
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

J .. K. LENSTRA, A.H.G. RINNOOY KAN

BW 121/80

AN INTRODUCTION TO MULTIPROCESSOR SCHEDULING

Pr·epri nt

~
MC

APRIL

2e boerhaave1straat 49 amsterdam

PJunted a:t .the Ma.thema.;t,i.c.a.l Centlte, 49, 2e BoeJt.ha.a.vu.tJz.a,a.t, Am.6.teJt.da.m.

The Ma.thema.;t,i.c.a.l Centlte, 6ou.nded .the 11-.th 06 FebJt.u.aJLy 1946, ..U a. non­
pJt.o6U ,in-6:U:t!.LUon a.,i.m,i.ng a.t .the pJtomo:Uon 06 pulLe ma.thema.;t,i.C-6 a.nd ,i,;t,6
a.ppUc.a.U.on.6. I.t ..U 1,pon60Jt.ed by :the Ne;thelli.a.nd6 GoveJt.nmen.t .thJt.ou.gh .the
Ne.thvri.a.nd6 01tga.n-i..za.;t,i.on 6oJt. .the Adva.nc.emen.t 06 PWLe Ruea.Jt.c.h (Z.W.O).

1980 Mathematics Classification Scheme: 90B35, 68C25

AN INTRODUCTION TO MULTIPROCESSOR SCHEDULING

J.K. LENSTRA

Mathematisc.h Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

·ABSTRACT

This is a tutorial survey of recent results in the area of multiprocessor

scheduling. Computational complexity theory provides the framework in which

these results are presented. They involve on one hand the development of new

polynomial optimization algorithms, and on the other hand the application of

the concept of NP-hardness as well as the analysis of approximation algo­

rithms.

KEY WORDS & PHRASES: parallel machines, jobs, precedence constraints,

preemption, maximum completion time, total completion time, computational

complexity, polynomial algorithm, NP-hardness, optimization, approximation.

NOTE: This report will appear in the proceedings of a conference.

1

1. INTRODUCTION

Throughout recent years, the theory of multiprocessor scheduling has been

in rapid development. This is partly due to the spectacular success of

computational complexity theory. Application of this theory has established

a sharp borderline between two classes of scheduling problems: the well­

solved problems, for which polynomial-time algorithms exist, and the NP-hard

problems, which are probably intractable in the sense that the existence of

polynomial algorithms is very unlikely. The former class has been contin­

ually expanded by the development of new polynomial optimization algorithms.

At the same time, for problems in the latter class many approximation

algorithms have been analyzed.

The outline of the paper is as follows. Section 2 gives a short intro­

duction to the theory of the computational complexity of combinatorial

problems; a more detailed treatment can be found in [Karp 1972, 1975; Garey

& Johnson 1979; Lenstra & Rinnooy Kan 1979]. The next three sections provide

a bri.ef survey of the results available for multiprocessor scheduling

problems. Section 3 deals with a number of basic models for scheduling jobs

on parallel machines. Section 4 considers the special case of unit process­

ing times and the influence of precedence constraints between the jobs.

Section 5 is devoted to the case in which preemption (job splitting) is

allowed and varying job release dates may be specified. Section 6 contains

some concluding remarks.

2

2. COMPUTATIONAL COMPLEXITY OF COMBINATORIAL PROBLEMS

The inherent computational complexity of a combinatorial problem obviously

has to be related to the computational behavior of algorithms designed for

its solution. This behavior is usually measured by the running time of the

algorithm (i.e., the number of elementary operations such as additions and

comparisons) as related to the size of the problem (i.e., the number of bits

occupied by the data).

If a problem of size n can be solved by an algorithm with running time

* O(p(n)) where pis a polynomial function, then the algorithm may be called

good and the problem well solved. These notions were introduced by Edmonds

[Edmonds 1965] in the context of the matching problem; his algorithm can be

implemented to run in O(n3) time on graphs with n vertices. Polynomial

algorithms have been developed for a wide variety of combinatorial optimiza­

tion problems [Lawler 1976]. On the other hand, many such problems can only

be solved by enumerative methods which may require exponential time.

