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ABSTRACT 

Suppose n jobs are to be processed on a single machine, subject to release 

dates and precedence constraints. The problem is to find a preemptive sched-
2 

ule which minimizes the maximum job completion cost. We present an O(n) al-

gorithm for this problem, generalizing previous results of the second author. 
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1. INTRODUCTION 

We consider the problem of finding a preemptive schedule for n jobs on a 

single machine which minimizes the maximum job completion cost subject to 

given release dates and precedence constraints. 

More specifically, suppose that n jobs 1, ••• ,n are to be processed on 

a single machine which can execute at most one job at a time. Each job j 

becomes available at its release dater. and requires a processing time p .• 
J J 

1 

Moreover, a precedence relation ➔ between the jobs is given; if j ➔ k, it is 

required that job j be completed before job k can start. Unlimited preempt

tion is allowed, i.e., the execution of any job may arbitrarily often be 

interrupted and resumed at a later time. Associated with each job j is a 

monotone nondecreasing cost function f.; if job j has a completion time C., 
J J 

a cost f. (C.) is incurred. We assume that each f. can be evaluated in unit 
J J J 

time for any value of the argument. The problem is to find a feasible sched-

ule such that the maximum cost f = max.{f. (C.)} is minimized. 
, max JJJ 

If all release dates are equal, there is no advantage to preemption, 

and the problem is solvable in O(n2) time [4]. In Section 2, we recall this 

algorithm and give an alternative proof of its correctness. 

If the release dates may be arbitrary, the preemptive case is still 

solvable in O(n2) time. In Sections 3 and 4, we present an algorithm for 

this case by extending the approach of Section 2; Section 5 contains a 

numerical example. We note that the nonpreemptive case is NP-hard in the 

strong sense, even without precedence constraints [1;5]. 

In the notation of [2], llpreclf is considered in Section 2, 
max 

llpmtn,r. It in Section 3 and llpmtn,prec,r. If in Section 4; llr. If 
J max J max J max 

is unary NP-hard. 

2. EQUAL RELEASE DATES 

We first assume that all release dates are equal to 0, in which case we need 

only consider schedules without preemption and without machine idle time. 

Let N = {1, ••• ,n} be the set of all jobs, let N' c N be the set of jobs 

without successors, and for any Sc N define 



p(S) = l, Sp.; 
JE J 

f (S) = value off in a given schedule for the jobs in S; 
max max 

* 

2 

f (S) = value off in an optimal schedule for the jobs in S. 
max max 

* Clearly, f (N) satisfies the following two inequalities: 
max 

* f (N) 
max .:: min . N, { f . (p (N) ) } ; 

JE J 

* f (N) 
max .:: max. N{f* (N-{j})}. 

JE max 

Let job£ EN' be such that 

f 0 (p(N)) = min. N'{f.(p(N))}. 
X, JE ]" 

Consider a schedule which is optimal subject to the condition that job£ is 

processed last. For any such schedule, we have 

* * f (N) = max{f 0 (p(N)) ,f (N-{£})} ~ f (N). 
, max X, max max 

It follows that there exists an optimal schedule in which job£ is in the 

last position. 

By repeated application of this rule, one obtains an optimal schedule 

in O(n2 ) time. The above correctness proof differs from the one given in [4] 

in that it does not rely on an interchange argument. 

3. ARBITRARY RELEASE DATES, NO PRECEDENCE CONSTRAINTS 

We now consider the case in which arbitrary release dates are specified. 

First, we assume that there are no precedence constraints. 

Our first observation is that, since preemption is allowed, it is never 

advantageous to leave the machine idle when unscheduled jobs are available. 

Hence, the time at which all jobs will be completed can be detennined in 

advance by scheduling the jobs in order of nondecreasing r .• This schedule 
J 

naturally decomposes into blocks, where a block B c N is defined as a 

minimal set of jobs processed without idle time from r(B) = min. B{r.} until 
JE J 

t(B) = r(B)+p(B), such that each job j i Bis either completed not later 
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than r (B) (C. ~ r (B)) or not released before t (B) (r. 2:: t (B) ) • 
J J 

It is easily seen that, in minimizing f , we can consider each block B 
* max 

separately. As in Section 2, f (B} satisfies the following two inequalities: 
max 

* f (B) 
max 

* f (B) 
max 

2:: min. B{f.(t(B))}; 
JE J 

* 2:: max. B{f (B-{j }) }. 
JE max 

Let job£ EB be such that 

f 0 (t(B)) = min. {f. (t(B)) }. 
)<, J EB J 

Consider a schedule for block B which is optimal subject to the condition 

that job£ is processed only if'no other job is available. It consists of 

two complementary parts: 

(i) an optimal schedule for the set B-{£}, which decomposes into a number 

of subblocks B1 , ••. ,Bb with respect to this job set; 

(ii) a schedule for job£, which is given by [r(B) ,t(B)]- tf 1[r(B.) ,t(B.)]; 
1= 1 1 

note that job£ is completed at time t(B). 

For any such schedule, we have 

* * f (B) = max{f 0 (t(B)) ,f (B-{£})} ~ f (B}. 
max )<, max max 

It follows that there exists an optimal schedule in which job£ is scheduled 

as prescribed above. 

The problem can now be solved in the following way. First, order the 

jobs according to nondecreasing r. in O(n log n) time. Next, determine the 
J 

initial block structure by scheduling the jobs in order of nondecreasing r.; 
J 

this requires O(n) time. For each block B, select job£ EB subject to (*), 

determine the block structure of the set B-{£} by scheduling the jobs in 

this set in order of nondecreasing r., and construct the schedule for job£ 
J 

as given above; all this requires O(IBI) time. By repeated application of 

this procedure to each of the subblocks, one obtains an optimal schedule in 

O(n2} time. 

