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Linear programming and undiscounted stochastic games in which one player 

controls transitions*) 

by 

O.J. Vrieze 

ABSTRACT 

This paper considers non-cooperative two-person zero-sum undiscounted 

stochastic games with finite state and action spaces. It is assumed that 

one player governs the transition rules. We give a linear programming al

gorithm and show, that an optimal solution to this program corresponds to 

the value of the game and to optimal stationary strategies for both players. 

Moreover, this linear programming formulation results in an existence proof 

of the value and of optimal stationary strategies for both players. 
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1. Introduction and preliminaries 

This paper considers non-cooperative two-person zero-sum stochastic 

games with finite state and action spaces, where the transition proba

bilities are governed by one player. 

More formally, we consider games r = <S,{A (k),nE {1,2}},kE S,r,P>, 
n 

where S = {1, ... ,N} is called the state space: A (k) = {1, ... ,m (k)} 
n n 

is the set of pure actions for player n in state k; r : T ➔ IR is a 

real-valued function with T = {(k,i,j); k ES, i EA 1(h), jEA2 (k)} and 

r is cal led the payoff function; P = {p(t I k, i ,j); .Q, ES, (k, i ,j) ET} 

prescribes the transition rules, i.e. p(t I k, i ,j) 2:: 0 and 
N 
E p(t I k,i,j) = 1, so p(t I k,i,j) denotes the chance that the system 

.Q,=1 
will move to state .Q,, if in state k player 1 chooses pure action 

i E A1 (h) and player 2 pure action j E A2(k). 

Throughout this paper we wi 11 assume that p(t I k, i ,j) does not 

depend on i, i.e. player 2 governs the transition rules. In consequence 

we wi 11 suppress the subscript i in p(t I k, i ,j), e.g. 

P = {p(t I k,j); (t,k) Es x s, j E A2(k)}. 

The course of the play proceeds as usually in stochastic games. 

We will examine the undiscounted version of such stochastic games and 

the 1 imit expected average payoff criterium will be used. 

The notions of behavioral strategy, stationary strategy, limit expected 

average payoff, value und (e-) optimal strategies will be adopted in 

the usual way. 

The proof of the following lemma can be found in STERN [5], 

BEWLEY and KOHLBERG [1] and PARTHASARATHY & RAGHAVAN [4]. 
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Lemma 1. 1. A two-person zero-sum undiscounted stochastic game with 

finite state and action space, where the transition probabilities 

depend on one player only, has a value and both player posses optimal 

stationary strategies. 

A stationary strategy for player n will be denoted as TT , where . n 

TT = ( TT n ( 1 ) , ... , TT n ( N) ) and TT ( k) = ( TT (k 1 ) , ... , TT ( k , m ( k) ) ) w i th 
n n n ' n n 

mn (k) 
TT (k,i) 2: 0 and z:; TT (k,i) = 1. 

n i =1 n 

The set of behavioral (history dependent) strategies for player n will 

H be denoted as IT • 
n 

IT will denote the set of stationary strategies for player n. 
n 

If nn is such that for each kES there exist a ikEAn(k) with nn(k,ik)=l, 

then TT is called a pure stationary strategy and such a strategy will be 
n 

notated as TIP. Let ITP be the finite set of pure stationary strategies n n 

for player n. 

For a stationary strategy n2 of player 2, we denote by P(n 2) the 

N x N - matrix of transition probabilities, 
m2 (k) 

eq ua l s z:; p ( £ I k , j ) . TT 2 ( k , j ) . 
j=l 

Q(n 2 ) will denote the Cesaro-1 imit 

where the (k,£)-th element 

n 
I 

k=O 

For a pair of stationary strategies (n 1 ,n2) the 1 imit expected 

average payoff will be notated as V(n 1 ,n2) = (V 1 (n 1 ,n 2), ... ,VN(n 1,n 2)), 

where Vk(n 1 ,n2) corresponds to the game starting in state k. 

It is known, that V(n 1 ,n 2) = Q(n 2).r(n 1 ,n 2), where r(n 1,n 2) is a 

N-vector with ask-th component: 

m1 (k) m2 (k) 
I I n 1 (k,i).n2 (k,j).r(k,i,j). 

i =1 j=l 
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The value of the game will be denoted as V(r) = (V 1 (r), ... ,VN(r)). 

