
stichting

centru

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

BW 128/80 AUGUSTUS

K.R. BAKER, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN

PREEMPTIVE SCHEDULING OF A SINGLE MACHINE TO MINIMIZE MAXIMUM
COST SUBJECT TO RELEASE DATES AND PRECEDENCE CONSTRAINTS

Preprint

~
MC

413 SJ amsterdam
BlBWOrHl::EK MATHE:Ull\fiSCH Ob>Jihvl\/l

-AMSTEn9AM-

Ptilnted at .the Mathe.ma:tlc.al Cen.tlte, 413 Kll.l.U6laa.n, Am6.teJuiam.

The Mathe.ma.tic.al Cent/Le , 6ou.n.ded .the 11-.th 06 Febll.WVLy 1946, -l6 a. non
p1r.06U .ln1>.tltu.ti.on <Li.m.lng at .the pll.Omo:Uon 06 pWte. mathe.ma.:UC-6 a.nd .lt1,
a.ppUcatlon1>. 1.t -l6 ~pon1>01r.ed by .the Ne.thelli..a.nd6 GoveJr.nment .thll.Ough .the
Ne.th<Vl1.a.nd6 01r.ga.n.lza.:Uon 601r. .the Adva.nc.e.ment 06 PU!l.e Ruea.1r.c.h (Z.W.O.).

1980 Mathematics Subject Classification: 90B35

PREEMPTIVE SCHEDULING OF A StNGLE MACHINE TO MINIMIZE MAXIMUM COST
SUBJECT TO RELEASE DATES AND PRECEDENCE CONSTRAINTS

K.R. BAKER

Dartmouth College, Hanover, New Hampshire

E.L. LAWLER

University of California, Berkeley

J.K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

ABSTRACT

Suppose n jobs are to be processed on a single machine, subject to release

dates and precedence constraints. The problem is to find a preemptive sched-
2

ule which minimizes the maximum job completion cost. We present an O(n) al-

gorithm for this problem, generalizing previous results of the second author.

KEY WORDS & PHRASES: preemptive scheduling, single machine, release dates,

precedence constraints, maximum cost, polynomial algorithm.

NOTE: This report will be submitted for publication in a journal.

B!IBWO"'THEEK MATHEMATISCH OEfi.JTRUM
-AMSTFRlill\M-

1. INTRODUCTION

We consider the problem of finding a preemptive schedule for n jobs on a

single machine which minimizes the maximum job completion cost subject to

given release dates and precedence constraints.

More specifically, suppose that n jobs 1, ••• ,n are to be processed on

a single machine which can execute at most one job at a time. Each job j

becomes available at its release dater. and requires a processing time p .•
J J

1

Moreover, a precedence relation ➔ between the jobs is given; if j ➔ k, it is

required that job j be completed before job k can start. Unlimited preempt

tion is allowed, i.e., the execution of any job may arbitrarily often be

interrupted and resumed at a later time. Associated with each job j is a

monotone nondecreasing cost function f.; if job j has a completion time C.,
J J

a cost f. (C.) is incurred. We assume that each f. can be evaluated in unit
J J J

time for any value of the argument. The problem is to find a feasible sched-

ule such that the maximum cost f = max.{f. (C.)} is minimized.
, max JJJ

If all release dates are equal, there is no advantage to preemption,

and the problem is solvable in O(n2) time [4]. In Section 2, we recall this

algorithm and give an alternative proof of its correctness.

If the release dates may be arbitrary, the preemptive case is still

solvable in O(n2) time. In Sections 3 and 4, we present an algorithm for

this case by extending the approach of Section 2; Section 5 contains a

numerical example. We note that the nonpreemptive case is NP-hard in the

strong sense, even without precedence constraints [1;5].

In the notation of [2], llpreclf is considered in Section 2,
max

llpmtn,r. It in Section 3 and llpmtn,prec,r. If in Section 4; llr. If
J max J max J max

is unary NP-hard.

2. EQUAL RELEASE DATES

We first assume that all release dates are equal to 0, in which case we need

only consider schedules without preemption and without machine idle time.

Let N = {1, ••• ,n} be the set of all jobs, let N' c N be the set of jobs

without successors, and for any Sc N define

p(S) = l, Sp.;
JE J

f (S) = value off in a given schedule for the jobs in S;
max max

*

2

f (S) = value off in an optimal schedule for the jobs in S.
max max

* Clearly, f (N) satisfies the following two inequalities:
max

* f (N)
max .:: min . N, { f . (p (N)) } ;

JE J

* f (N)
max .:: max. N{f* (N-{j})}.