When encountering a combinatorial problem, one would naturally like to

know if a polynomial algorithm exists or if, on the contrary, any solution

method must require exponential time in the worst case. Results of the lat­

ter type are still rare, but it is often possible to show that the existence

of a polynomial algorithm is at the very least extremely unlikely. One may

arrive at such a result by proving that the problem in question is NP-complete

[Cook 1971; Karp 1972]. According to the formal definition given below, the

NP-complete problems are equivalent in the sense that none of them has been

well solved and that, if one of them would be well solved, then the same

would be true for all of them. Since all the classical problems that are

notorious for their computational intractability, such as traveling sales­

man, job shop scheduling and integer programming problems, are known to be

NP-complete, the polynomial-time solution of such a problem would be very sur­

prising indeed. For practical purposes, this implies that in solving those

problems one may just as well accept the inevitability of a bad (superpoly­

nomial) optimization algorithm or resort to using a good (polynomial) ap­

proximation algorithm.

* The notation "q(n) = O(p(n})" means that there exists a constant c ;;c: 0

such that jq(n) I ~ c•p(n) for all n > 0.

The theory of NP-completeness deals primarily with recognition prob­

lems, which :require a yes/no answer. An example of a recognition problem

is the following:

PARTITION:

instance: positive integers a 1 , ... ,at,b

question: does there exist a subset Sc

with l ~=l

{1, ... ,t}

a = 2b· j ,

such that I . S a.
JE J

3

b?

PARTITION can be solved by complete enumeration in 0(2t-l) time or by dynam­

ic programming in O(tb) time [Bellman & Dreyfus 1962], but both running

times are exponential in the problem size, which is O(t log b).

An instance of a recognition problem is feasible if the question can

be answered affirmatively. Feasibility is usually equivalent to the exist­

ence of an associated structure which satisfies a certain property.

A recognition problem belongs to the class P if, for any instance of

the problem, its feasibility or infeasibility can be determined by a poly­

nomial algorithm. It belongs to the class NP if, for any instance, one can

determine in polynomial time whether a given structure affirms its feasibil­

ity. For example, PARTITION is a member of NP, since for any Sc {1, ... ,t}

one can test whether I. a.= bin O(t) time. It is obvious that Pc NP.
JES J

Problem P' is said to be reducible to problem P (notation: P' ~ P) if

for any instance of P' an instance of P can be constructed in polynomial

time such that solving the instance of P will solve the instance of P' as

well. Informally, the reducibility of P' to P implies that P' can be con­

sidered as a special case of P, so that Pis at least as hard as P'.

Pis called NP-hard if P' cr P for every P' E NP. In that case, Pis

at least as hard as any problem in NP.Pis called NP-complete if Pis NP­

hard and PE NP. Thus, the NP-complete problems are the most difficult prob­

lems in NP.
A polynomial algorithm for an NP-complete problem P could be used to

solve all problems in NP in polynomial time, since for any instance of such

a problem the construction of the corresponding instance of P and its solu­

tion can be both effected in polynomial time. We note the following two im­

portant consequences.

(i) It is very unlikely that P = NP, since NP contains many notorious com-

4

binatorial problems, for which in spite of a considerable research effort

no polynomial algorithms have been found so far.

(ii) It is very unlikely that PEP for any NP-complete P, since this would

imply that P = NP by the earlier argument.

The first NP-completeness result is due to Cook [Cook 1971]. He design­

ed a "master reduction" to prove that every problem in NP is reducible to

the so-called SATISFIABILITY problem. Starting from this result, Karp [Karp

1972] and many others (see, e.g., [Karp 1975; Garey & Johnson 1979; Lenstra

& Rinnooy Kan 1979]) identified a large number of NP-complete problems in

the followipg way. One can establish NP-completeness of some PE NP by

specifying a reduction P' ex: P with P' already known to be NP-complete: for

every P" E NP, P" ex: P' and P' ex: P then imply that P" ex: P as well. In this

way, PARTITION has been proved to be NP-complete [Karp 1972].