The fol lowing lemma, which looks obviously, but needs a precise 

argument, can be found in VRIEZE [6]. 

Lemma 1. 2. For a stationary strategy TT 1 ( TT 2) of player 1 (2) it holds: 

mi nH V(TT 1 ,TT 2) = min V(TT 1 ,TT 2). ( max V(TT1 ,TT 2) = max V(TT~,TT 2)). 
TTP EITP H TTP Eilp TT 2El12 2 2 TTlEill 1 1 

In [2], RAGHAVAN and FILAR gave an algorithm for solving undis

counted stochastic games, where one player controls the transition 

rules; solving means finding the value and optimal stationary strategies 

for the both players. Their algorithm is finite in the sense that it 

needs a finite number of basic computations. 

The procedure of FILAR and RAGHAVAN consists of four steps: 

In the first step for each (TT~,TTi) E rr~x rri the payoff V(TT~,TTi) is 

computed. In the second step for each state kE Sa matrix game is 

constructed from the numbers Vk(TT~,TTi). It turns out that the value 

of this matrix game equals Vk(r) and that an optimal stationary 

strategy for player 1 can be constructed by means of optimal actions 

for these matrix games. In the third step the game is reduced with 

respect to player 2, i.e. for each state pure actions of player 2 are 

deleted as long as this does not influence the value of the game. 

In the fourth step from the remaining game an optimal stationary 

strategy for player 2 is constructed by means of solving a LP-problem. 

In section 2 we will present an alternative algorithm for solving 

undiscounted stochastic games in which one player controls the 

transition law. Our algorithm solves the whole problem in one blow, 
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by means of a LP-formulation of the problem. This LP-problem is of 
N N 

size (2N+ E m1(k)) by (N+2 E m2 (k)). 
k=l k=l 

2. The algorithm 

We will first state the algorithm, next show that this linear 

programming problem has a solution and then prove that this solution 

corresponds to a solution of the stochastic game. 

Consider the following linear programming problem in the variables 

(g 1, ... ,gN),(v1, ... ,vN), xi(k), i1cA 1 (k), k1cS: 

N 
max E gk' subject to: 

k=l 
N 

( i) gk - E p ( R- j k, j) g ,Q, :S O, k E S, j E A2 ( k) 
,Q,= 1 

m1 (k) N 
(ii) gk+vk-.E xi(k).r(k,i,j)- E p(tjk,j).v,Q,:S 0, k1cS, j1cA2 (k) 

1=1 ,Q,=1 
m1 (k) 

(iii) E x.(k) = 1, k1cS 
• 1 I I= 

x.(k)~0, 
I 

k 1c S, i 1c Al ( k) . 

The dual 1 inear programming in the variables (w 1, ... ,wN) ,yj (k) ,zj (k), 

kE S, j E A2(k), is: 

N 
min E wk, subject to: 

k=l 
N m2(k) m2(t) 

(j) E L (t\i-p(R, I k,j) )y. (k) + L z. (t) = 1 ' ,Q, E S 
k=l j=l J j=l J 

N m2 (k) 
{jj) E E (okt-p(t I k,j))z.(k) = 0, ,Q, ES 

k=l j=l J 
m2 (k) 

i E Al (k) {jjj) - E zj(k).r(k,i,j)+wk ~ 0, k E s' 
j=l 



(jjjj) y. (k), z. (k) :2: 0, k ES, j E Al (k) 
J J 

(c\t = 1 if k = t and okt = 0 if k -:/: t). 

Lemma 2. 1. Both linear programming problems are feasible and have 

bounded solutions. 

Proof. Consider the primal problem. Note that g.Q,= min r(k,i,j), 
(k,i,j)ET 

x.(k) = 0, i > 1, obeys 
I 

the conditions (i) to (ii ii), so the primal problem is feasible. 

Now let (g,v,x. (k)) be a feasable solution. Let the stationary 
I 

strategy ·rr 1 for player 1 be such that TT 1 (k,i) = xi(k) and let TTiEIIi 

be arbitrary. 