JE max

Let job£ EN' be such that

f 0 (p(N)) = min. N'{f.(p(N))}.
X, JE]"

Consider a schedule which is optimal subject to the condition that job£ is

processed last. For any such schedule, we have

* * f (N) = max{f 0 (p(N)) ,f (N-{£})} ~ f (N).
, max X, max max

It follows that there exists an optimal schedule in which job£ is in the

last position.

By repeated application of this rule, one obtains an optimal schedule

in O(n2) time. The above correctness proof differs from the one given in [4]

in that it does not rely on an interchange argument.

3. ARBITRARY RELEASE DATES, NO PRECEDENCE CONSTRAINTS

We now consider the case in which arbitrary release dates are specified.

First, we assume that there are no precedence constraints.

Our first observation is that, since preemption is allowed, it is never

advantageous to leave the machine idle when unscheduled jobs are available.

Hence, the time at which all jobs will be completed can be detennined in

advance by scheduling the jobs in order of nondecreasing r .• This schedule
J

naturally decomposes into blocks, where a block B c N is defined as a

minimal set of jobs processed without idle time from r(B) = min. B{r.} until
JE J

t(B) = r(B)+p(B), such that each job j i Bis either completed not later

3

than r (B) (C. ~ r (B)) or not released before t (B) (r. 2:: t (B)) •
J J

It is easily seen that, in minimizing f , we can consider each block B
* max

separately. As in Section 2, f (B} satisfies the following two inequalities:
max

* f (B)
max

* f (B)
max

2:: min. B{f.(t(B))};
JE J

* 2:: max. B{f (B-{j }) }.
JE max

Let job£ EB be such that

f 0 (t(B)) = min. {f. (t(B)) }.
)<, J EB J

Consider a schedule for block B which is optimal subject to the condition

that job£ is processed only if'no other job is available. It consists of

two complementary parts:

(i) an optimal schedule for the set B-{£}, which decomposes into a number

of subblocks B1 , ••. ,Bb with respect to this job set;

(ii) a schedule for job£, which is given by [r(B) ,t(B)]- tf 1[r(B.) ,t(B.)];
1= 1 1

note that job£ is completed at time t(B).

For any such schedule, we have

* * f (B) = max{f 0 (t(B)) ,f (B-{£})} ~ f (B}.
max)<, max max

It follows that there exists an optimal schedule in which job£ is scheduled

as prescribed above.

The problem can now be solved in the following way. First, order the

jobs according to nondecreasing r. in O(n log n) time. Next, determine the
J

initial block structure by scheduling the jobs in order of nondecreasing r.;
J

this requires O(n) time. For each block B, select job£ EB subject to (*),

determine the block structure of the set B-{£} by scheduling the jobs in

this set in order of nondecreasing r., and construct the schedule for job£
J

as given above; all this requires O(IBI) time. By repeated application of

this procedure to each of the subblocks, one obtains an optimal schedule in

O(n2} time.

The algorithm generates at most n-1 preemptions. This is easily proved

by induction. It is obviously true for n = 1. Suppose it is true for blocks

of size smaller than IBI. The schedule for block B contains at most IB. 1-1
1

4

preemptions for each subblock B. {i = 1, ••• ,b) and at most b preemptions for
1

the selected job£, so that the total number of preemptions is no more than

\~ l (I B . I -1) + b = I B I -1. li= 1

We note that the use of preemption is essential for our algorithm. If

no preemption is allowed, it is not possible to determine the block structure

of an optimal schedule in advance.

4. ARBITRARY RELEASE DATES, ARBITRARY PRECEDENCE CONSTRAINTS

We next consider the case in which arbitrary precedence constraints are

specified. The algorithm can be'extended to solve this more general problem

as well.

First, the release dates are modified such that r.+p. ~ rk whenever
J J

j + k. This implies that, in constructing the blocks, one can ignore the

precedence constraints. The modification requires O(n2) time: renumber the

jobs

rk =
jobs

,
in topological order (i.e., such that if j + k then j < k) and set

max{rk,max{r.+p. lj + k}} fork= 2, ••• ,n (cf. [3]). After this, the
J J

are ordered according to nondecreasing r. in O(n log n) time.
J

Secondly, suppose that for each job j belonging to a block Bits outde-

greed. with respect to B, i.e. the number of jobs k EB such that j + k, is
J

known. For each block B, the set B' = {jlj EB, d. = O} of jobs without
J

successors in Bis determined, and the selection of job£ EB subject to (*)

is replaced by the selection of job£ EB' such that

fn(t(B)) = min. B'{f.(t{B))}.
"" J E J

This insures that the selected job£ has no successors within the block B.

