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AN INTRODUCTION TO POLYMATROIDAL NETWORK FLOWS 
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.ABSTRACT 

In the "classical" network flow model, flows are constrained by the capacities 

of individual arcs. In the "polymatroidal" network flow model, flows are con­

strained by the capacities of sets of arcs. Yet the essential features of the 

classical model are retained: the augmenting path theorem, the integral flow 

theorem, and the max-flow min-cut theorem all yield to straightforward gener­

alization. In this paper we provide an introduction to the theory of polyma­

troidal network flows, with the objective of showing that this theory provides 

a satisfying generalization and unification of both classical network flow 

theory and much of the theory of matroid optimization. 
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1 . INTRODUCTION 

In the "classical" network flow model, flows are constrained by the capac­

ities of individual arcs. In the "polymatroidal" network flow model, flows 

are constrained by the capacities of sets of arcs. Yet the essential fea­

tures of the classical model are retained: the augmenting path theorem, the 

integral flow theorem and the max-flow min-c1,1.t theorem all yield to 

straightforward generalization. 

In this paper we provide an introduction to the theory of poly­

matroidal network flows. Our principal objective is to show that this 

theory provides a satisfying generalization and unification of both clas­

sical network flow theory and much of the theory of matroid optimization, 

including (poly)matroid intersection and matroid partitioning. We shall 

also indicate how the polymatroidal network flow model can be used to 

formulate and solve problems with no readily apparent polymatroidal struc­

ture. 

The results presented here were obtained jointly with C.U. Martel 

[9], whose solution to a problem in multiprocessor scheduling suggested 

the formulation of the polymatroidal network flow model. It has come to 

our attention that the same model was formulated independently by Hassin 

[4]. A related model has also been investigated by Edmonds and Giles [3]. 

2. SOME POLYMATROIDAL PRELIMINARIES 

We assume that the reader is familiar with the basic concepts of network 

flow theory and with at least some of the ideas of matroid optimization, 

as presented in [7]. In this section we present a few results concerning 

polymatroids which are nP~ded in the remainder of the paper. 

A polymatroid (E,p) is defined by a finite set of elements E and a 

k . E + . . . ran funct1,on p: 2 ➔ JR satisfying the properties 

p(0) = o, 

p(X) ~ p(Y) (X ~ Y ~ E), 

( 2. 1 ) 

(2.2) 
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p(XuY)+p(XnY) s p(X)+p(Y) (X s E, y s E). ( 2. 3) 

Inequalities (2.2) state that the rank function is monotone and inequal­

ities (2.3) assert that it is submodular. If also pis integer-valued and 

p({e}) = 0 or 1 for all e EE, then the polymatroid is a matroid. 

We shall be dealing with polymatroids whose elements are arcs of a 

network. We shall assign values of "flow" to these arcs, which is equiv­

alent to specifying a function f: E ➔ JR. This function can be extended 

to subsets of E in a natural way, i.e. 

f(0) = o, 

f(X) = lxEX f(x) (0 f. X::: E). ( 2. 4) 

Such an extended flow function f will be said to be feasible with respect 

to the rank function p if for all X c E, 

f(X) ~ p(X). ( 2. 5) 

A feasible function f saturates X if (2.5) holds with equality. An indi­

vidual element e will be said to be saturated if there is some saturated 

set in which it is contained. 

The following two lemmas apply with respect to any polymatroid (E,p) 

and any feasible function f. 

LEJvlMA 2.1. If' X and Y are saturated sets, then so are XnY and XuY. 

Proof. We have 

f(XnY) ~ p (XnY), by feasibility 

~ p(X)+p(Y)-p(XuY), by submodulari ty 

~ f(X)+f(Y)-f(XuY), by f(XuY) ~ p (XuY) and saturation of X,Y 

-· f(XnY), by (2.4). 

Hence f(XnY) = p(XnY) and XnY is saturated. The proof for XuY is similar. D 



LEMMA 2.2. If e EE ~s saturated~ then there ~s a unique minimal saturated 

set S(e) c-ontaining e. Moreover~ for each e' E S(e), e' -:j. e, it is the 

case that f(e') > 0. 

Proof. Suppose S(e) and S'(e) are distinct minimal saturated sets containing 

e. By Lemma 2.1, S(e)nS'(e) is also a saturated set containing e, and nei­

ther S(e) nor S'(e) can be minimal. 

Now suppose S(e) is the unique minimal saturated set containing e 

and there is an element e' -:/- e in S(e) such that f(e') = 0. 

f(S(e)-{e'}) s p(S(e)-{e'}), by feasibility 

s p(S(e)), by monotonicity 

= f(S(e)), by assumption 

= f(S(e)-{e'}), since f(e') = 0. 

It follows that S(e)-{e'} is also· saturated and S(e) cannot be the minimal 

saturated set containing e. D 

3. POLYMATROIDAL FLOW NETWORKS 

We shall consider only the simplest type of flow network, .namely one in 

which there is a single sources and a single sink t. Our objective will 

be to find a maximum-value flow from s tot. 