Then from (i) and (ii) we get (in vector notation): 

(2. 1) 

(2. 2) 

From (2. 1) we get g ~ Q(TTi) .g and using this result, after multi

plying (2.2) from the left by Q(TTi) yields: 

(2.3) 

5 

Now (2.3) shows that g is bounded from above (e.g. by max r(k, i ,j)). 
(k,i,j) 

From the duality theorem, it follows that also the dual problem 

is feasible and has a bounded solution. □ 

As we already did in the proof of lemma 2.1, we can associate 

with a set {xi(k); kES, iEA1(k)} a stationary strategy TT 1 (x) by 

defining TTl (x) (k, i) = xi (k). 

Lemma 2.2. Let (g,v,x. (k)) be a feasible solution to the primal problem~ 
I 

then 
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Proof. From 

minH 
TI2EII2 

(2.3) we 

yields the assertion. 

~ g and now lemma 1.2 

□ 

For a feasable solution (w,y.(k) ,z.(k)) to the dual program we 
J J 

will define a number of quantities: 

m2 (k) 

uk = I z.(k), 
j=1 J 

(2.4) 

Sa = {k; k ES and Uk = 0} (2.5) 

;j (k) = zj (k)/uk, k ES\ s 0 and j E A2 (k) (2.6) 

m2 (k) 
tk = I (y.(k) +z.(k)), kE Sandt= (t1' ... ,tN) (2.7) 

j=1 J J 

y.(k) = (y.(k)+z.(k))/tk' kES, jEA2 (k) (2.8) 
J J J 

(from condition (j): tk > 0 if uk = 0) 

* n2 and n2 , both stationary strategies for player 2, by 

; 2 (k,j) = yj (k), k ES, j E A2 (k) and (2.9) 

n;(k,j) = ;j(k) for kES\S 0 and n;(k,j) = yj(k) for kES 0. (2.10) 

Remark 2.3. Note, that from (j) and (jj) we also have 

N m2 (k) m2 (,e,) 
I _I (okQ,-p(£ I k,j))(y.(k)+z.(k)) + I z.(£) = 1, £Es, 

k= 1 J = 1 J J j = 1 J 

which is equivalent to: 

N 
t,Q,- I p(£jk,;2).tk+u,e,=1, 

k=1 
Q, E S, 

Let for a stationary strategy n2 , after suitable renumbering of 

the states, P(n2) be as: 

(2.11) 

(2.12). 



0 

0 p ( 7T2) TT 

P 1 ( 1r2) P 1 1 ( 1r2) T+ T T+ T+ 

Pnn(1r2) corresponds to the nth ergodic class of P(1r 2), whose set of 

states wi'll be notated as En(1r 2), nE {1, ... ,T}. 

PT+l T+l (1r 2) corresponds to the transient states of P(1r2) and this 

set of transient states will be notated as T(1r 2). 

7 

Remark 2 . 4 . I: ( t £ - I: ~ p ( £ I k,:; 2 )t k) = 0 , n E { 1 , ... , ';} . ( 2 . 1 3) 
£ E En(:; 2) k EE n ( 7T 2) 

This can be seen at once as I: p(£ I k,;'2) = 1 for kEEn(;'2). 
£EE/;2) 

Lemma 2 . 5. (a) u = u P ( 1r;) . 

* (b) The transient states for P(1r 2) are exactly the states s0 . 

Proof. (a) This follows immediately after inserting definitions (2.4) 

and (2.10) in (jj). 
N 

(b) Note first that summing up condition (j) over £EN yields I: uk = N. 
k=l 

From the theory of Markov chains it follows that if u = u P(1r2), with 
N 
I: uk = N, then u can be written as: 

k=l 

u = A1(q1:0: ... :0)+\z(O:qz:O: ... :O)+ ... +A *(0: ... :0:q *:O) 
* T T 

T 

with "n ~ 0, I: \ = 
n= 1 n 

* * P(1rz), nE {1, ... ,T}. 