The algorithm generates at most n-1 preemptions. This is easily proved 

by induction. It is obviously true for n = 1. Suppose it is true for blocks 

of size smaller than IBI. The schedule for block B contains at most IB. 1-1 
1 
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preemptions for each subblock B. {i = 1, ••• ,b) and at most b preemptions for 
1 

the selected job£, so that the total number of preemptions is no more than 

\~ l ( I B . I -1) + b = I B I -1. li= 1 

We note that the use of preemption is essential for our algorithm. If 

no preemption is allowed, it is not possible to determine the block structure 

of an optimal schedule in advance. 

4. ARBITRARY RELEASE DATES, ARBITRARY PRECEDENCE CONSTRAINTS 

We next consider the case in which arbitrary precedence constraints are 

specified. The algorithm can be'extended to solve this more general problem 

as well. 

First, the release dates are modified such that r.+p. ~ rk whenever 
J J 

j + k. This implies that, in constructing the blocks, one can ignore the 

precedence constraints. The modification requires O(n2 ) time: renumber the 

jobs 

rk = 
jobs 

, 
in topological order (i.e., such that if j + k then j < k) and set 

max{rk,max{r.+p. lj + k}} fork= 2, ••• ,n (cf. [3]). After this, the 
J J 

are ordered according to nondecreasing r. in O(n log n) time. 
J 

Secondly, suppose that for each job j belonging to a block Bits outde-

greed. with respect to B, i.e. the number of jobs k EB such that j + k, is 
J 

known. For each block B, the set B' = {jlj EB, d. = O} of jobs without 
J 

successors in Bis determined, and the selection of job£ EB subject to (*) 

is replaced by the selection of job£ EB' such that 

fn(t(B)) = min. B'{f.(t{B))}. 
"" J E J 

This insures that the selected job£ has no successors within the block B. 

As to the implementation of this procedure, let us suppose that the 

precedence constraints are represented simply by a job adjacency matrix and 

the blocks by lists of jobs in order of nondecreasing r .• Initially, for 
J 

each job j the number d. of jobs k such that j + k is recorded. The computa
J 

tion of all d. requires O(n2 ) time. After construction of the initial blocks 
J 

B1, ••• ,Bb, the outdegrees are updated: consider each Bi (i = 1, ••• ,b-1) in 

succession and decreased. by 1 for each pair (j,k) such that j EB., 
J 1 
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b 
k E Uh=i+l Bh and j + k. For each block B, after construction of the subblocks 

B1, ••• ,Bb of the set B-{t} and of the schedule for job t, the outdegrees are 

updated again: consider each B. (i = 
J. 

1, ••• ,b) in succession and decreased. 
J 

by 1 for each pair (j,k) such that j E 

All updates of the d. together require 
J 

B., k E (~=i+l Bh) U {t} and j + k. 
J. 2 

O(n) time, since each entry of the 

adjacency matrix is inspected at most once. Further, each B' is determined 

in O(IBI) time. It follows that one still obtains an optimal schedule in 

O(n2 ) time. 

5. NUMERICAL EXAMPLE 

Finally, we illustrate our algorithm with a numerical example. Suppose there 

are five jobs, with release dates and processing times as given in Table 

l(a), precedence constraints as specified in Figure 1, and cost functions as 

depicted in Figure 2. 
, 

The modified release dates and the initial outdegrees are given in Table 

l(b). By scheduling the jobs in order of increasing r., we obtain two blocks: 
J 

B1 = {1,2,3,4} from O until 12 and B2 = {5} from 14 until 18 (Figure 3(a)). 

We update the outdegrees of the jobs in B1 as indicated in Table l(c). 

Block B2 consists of a single job and therefore represents an optimal 

part of the schedule. For block B1 we find Bi= {3,4} and select job 3 since 

f 3 (12) < f 4 (12). By rescheduling the jobs in B1 while processing job 3 only 

if no other job is available, we obtain two subblocks: B11 = {1,2} from 0 

job j 1 2 3 4 5 

(a) release date r. 0 2 0 8 14 
J 

processing time pj 4 2 4 2 4 

(b) modified release date r. 0 2 4 8 14 
J 

outdegree d. 1 2 1 0 0 
J 

(c) updated outdegree d. 1 2 0 0 
J 

(d) updated outdegree d. 0 0 0 
J 

Table 1. Parameters for the example. 
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until 6 and B12 = {4} from 8 until 10 (Figure 3(b)). We update the outdegrees 

of the jobs in B11 and B12 as indicated in Table l(d). 

Block B12 needs no further attention. For block B11 we find Bil= {1,2} 

and select job 1 since f 1 (6) < f 2 (6). By rescheduling the jobs in B11 again, 

we finally obtain an optimal schedule (Figure 3(c)). 

Figure 1. Precedence constraints for the example. 

oj(.t.) 
04 (.t.) 

62(.t.) 

61 (.t.) 

05 (.t.) 

03(.t.) 

0 6 .t. 

Figure 2. Cost functions for the example. 

(a) Initial schedule I 1 I 2 I 3 I 4 I I 5 I 
0 4 6 10 12 14 18 

B1 B2 

(b) New schedule for block B1 I 1 I 2 I 3 4 1 3 1 
0 4 6 8 10 12 

811 
~ 

812 

(c) Optimal schedule I 1 I 2 I 1 I 3 I 4 1 3 I I 5 I 
0 2 4 6 8 10 12 14 18 

Figure 3. Schedules for the example. 
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