As far as optimization problems are concerned, one usually reformu­

lates, say, a minimization problem as a recognition problem by asking for

the existence of a feasible solution with value at most equal to a given

threshold. When this recognition problem can be proved to be NP-complete,

the corresponding optimization problem might be called NP-hard in the sense

that the existence of a polynomial algorithm for its solution would imply

that P = NP.

3. SOME BASIC MODELS

Suppose that n jobs or tasks J. (j = 1, .•. ,n) have to be processed on m
J

parallel machines or processors M. (i = 1, .•• ,m). Each machine can handle
1.

at most one job at a time; each job can be executed on any one of the ma-

5

chines. The problem types that will be dealt with in this survey are charac­

terized by a three-field classification a!BIY [Graham et al. 1979].

The first field a= a 1a 2 specifies

denote the time required to process J.

the machine environment. Let p,.
l.J

J
on Mi. Three possible values of a 1

will be considered:

P (identical machines): p .. = p., i.e.,
l.J J

M. is equal to the execution requirement
1.

Q (uniform machines): p,. = p./s., i.e.,
l.J J 1.

M. is equal to the execution requirement
1.

s. of M.;
1. 1.

the processing time of J. on
J

pJ. of J . , for all M. ;
J 1.

the processing time of J. on
J

pj of Jj divided by the speed

R (unrelated machines): p,. is arbitrary.
l.J

If a2 is a positive integer, then mis constant and equal to a 2 ; if a 2 is

empty, then mis variable.

The second field B indicates certain job characteristics. In this sec­

tion, B will be empty, which implies the following:

all p .. (or p.) are arbitrary nonnegative integers;
1.J J

no precedence constraints between the jobs are specified;

no preemption (job splitting) is allowed;

all jobs become available for processing at time O.

The notation to indicate which of these assumptions are not met will be

defined in later sections.

The third field y corresponds to the optimality criterion chosen. Any

feasible schedule defines a completion time c. of J. (j = 1, .•• ,n). We will
J J

consider the minimization of two criteria:

maximum completion time C = max{c 1, ••• ,c };
max n

total completion time Ic. = c 1+ ... +c.
J n *

The optimal value of y will be denoted by y , the value produced by an

(approximation) algorithm A by y(A).

Examples 1, 2 and 3 illustrate this problem classification. Gantt

charts are used to represent schedules in an obvious way.

6

Example 1. P2j IIc.
J

problem: minimize total completion time on two identical machines.

instance: n := 6; p. = j (j = 1, ••• , 6) •
J

optimal schedule:

Ml I J 1 I J3 JS

I J4 I J6 M2 J2

0 1 2 4 6 9 12 Ic~ 34

Example 2. QJl jc
max

J

problem: minimize maximum completion time on three uniform machines.

'instance: s 1 = 4, s 2 = 2, s 3 = 1; n = 7; pj = 4 (j = 1, ..• ,7).

optimal schedule:

M1 J 1 I J2 J3 I J4 + P/Sl 1

M2 JS J6 + p/s2 = 2

M3 J7 + P/s3 4

* 0 1 2 3 4 C
max

Example 3. RJ Jc
max

problem: minimize maximum completion time on m unrelated machines.

instance: m = 3; n = 8; P11 1, plj 1 (j 2, ... ,7), P1s 8,

P21 1 , p2j 2 (j 2, ... ,7), P2s 9,

P31 = 1 , P3j = 3 (j 2, ... ,7), P3g 9.

optimal schedule:

JS

J2 I J3 J4 I JS

J 1 I J6 J7 I
*

4

0 1 2 3 4 s 6 7 8 C = 8
max

Let us survey the results available for these basic models. It will turn

out that the Ic. problems are quite easy, while the C problems are very
J max

difficult.