N and q equals the invariant distribution of 
n 

It follows, that, if for kE S, 

k E En (1r;) and furthermore u£ > 

* uk > 0, then for some n E { 1 , •.. , T } , 

* 0 for all £E En(1r2). 
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So, if we want to show, that s0 a re exactly the transient states 

of P(TI;), it is enough to show, that there does not exist an ergodic 

class entirely within s0. Therefore, suppose for some 

nE {1, ... ,T*} En(TI;) cS 0 . Summing up (2.12) over 2E En(TI;) then, yields 

for the left hand side (remember remark 2.4): 

which leads to a contradiction, as the right hand side is strictly 

positive. This shows that the assumption En(TI;) c s0 was wrong by which 

the lemma is proved. D 

Corollary 2.6. u can be written as 

u=A 1(q 1:0: ... :0)+A2 (0:q 2 :0: ... :0)+ ... +A *(0: ... :0:q *:0), 
T T 

w-z'.th A > 0, n 
n 

T* 
* {1, ... ,T }, E A = N and q equals the invariant 

n=1 n n 
distribution of P ( TI *2) . 

nn 

Corollary 2.7. Let TI~EII~, then 

N m2(k) T* 
E E zJ.(k).r(k,TI~ ,j) = E An V(TI~,TI 2)(n). 

k=1 j=1 n=1 

(Here V(TI~,TI2) (n) equals the expected average payoff for the pair 

(TI~,TI;) with as starting state a state belonging to En(TI;) .) 

Corollary 2.7 can be checked by inserting the expression for u of 

corollary 2.6 in the left hand side and remembering 

From now on (q,v,x. (k)) and (w,y.(k) ,z.(k)) will correspond to a 
I J J 

dual pair of optimal solutions. 



Lemma 2.8. (a) wk = 0 for k E s0 . 

(b) 

Proof.(a) Follows at once from uk = 0, kE s0 and {jjj). 

(b) Follows at once from corollary 2.7 and lemma 1 .2. □ 

Proof. From P(TT;) .g ~ g, it follows that the equality sign holds for 

9 

components, belonging to the recurrent states of P(TT;), 
N 

This yields: if z. (k) > 0, then E p(£ I k ,j) g 2 = gk. 
J £=1 

i.e. to S\S 0 . 

(2. 14) 

From the complementary slackness property we get: 

N 
if y.(k) > 0, then E p(£ I k,j) 9£ = gk 

J £=1 
(2.15) 

* (2. 14) and (2.15) together with the definitions of TT 2 and TT 2 gives the 

lemma. □ 

Corollary 2.10. (a) For each nE {1, ... ,r*}, gk is constant for hE En(TT;). 

(b) For each nE {1, ... ,;}, gk is constant for kE En(i2 ). 

In the fol lowing g(n), for n E {1, ... ,T*} or n E {1, ... ,;}, wi 11 denote 

the value of g on En(TT;) or En(;2). 

~ * Lemma 2.11. For (n 1 ,n2)E{1, ... ,T}x{1, ... ,T} we have 

either E (;2 ) n E (TT*2 ) = E (TT;) 
n 1 n2 n2 

or E (;2) n E ( TT 2*) = {i'J • 
nl n2 

Proof. Let k EE (;;:'2 ) n E (-r/2 ) and let £EE (1r*2 ), then £ and k 
nl n2 n2 

* ~ ~ communicate for P(TT 2 ). But then, as y.(k) > 0 if z.(k) > 0 it follows 
J J 

that£ and k also communicate for P(;2 ), so £E En
1 
(;2). □ 
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Let D = { n; En(;;2)::, E~('ff;) }, nE {1, ••. ,::;} 
n 

n 

T = En(;;2) n T(rr;) nE{1, .•. ,::;} 
n 

T = {~; T (;; 2) => E ~ ('ff;)} 
n 

For a finite set B, we mean by !Bl the number of elements of B. 

Lemma 2. 12. For n E { 1 , ... , ::;} we have: 

~ nE D n 
n 

Proof. Summing up (2.12) over ,Q, E En(;;2 ) and using remark 2.4 yields 

the assertion. 