As to the implementation of this procedure, let us suppose that the

precedence constraints are represented simply by a job adjacency matrix and

the blocks by lists of jobs in order of nondecreasing r .• Initially, for
J

each job j the number d. of jobs k such that j + k is recorded. The computa
J

tion of all d. requires O(n2) time. After construction of the initial blocks
J

B1, ••• ,Bb, the outdegrees are updated: consider each Bi (i = 1, ••• ,b-1) in

succession and decreased. by 1 for each pair (j,k) such that j EB.,
J 1

5

b
k E Uh=i+l Bh and j + k. For each block B, after construction of the subblocks

B1, ••• ,Bb of the set B-{t} and of the schedule for job t, the outdegrees are

updated again: consider each B. (i =
J.

1, ••• ,b) in succession and decreased.
J

by 1 for each pair (j,k) such that j E

All updates of the d. together require
J

B., k E (~=i+l Bh) U {t} and j + k.
J. 2

O(n) time, since each entry of the

adjacency matrix is inspected at most once. Further, each B' is determined

in O(IBI) time. It follows that one still obtains an optimal schedule in

O(n2) time.

5. NUMERICAL EXAMPLE

Finally, we illustrate our algorithm with a numerical example. Suppose there

are five jobs, with release dates and processing times as given in Table

l(a), precedence constraints as specified in Figure 1, and cost functions as

depicted in Figure 2.
,

The modified release dates and the initial outdegrees are given in Table

l(b). By scheduling the jobs in order of increasing r., we obtain two blocks:
J

B1 = {1,2,3,4} from O until 12 and B2 = {5} from 14 until 18 (Figure 3(a)).

We update the outdegrees of the jobs in B1 as indicated in Table l(c).

Block B2 consists of a single job and therefore represents an optimal

part of the schedule. For block B1 we find Bi= {3,4} and select job 3 since

f 3 (12) < f 4 (12). By rescheduling the jobs in B1 while processing job 3 only

if no other job is available, we obtain two subblocks: B11 = {1,2} from 0

job j 1 2 3 4 5

(a) release date r. 0 2 0 8 14
J

processing time pj 4 2 4 2 4

(b) modified release date r. 0 2 4 8 14
J

outdegree d. 1 2 1 0 0
J

(c) updated outdegree d. 1 2 0 0
J

(d) updated outdegree d. 0 0 0
J

Table 1. Parameters for the example.

6

until 6 and B12 = {4} from 8 until 10 (Figure 3(b)). We update the outdegrees

of the jobs in B11 and B12 as indicated in Table l(d).

Block B12 needs no further attention. For block B11 we find Bil= {1,2}

and select job 1 since f 1 (6) < f 2 (6). By rescheduling the jobs in B11 again,

we finally obtain an optimal schedule (Figure 3(c)).

Figure 1. Precedence constraints for the example.

oj(.t.)
04 (.t.)

62(.t.)

61 (.t.)

05 (.t.)

03(.t.)

0 6 .t.

Figure 2. Cost functions for the example.

(a) Initial schedule I 1 I 2 I 3 I 4 I I 5 I
0 4 6 10 12 14 18

B1 B2

(b) New schedule for block B1 I 1 I 2 I 3 4 1 3 1
0 4 6 8 10 12

811
~

812

(c) Optimal schedule I 1 I 2 I 1 I 3 I 4 1 3 I I 5 I
0 2 4 6 8 10 12 14 18

Figure 3. Schedules for the example.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the useful comments from C.U. Martel.

This research was partially supported by NSF Grant MCS78-20054.

REFERENCES

1. · M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with start

times and deadlines. SIAM J. Comput. _§_,416-426.

2. R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Optimization and approximation in deterministic sequencing and sched

uling: a survey. Ann. Discrete Math. ~,287-326.

7

3. B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1976) Minimizing maximum

lateness on one machine: computational experience and some applications.

Statistica Neerlandica 30,25-41.

4. E.L. LAWLER (1973) Optimal sequencing of a single machine subject to

precedence constraints. Management Sci. ~,544-546.

5. J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of

machine scheduling problems. Ann. Discrete Math • .!_,343-362.