7

The shortest processing time (SPT) rule solves Pl IIc. in O(n log n) time
J

in the following way [Conway et al. 1967]. Assume that n = tm (dunnny jobs

with zero processing times are added if not), renumber the jobs such that

p 1 ~ ••• ~ pn, and schedule them jobs J(k-l)m+l'J(k-l)m+2 , ••• ,Jkm in the

k-th position on them machines (k = 1, ••• ,t). Example 1 illustrates this

rule. An optimality proof is straightforward: in the criterion value Ic., the
J

processing time of a job in the k-th position on a machine is counted t+l-k

times, and hence Ic. is equal to the inner product of two n-vectors (t, ••• ,t,
J

t-1, ••• ,t-1, ••• ,1, .•• ,1) and (p1 , ••• ,pn); since the multipliers in the former

vector are nonincreasing, Ic. is minimal if the processing times in the lat-
J

ter one are nondecreasing.

This algorithm has been generalized to solve QI IIc. in O(n log n) time
J

as well [Conway et al. 1967; Horowitz & Sahni 1976].

The most general case RI IIc. can be formulated and solved as an mxn
J

linear transportation problem in O(n3) time [Horn 1973; Bruno et al. 1974].

Let

=f 0

if J. is in the k-th last position on M.,
J l.

otherwise.

Then the problem is to minimize

subject to

I:=1I~=l xijk = 1 (j = 1, ..• ,n),

I~=l xijk ~ 1 (i = 1, ••. ,m; k = 1, ••• ,n),

xijk ::?: 0 (i = 1, ••• ,m; j = 1, ••• ,n; k = 1, ••• ,n).

Thus, the minimization of Ic. requires polynomial time, even on m
J

unrelated machines. In contrast, the minimization of C is NP-hard, even
max

on two identical machines.

The NP-hardness proof for P21 le is trivial. Given any instance of max
PARTITION, defined by positive integers a 1 , ••. ,at,b (see Section 2), we con-

struct an instance of P21 le by defining n = t and p. = a. (j = 1, ••• ,n).
max J J

8

Clearly, there exists a subset Sc {1, ... ,t} with l- a.= b if and only if
JES J

there exists a schedule with C ~ b. It follows that PARTITION is reducible
max

to P21 jc , and since PARTITION is
max

NP-complete [Karp 1972], P21 jc is NP-
max

hard. This implies that all generalizations of P21 jc , such as P3I le ,
max max

... ,Pl le , Q21 le , ... ,RI le , are NP-hard as well.
max max max

As a consequence, it seems unavoidable that optimization algorithms for

these problems will be of an enumerative nature. A general dynamic programming

scheme [Rothkopf 1966; Lawler & Moore 1969] has wide applicability. For

Pl le , the scheme is as follows. Let
max

B.(t1 , ... ,t)
J m

with

f true

lfalse

if J 1 , ••• ,Jj can be scheduled on M1 , ••• ,Mm

suchthat M. isbusyfrom Oto t. (i=l, ••. ,m),
l l

otherwise,

= {true if ti= 0 (i

false otherwise.

= 1, ,m) ,

Then the recursive equation is

B.(t1 , ... ,t)
J m

m
V. l B. 1 (t1 , ... ,t. 1 ,t.-p.,t. 1 , ... ,t).
l= J- i- l J 1+ m

* Let C be an upper bound on the optimal value C . For j = 0,1, •.. ,n, compute
max

B.(t1 , ... ,t) fort.= 0,1, ... ,c (i = 1, •.. ,m), and determine
J m l

c* = min{max{t 1 , ... ,t }IB (t 1 , ... ,t)
max m n m

true}.

This procedure solves Pj le in O(nCm} time. For large values of C, a
max

branch-and-bound method may be preferable. All these optimization methods,

however, require prohibitive running times in the worst case.

