ft, t e: T} • For the pro-

jection we take the so-called optional projection [13], which we denote by 

(xt' te:T}. Then it follows that xt = E[xt IF~] a.s. for all t e: T. 

RESULT 5.1.3. The solution to the above formulated problem is given by 

References [6, 21, 27, 29, 30, 31, 38, 39]. 
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5.2. The Jump Process Case 

MODEL 5.2.1. Given the processes 

x = x 0 + a + m 

p(w,dtxdz) = h(w,t,z)µ(w,dtxdz) +q(w,dtxdz), 

d<m,q(w, (O,t] xA)>t = J 1/J(w,s,z)µ(w,dtxdz), 

A 

where xis a semimartingale, the second line a jump measure description of 

a jump process, and the third line represents the relation between the jump 

process and the semimartingale. We assume that the jump times are totally 

inaccessible. 

PROBLEM 5.2.2. To determine the semimartingale representation of the projec­

tion of the process x on the cr-algebra family generated by the jump process. 

RESULT 5.2.3. The solution to the above formulated problem is given by the 

representation 

t 

xt = x0 +at+ J J icw~s-,z)~(w,dsxdz), 

0 R 
-q(w,dtxdz) = p(w,dtxdz) - h(w,s,z)µ(w,dtxdz), 

I y --1 
+ E[i/J(w,t,z)h(w,t,z) Ft]]h (w,t,z). 

For a precise statement of this result see [3]. Related references are 

[8, 17, 41]. 

5.3. Examples 

We present the solutions to stochastic filtering problems for certain 

examples. 



EXAMPLE 5.3.1. The Poisson-FSMP model. This model has been formulated in 

3.4.1 and reads as follows, 

= A(t)ztdt + ~(t,O)dm , 
lt 

= 0. 

The solution to the stochastic filtering problem for this model is 

m Aj 
l exp(iu.r.)zt' 

j=l J J 

13 

Reference [28]. The above result can be extended to the case where A 

is a denumerable state Markov process. An application of this model is in 

the estimation problem for the industrial model. formulated in (2.2). 

EXAMPLE 5.3.2. The Poisson-Gamma model. This model is rather elementary. We 

use it to illustrate the solution procedure for the stochastic filtering 

problem by the semimartingale representation method. The model is specified 

by 

where n is a counting process, x its associated rate process, a E (-m,O), 

x0 : Q + R+ a random variable with a Gamma distribution function, with dens­

ity function p(v) =B-rvr+le-v/B/r(r), r, BE (O,m). Of course xt=exp(at)x0 • 
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We sketch the solution procedure. Set 

c: S°2XTXR-+ c, 

Then 

Applying the semimartingale representation result to the process c(u) we 

obtain 

-r = ( 1 - iuf3) , 

(dnt + ic~- (0) dt) , 

This is a partial stochastic differential equation, driven by a counting 

process. 

The solution to the stochastic filtering problem for the above model 

then is 

-(nt +r) 
E[exp (iuxt) I F~] = ( 1 - iuf3 (t)) 

aco> = a. 

Then it follows that 

satisfies the stochastic differential equation, 
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References [15, 27]. 

EXAMPLE 5.3.3. The firefly model: according to (2.4) we have 

p(w,dtxdz) 2 -~ 2 2 = (2mr(t) ) exp(-(z-xt) /2cr(t) )dtdz+q(w,dtxdz), 

where a ER_, BER, vis a standard Brownian motion process, x0 : n + R is 

a random variable with a Gaussian distribution. The solution to the stoch­

astic filtering problem is 

[ (. ) I Fyt] ( . - 1 2- ) E exp iuxt = exp iuxt - 2 u rt, 

dxt = axtdt + kt- f (z-xt_)q(w,dtxdz), 

R 

drt [2a;t + B2 -2 2 - -1 + k r f q(w,dtxdz), = rt(cr(t) + rt) ]dt t- t-
R 

q(w,dtxdz) p (w,dtxdz) 2 - -~ - 2 (2~(cr(t) +rt)) exp(-(z-xt) / = -

Reference [41]. The Gaussian density and the Gaussian distributions 

are essential here. The filter system has some analogy with the Kalman-Bucy 

filter system. It differs from this filter system in that the equation for 

the conditional covariance depends directly on the observations. A serious 

difficulty is the integration over the jump measures. 