Remark 2.13. (a) (2.12) for 9-E:TT gives 

* (b) (2.12) summing up over En('ff 2) for nET yields: 

Lemma 2 . 1 4 . max V ( 'ff f , 'ff;) ( n ) = g ( n ) , n E { 1 , . • . , T * } . 
rrP 

1 

Proof. From duality theorem and lemma 2.8 (a) and 
T* 

I: g = I: w,Q, = I: .\ max V(rrf ,'ff;) (n) 
,Q,E: s ,Q, 9-E S n=1 

n 
'ff~ 

(b) we get: 

= 

p * ~ max V ( 'ff l , 1r 2) ( n) . I: .\ + I: .\ 
rrp nE:D n nET n 

max V ( 'ff f , 1r; ) ( n ) 
p 

1 ~ 'ff 1 

Now it should be noted from lemma 1 .2 and lemma 2.2 that for 

* n E { 1 , ••• ,T } : 

□ 

(2.16) 

(2.18) 

(2.19) 



Substituting inequality (2. 19) in (2.18) yields: 

N ~ 
T 

I g k 2':: I g (-;;) I ;\ + I g(n) ,;\ . (2.20) ~ n n k=l n=l nED nET ~ n 

If we insert in the right hand side of (2.20) the expressions for 

I ;\ , n E { 1 , ... , ;} and ;\ , n E T of 1 emma 2. 12 and of (2. 17) , then, 
nED~ n n 

n 
after suitable rearrangings of terms and using the expression (2.16), 

N 
it follows, that the right hand side of (2.20) exactly equals I gk. 

k=l 
* But, as ;\n > 0 for each nE {1, ... ,T} this means that in (2.19) the 

equality sign holds, which proves the lemma. □ 

Theorem 2. 15. The game has a value and both players posses optimal 

stationary strategies; g is the value of the game, TT 1 (x) is an 

optimal stationary strategy for player 1 and TT; is optimal for 

player 2. 

Proof. From lemma 2.14 max Vk(TT~,TT;) 
TTP 

* 1 
But,as by lemma 2.9 P(TT 2) .g = g, also 

gk, kET(TT;). 

So we have 

p *) max V(TT 1 ,TT 2 2':: g. 
TTP 

Using 1 emma ~ . 2 ( 2 . 2 1 ) gives: 

* maxH V(TT 1,TT 2) 2':: g 
TTldil 

for the transient states we 

(2.21) 

(2.22) 

(2.22) combining with lemma 2.2 shows the theorem. □ 

3. Some remarks 

Remark 3. 1. If in each state player 1 has only 1 action, then the game 

11 
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reduces to a minimizing Markov decision problem. In that case our 

algorithm reduces to the algorithm proposed by Hordijk and Kallenberg 

[3]. 

Parts of their proofs could be projected on our problem; in particular 

the fact, that s0 is exactly the set of transient states for P(n2) 
could be proven for both cases in an analogue way. 

* . The problem of proving the optimality of n2 1s essential different. 

* Namely fol lowing their 1 ine of argument, would mean showing that n2 
N 

is "optimal" against all TT~ such that TT~E X ak' where 
k=l 

ak = {ik; ik E A1 (k) and n 1 (x) (k, ik) > O}. Clearly this is not enough 

* for showing the optimality of n2 . 

Remark 3.2. If it is known in advance that for each n2Err 2 the transition 

probability matrix P(n 2) is such, that the s.et of all states form an 

ergodic class, then as well the algorithm as the proofs can be con

siderably simplified. 

Namely the algorithm becomes: 

subject to: 
N 

max g (g is a number now) 
m2 (k) 

(i) 9+vk- E x.(k)r(k,i,j) 
i =1 I 

- E p(.Q, I k,j)v.Q, s; 

£=1 
m2 ( k) 

(ii) E x.(k) = 1 and 
I 

i =1 

(iii) x.(k):::: 0. 
I 

The dual of this 1 i near programming problem is: 
N 

min E wk' subject to: 
k=l 

N m2 (k) 
(j) E E z. ( k) = 

k=l j=l J 

N mz (k) 
( j j) E E (ok£-p(£ I k,j))zj(k) = 0' .Q, E 

k=l j=l 
s 
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m2 (k) 
(jjj) - z:: z.(k).r(k,i,j)+wk:::: 0, 

j=l J 
iEA,(k), kES 

(jjjj) z.(k):::: 0. 
J 

m2 (k) 
In this case the stationary strategy 1r2 with 1r2 (k,j) = z.(k) / Z:: z.(k) 

J . 1 J j= 
for each j and k is optimal for player 2, if the z.(k) 1 s belong to 

J 

an optimal solution of the dual program. 
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