As argued before, the NP-hardness of Pi le also justifies the use of
max

fast approximation algorithms. It has become fashionable to subject such an

algorithm to a worst-case analysis in order to derive a guarantee on its

relative performance. One of the earliest results of this type concerns the

solution of PJ le by list scheduling (LS), whereby a priority list of the
max

jobs is given and at each step the first available machine is selected to

9

process the first available job on the list [Graham 1966]:

C (LS)/c* S 2 l
max max m

For the longest processing time (LPT) rule, whereby the list contains the jobs

in order of nonincreasing p., the bound improves considerably [Graham 1969]:
J

cmax{LPT)/c:ax s} - 3~·

Examples 4 and 5 demonstrate that these bounds are the best possible ones.

Example 4. Pl le (LS)
max

_worst problem instance:

n = (m- 1) m+ 1 ;

(p 1 , ••• , p n) = (1 , •.. , 1 , m) •

approximate schedule:

Jl JS Jg

J2 J6 J10

J3 J7 J 11

J4 JS J12

0 1 2 3

C (LS) = 2m-1
max

Example 5. PI IC (LPT)
max

worst problem instance:

n = 2m+1;

J13

optimal schedule:

I Jl J4 J7

J2 JS JS

J3 J6 Jg

J13

7 0 1 2

* C = m max

(p 1 , .•• ,pn) = (2m-1,2m-1,2m-2,2m-2, ••. ,m+1,m+1,m,m,m).

approximate schedule:

Jl

J2

J3

J4

0 6 7

C (LPT) = 4m-1
max

J7 Jg

JS

JS

J6

11

optimal schedule:

I Jl

J2

J3

J7 I
15 0 4

* C = 3m
max

J10

J11

J12

3 4

JS

J6

I J4

JS I Jg

6 7 S 12

10

4. UNIT PROCESSING TIMES AND THE INFLUENCE OF PRECEDENCE CONSTRAINTS

The results of Section 3 suggest that additional simplifying assumptions are

necessary to solve PJ Jc optimally in polynomial time. In this section, we
max

assume that all jobs have unit processing times, which will be indicated in

the second field of our problem classification by p.=1. This assumption also
J

allows us to investigate the influence of precedence constraints-between the

jobs. It turns out to be useful to distinguish between two types of precedence

constraints:

prec (arbitrary precedence constraints): a directed acyclic graph G with

vertices 1, •.. ,n is given; if G contains a directed path from j to k,

we write Jj + Jk and require that Jj is completed before Jk can start;

tree (tree-like precedence constraints): G is a rooted tree with outde­

gree at most one for each vertex.

Examples 6 and 7 below will illustrate these concepts.

One of the oldest results in this problem category is the solution of

PJtree,p.=1Jc in O(n) time [Hu 1961]. Hu's algorithm involves critical
J max

path scheduling: define the level ,Q,, of J. as the number of vertices on the
J J

unique path from j to the root of the tree, and apply list scheduling to a

list which contains the jobs in order of nonincreasing £ .• Example 6 illus­
]

trates this algorithm.

Example 6. P J tree, p . = 1 I C
J max

instance: m =, 2; n = 6; G: => j 1 2 3 4 5 6

,Q,, 3 3 2 2 2 1
J

optimal schedule:

Ml Jl J3 JS J6

M2 J2 J4

* 0 1 2 3 4 C 4
max

The second basic result is the solution of P2Jprec,p.=1Jc in polynomial
J max

time. An O(n3) algorithm [Fujii et al. 1969,1971] is as follows: construct

11

an undirected graph H with vertices 1, ••• ,n and edges {j,k} whenever neither

Jj + Jk nor Jk + Jj, and derive an optimal schedule from a maximum cardinality

matching (i.e., a set of vertex-disjoint edges) in H. Example 7 illustrates

this algorithm. We note that the problem can still be solved in O(n3) time

if, in addition, each job is constrained to be processed between its release

date and its due date [Garey & Johnson 1977].