EXAMPLE 5.3.4. A model for optical communication: 
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= 0, 

where vis a standard Brownian motion process, and x0 : n ➔ Risa Gaussian 

distributed random variable. The solution to the stochastic filtering prob­

lem for this model is only known locally, between jump times, 

ak. (t) ] , 
J 

n 
where (akj (t), Ft' t ET) are adapted stochastic processes for which equa-

tions are known, and g: T ➔ Risa determinstic function. Reference [4]. 

The characteristic function above is locally a convex combination of char­

acteristic.functions of gamma type. The resulting filter system does not 

seem to be finite dimensional. Aprpoximations to the solution may be at­

tempted. 

6. THE MEASURE TRANSFORMATION METHOD 

6.1. Introduction 

A second method to resolve the stochastic filtering problem is the 

measure transformation method. To introduce this method we first consider 

an elementary example. 

EXAMPLE 6. 1 • 1 • Consider the model with random variables n: n ➔ R +, A: n ➔ R + 

such that 

iu 
exp ( A ( e -1 ) ) , 

A has a Gamma distribution, with density function p(v) = S-rvr+le-v/S/r(r), 

with S,r E (O,=). Thus conditioned on A, n has a Poisson distribution. The 

problem is to determine 
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We sketch the method. Let p = Anexp(-A+l). Define a new measure P0 on (Q,F) 
-1 

by P0 (A) = E[IAp ]. Then it can be shown that: 1. P0 is 

with respect to the original measure P; 2. E0[exp(iun)] 
n A n A 

(F ,F) E I(P0), or F, F are independent under P0 ; 4. 

= (1-iuS/(S+l))-(n+r). 

absolute continuous 
iu = exp(e -1); 3. 

A P0 = P1 on F ;5. 

The above procedure may be considered as a measure theoretic formula­

tion of the Bayes method. The calculation in point five above is straight­

forward because under P0 , Fn and FA are independent. 

We can now formulate the measure transformation method to resolve the 

stochastic filtering problem. It consists of the steps: 

1. to perform a measure tranformation such that under the new measure the 

state process and the observed process are independent; 

2. to obtain a semimartingale representation for the unnormalized condi­

tional characteristic function with respect to the new measure. This re­

presentation will be in the form of a partial stochastic differential 

equation. 

The advantage of this method is that the calculations under the new 

measure are easier than under the old measure. Below we briefly sketch the 

measure transformation method for the case of counting process observations. 

6.2. The Counting Process Case 

THEOREM 6.2.1. Given the processes, with respect to a measure P1 , 

x: Q X T ➔ R, 
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where n is a counting process. 

(a) Then there exists a probability measure P0 on (n,F) such that: 

1. P1 « P0 with pt := E0[dPifdP0 IF~ v F:J = 

= exp(ft0 in (A(x.))dn - Jt0 [A(x ) - l]ds); s s s . 

2. under P0 , n is a standard Poisson process; 

3. (Fn, Fx) e: I (PO) ; 
00 00 

4. P1 = P0 on F:; 

5. E1 [e_xp (iuxt) I F~] = E0[exp (iuxt) pt I F~]/E0[pt I F~] 

(b) If in addition x has the representation 

with (m1 t, Ft, t e: T) e: M~ and suitable conditions on x0 , f, cf>, then we 

have the partial stochastic differential equation 

References [3, 5]. We call the process E0[exp (iuxt)pt I F~] the unnor­

malized conditional characteristic function. Note that if it is known, then 

by setting u = 0 one obtains the denumerator in (*), and thus the desired 

expression via again (*) 

7. OPEN QUESTIONS 

We mention some open questions for the stochastic filtering problem in 

the case of jump process observations. 
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1. Which stochastic dynamical systens lead to stochastic filter systems 

which are, in some sense, finite dimensional? One difficulty is that the 

concept of finite dimensionality is not yet clear. However the examples 

of 5.3 indicate what is understood by this term. The importance of the 

finite dimensionality of a filter system is clear from the viewpoint of 

applications. One would hope to obtain sufficient conditions for a sto­

chastic dynamical system such that the associated filter system is finite 

dimensional. It is possible that differential geometric concepts play a 

role in answering this question. 

2. Can stochastic realization be useful in resolving the stochastic filter­

ing problem? For second order processes stochastic realization theory 

has provided new insights for the stochastic filtering problem. For jump 

processes this approach is still undeveloped. 

3. How useful is the approximation of a rate process by a finite state 

Markov process? From a viewpoint of applications the most useful result 

is the filtering algorithm 5.3.1, for the case where the state process 

is a finite state Markov process. For the application of this result to 

concrete problems there are several questions of modelling and implement­

ation. 
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