Example 7. P2jprec,p.=llc
J max

instance: n = 6; G: 1 '"°' H:

optimal schedule:

Jl J3 JS

J2 J4 J6

* 0 1 2 3 C = 3 max

For any constant m ~ 3, the complexity of Pmlprec,p.=llc is an open ques-
J max

tion. However, Plprec,p.=llc is known to be NP-hard [Ullman 1975; Lenstra
J max

& Rinnooy Kan 1978]. The latter proof implies that no polynomial approximation

algorithm for Plprec,p.=llc could ever achieve a worst-case bound better
4 J max

than 3, unless P =NP.For critical path scheduling (CP), it has been shown

[Chen 1975; Chen & Liu 1975] that

* C (CP) /C
max max

and these bounds are tight.

1
m-1

for m = 2,

form~ 3,

12

5. PREEMPTION AND THE INFLUENCE OF RELEASE DATES

We now consider a second modification of the multiprocessor scheduling models

that will lead to several polynomial optimization algorithms. More specifi­

cally, we assume that unlimited preemption is allowed: the processing of any

job may arbitrarily often be interrupted and resumed at the same time on a

different machine or at a later time on any machine. This will be indicated

in the second field of our problem classification by pmtn.

It has been shown that for Plpmtnlic. there is no advantage to preemption
J

at all [McNaughton 1959]. Hence, the nonpreemptive SPT rule of Section 3 can

be applied to solve the problem in O(n log n) time.

A preemptive version of the SPT rule solves Qlpmtnlic. in O(n log n + mn)
J

time [Gonzalez 1977]: place the jobs in SPT order, and schedule each successive

job preemptively so as to minimize its completion time. The resulting schedule

contains at most (m-1) (n-~) preemptions. Example 8 illustrates this rule.

Very little is known about Rlpmtnlic .• This is one of the more intriguing
J

open problems in the area of multiprocessor scheduling.

Example 8. Qlpmtnlic.
J

instance: m = 3; s 1 = 3, s 2 = 2, s 3 = 1; n = 4; p 1 = 3, p 2 % p 3 = 8, p 4 = 10.

optimal schedule:

Jl J2

J2 J3

J3 J4

0 1 3

J3 J4

J4

4

I

6 Ic~ = 14
J

Plpmtnlc and Qlpmtnlc are distinguished because in both cases there is . max max
* a simple closed form expression which is an obvious lower bound on C where-
max

as a schedule meeting this bound can be constructed in polynomial time. For

P I pmtn IC , we have max

The wrap-around rule solves the problem in O(n) time [McNaughton 1959]: fill

the machines successively, scheduling the jobs in any order and splitting a

13

job whenever the above time bound is met. There will be at most m-1 preemp­

tions. Example 9 illustrates this rule.

Example 9. Plpmtnlc · max
* instance: m = 3; n = 6; p . j j (j 1, ••. ,6) ~ C
max

optimal schedule:

J 1 I J2 J3 , J 4

Jr4 JS

JS I J6

0 1 2 3 4 s 6 7

For Qlpmtnlc , we have
max

* C
max

where s 1 ~ ... ~ sm and p 1 ~ ... ~ pn. If the machines and jobs are ordered

in this way, a complicated algorithm solves the problem in O(n) time [Gonza­

lez & Sahni 1978]. It generates at most 2(m-1) preemptions.

Rlpmtnlc can be formulated as a linear programming problem [Lawler &
max

Labetoulle 1978]. Let

x .. = time spent by J. on M ..
lJ J l

Then the problem is to minimize

C
max

subject to

I~=l xi/Pij = 1 (j 1, ••. ,n),

r:=1 x .. :,; C (j = 1, •.. ,n),
l] max

r;=l X .. :,; C (i 1, ... ,m),
lJ max

X .. ~ 0
l]

(i 1, ... ,m; j 1, ... ,n).

Khachian has shown that linear programs can be solved in polynomial time

* [Khachian 1979]. Given a solution (xij), a feasible schedule can be con-

14

structed in polynomial time as well [Gonzalez & Sahni 1976]. There will be
7 2

no more than about 2m preemptions.

We may extend the preemptive scheduling models by assuming that J, becomes
J

available for processing at a given integer release dater. (j = 1, ••• ,n).
J

This will be indicated in the second field of the classification by r .• The
J

resulting models are far from trivial, and we restrict ourselves to mention-

ing the most important results.

When scheduling subject to release dates, one can distinguish between

three types of algorithms. An algorithm is on-line if at any time only in­

formation about the available jobs is required. It is nearly on-line if in

'addition the next release date has to be known. It is off-line if all infor­

mation is available in advance.

Plpmtn,r. Jie. and Qjpmtn,r. !Ie. are very much open. All we know about
J J J . J

these problems is that no on-line algorithm exists, even for the case of two

identical machines [Labetoulle et al. 1979].

Pjpmtn,,r. Je can be solved by an O(mn) on-line algorithm [Horn 1974;
J max

Gonzalez & Johnson 1977], and Qjpmtn,r. je by an O(n2) nearly on-line
J max

algorithm [Sahni & Cho 1979; Labetoulle et al. 1979].

Finally, we assume that in addition J. has to be completed not later
J

than a given due dated. (j = 1, ... ,n), and we replace the objective of
J

minimizing C by testing for the existence of a feasible preemptive sched-
max

ule with respect to release dates and due dates. It has been shown that no

nearly on-line algorithm exists, even for the case of two identical machines

[Sahni 1979]. However, off-line algorithms are still available: Pjpmtn,r.,d.1-
J J

is solvable by an O(n 3) network flow computation [Horn 1974], and

Qlpmtn,r.,d. I- by means of an O(n6) "generalized" network flow model [Martel
J J

1979].

15

6. CONCLUDING REMARKS

We have surveyed a few of the many recent results in the area of multipro­

cessor scheduling. There are several topics that we have not dealt with; in

particular, we mention the extension of the model to include additional

resource constraints, for which many results are now available [Graham

et al. 1979; Blazewicz et al. 1980]. The development of increasingly

sophisticated algorithmic techniques combined with a further application

of the tools from computational complexity theory should continue to render

the area of multiprocessor scheduling an interesting one to theoreticians

and practitioners alike.

ACKNOWLEDGMENT

This research was partially supported by NATO Special Research Grant 9.2.02

(SRG. 7) •

16

REFERENCES

R.E. BELLMAN, S.E. DREYFUS (1962) Applied Dynamic Programming, Princeton

University Press, Princeton, N.J.

J. BLAZEWICZ, J.K. LENSTRA, A.H.G. RINNOOY KAN (1980) Scheduling subject to

resource constraints: classification and complexity. Report,

Matheri1atisch Centrum, Amsterdam.

J. BRUNO, E.G. COFFMAN, JR., R. SE':'HI (1974) Scheduling independent tasks to

reduce mean finishing time. Comm. ACM 17,382-387.

N.-F. CHEN (1975) An analysis of scheduling algorithms in multiprocessing

computing systems. Technical Report UIUCDCS-R-75-724, Department of

Computer Science, University of Illinois at Urbana-Champaign.

N.-F. CHEN, C.L. LIU (1975) On a class of scheduling algorithms for

multiprocessors computing systems. In: T.-Y. FETJG (ed.) (1975)

Paralle.I Processing, Lecture Notes in Computer Science 24, Springer,

Berlin, 1-16.

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling, Addison­

Wesley, Reading, Mass.

S.A. COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd

Annual ACM Symp. Theory of Computing, 151-158.

J. EDMONDS (1965) Paths, tre'"s, and flowers. Canad. J. Math. 17,449-467.

M. FUJII, T. KASAMI, K. NINOMIYA (1969,1971) Optimal sequencing of two

equivalent processors. SIAM J. Appl. Math. l.Z_,784-789; Erratum. lQ_,141.

M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with start-times

and deadlines. SIAM J. Comput. _§_,416-426.

M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a Guide to the

Theory of NP-Completeness, Freeman, San Francisco.

T. GONZALEZ (1977) Optimal mean finish time preemptive schedules. Technical

Report 220, Computer Science Department, Pennsylvania State University.

T. GONZALEZ, D.B. JOHNSON (1977) A new algorithm for preemptive scheduling

of trees. Technical Report 222, Computer Science Department,

Pennsylvania State University.

T. GONZALEZ, S. SAHNI (1976) Open shop scheduling to minimize finish time.

J. Assoc. Comput. Mach. 23,665-679.

T. GONZALEZ, s. SAHNI (1978) Preemptive scheduling of uniform processor

17

systems. J. Assoc. Comput. Mach. ~,92-101.

R.L. GRAHAM (1966) Bounds for certain multiprocessing anomalies. Bell System

Tech. J. ~,1536-1581.

R.L. GRAHAM (1969) Bounds on multiprocessing timing anomalies. SIAM J. Appl.

Math. 17,263-269.

R.L. GRAHAM, E.L. LAWLER, J .K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Optimization and approximation in deterministic sequencing and

scheduling: a survey. Ann. Discrete Math. ~,287-326.

W.A. HORN (1973) Minimizing average flow time with parallel machines.

Operations Res . ..?_!_,846-847.

W.A. HORN (1974) Some simple scheduling algorithms. Naval Res. Logist. Quart.

21,177-12:5.

E. HOROWITZ, S. SAHNI (1976) Exact and approximate algorithms for scheduling

nonidentical processors. J. Assoc. Comput. Mach. 23,317-327.

T.C. HU (1961) Parallel sequencing and assembly line problems. Operations

Res. 9,841-848.

R.M. KARP (1972) Reducibility among combinatorial problems. In: R.E. MILLER,

J.W. THA'I'CHER (eds.) (1972) Complexity of Computer Computations, Plenum

Press, New York, 85-103.

R.M. KARP (1975) On the computational complexity of combinatorial problems.

Networks 5,45-68.

L.G. KHACHIAN (1979) A polynomial algorithm in linear programming. Soviet

Math. Dokl. 20,191-194.

J. LABETOULLE, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Preemptive scheduling of uniform machines subject to release dates.

Report BW 99, Mathematisch Cent.rum, Amsterdam.

E.L. LAWLER (1976) Combinatorial Optimization: Nebvorks and Matroids, Holt,

Rinehart and Winston, New York.

E.L. LAWLER, J. LABETOULLE (1978) On preemptive scheduling of unrelated

parallel processors by linear programming. J. Assoc. Comput. Mach.

25,612-619.

E.L. LAWLER, J.M. MOORE (1969) A functional equation and its application to

resource allocation and sequencing problems. Management Sci. lS,77-84.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) Complexity of scheduling under

precedence constraints. Operations Res. 26,22-35.

18

J.K. LENSTRA, A.H.G. RINNOOY KAN (1979) Computational complexity of discrete

optimization problems. Ann. Discrete Math. _!,121-140.

C. MARTEL (1979) Generalized network flows with an application to multi­

processor scheduling. Computer Science Division, University of

California, Berkeley.

R. McNAUGHTON (1959) Scheduling with deadlines and loss functions.

Management Sci. §_,1-12.

M.H. ROTHKOPF (1966) Scheduling independent tasks on parallel processors.

Management Sci. _!2,437-447.

s. SAHNI (1979) Preemptive scheduling with due dates. Operations Res.

'!:]__, 925-934.

·s. SAHNI, Y. CHO (1979) Nearly on line scheduling of a uniform processor

system with release times. SIAM J. Comput . .§_,275-285.

J.D. ULLMAN (1975) NP-complete scheduling problems. J. Comput. System Sci .

.!..Q_,384-393.