For each node j of the network there are specified two capacity func­

tions a.. ands-. The function a.. (s.) satisfies properties (2.1)-(2.3) 
J J J J 

with respect to the set of arcs A. (B.) directed out from (into) node j. 
J J 

Thus (A. ,a..) and ( B., S . ) are polymatroids. (Comment: We permit there to 
J J J J 

be multiple arcs from v,ie node to another. Hence A. and B. may be arbi trari-
J J 

ly large finite sets.) 

A flouJ in the network is an assignment. of real numbers to the arcs of 
. E JR . the network. We let a flow be represented by a function f: 2 ➔ , obtain-

ed as in (2.4). A flow f is feasible if 
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f(A.) = f( B.), 
J J 

f is feasible for a..,s., 
J J 

f(e) 2: o, 

J 'f s,t, 

for all 

for all 

nodes 

arcs 

J, 

e. 

( 3. 1 ) 

( 3. 2) 

(3.3) 

Equations (3.1) impose the customary flow conservation law at each node 

other than the source and sink. Property (J.2) indicates that capacity 

constraints are satisfied on sets of arcs, and (3,3) simply demands that 

the flow through each arc be nonnegative. Our objective is to find a 

feasible flow of maximum value, i.e. one which maximizes 

( 3. 4) 

If, for a given feasible flow f, the arc e = (i,j) is saturated with 

respect to a.., we shall say that the tail of e is saturated and denote the 
i 

minimal saturated set containing e by T(e), where T(e) c A .• Similarly, if 
- l 

e is saturated with respect to s., we shall say that the head of e is satu­
J 

rated and denote the minimal saturated set containing e by H(e), where 

H(e) c B .. 
- J 
In the case of an ordinary flow network in which there is a specified 

capacity c .. for each arc e = (i,j), we can define a..(e) = s.(e) = c .. , 
lJ l J lJ 

and then extend the functions a..,s. to sets as in (2.4). The resulting 
l l 

capacity functions are modular, i.e. satisfy (2.3) with equality. Note 

that in this special case the head of an arc e is saturated if and only 

if its tail is saturated, and H(e) = T(e) = {e}. 

4. AUGMENTING PATHS 

With respect to a given feasible flow f, an augmenting path is an undirect­

ed path of distinct arcs (but not necessarily distinct nodes) from s tot 

such that 

(4.1) each backward arc e in the path is nonvoid, i.e. f(e) > O, and 

(4.2) if the head (tail) of a forward arc e in the path is saturated, 

then the following (preceding) arc in the path is a backward arc 

contained in H(e) (T(e)). 



In an ordinary flow network the minimal saturated set containing a 

saturated arc e is simply {e}, and since repetitions of arcs are not allow­

ed, (4.2) does not permit any forward arc to be saturated. Thus, in this 

specialization our definition almost exactly coincides with the accepted 

notion of an augmenting path, the only (inconsequential) difference being 

that we permit repetitions of nodes. 

We shall want to use augmenting paths -in the customary way. That is, 

for some strictly positive o, we want to increase the flow through each 

forward arc by o and decrease the flow through each backward arc by o, and 

thereby obtain an augmented flow which is feasible. It is not readily appar­

ent that this can be done in our generalization. 

LEMMA 4.1. For any augmenting path there exists a strictly positive value 

of o by which the flow can be augmented. 

Proof. There are two types of constraints on o. First, the flow through 

each backward arc must remain nonnegative, and (4.2) assures us that there 

is a strictly positive value of o for which this is possible. Second, for 

each node J. and each X c A. (and similarly for each X c B.) the resulting 
- J - J 

flow f' must be such that 

f' (X) ~ a. (X). 
J 

Let m(X) denote the number of forward arcs in X minus the number of back­

ward arcs. Then we must have 

f' (X) = f(X)+om(X) ~ a.(X). 
J 

(4.3) 

The only way in which (4.3) could fail to permit o to be strictly positive 

would be for X to be saturated by f and for m(X) to be strictly positive. 

But if X 

tails of 

is saturated and contains forward arcs e 1,e2 , ... ,e£, then the 

these forward arcs are saturated and T(e.) c X, i = 1,2, ... ,£. 
l -

By (4.2), each e. must 
l 

be paired with a distinct backward arc e! E T(e. ). 
l l 

It follows that m(X) ~ 0, and the constraints (4.3) permit o to be strict-

ly positive. D 
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For many applications we need to be assured that there exists a maximal 

flow that is integer-valued. Hence we wish to obtain an integer version 

of Lemma 4.1. 

An augmenting path can be shortcut if some portion of it can be 

removed to obtain a shorter augmenting path. For example, suppose an 

augmenting path contains two forward arcs e and e', both directed into 

the same node j, and that the heads of both. of these arcs are unsaturated. 

If e occurs before e', then all the arcs following e up to and including 

e' can be removed from the augmenting path. A similar condition holds for 

two unsaturated forward arcs directed out from the same node. 

The reader is invited to establish that an augmenting path which does 

not admit a shortcut has the following property: If the path passes through 

a given node j, the occurrences of j in the path are ordered as follows. 

First, there may be pairs of consecutive arcs of the form (eh,eh), 

h = 1,2, ... ,k, where each eh is a forward arc directed into j whose head 

is saturated and eh E H(eh). Second, there may be no more than one arc 

pair of the form (e,e' ), where e is either a backward arc directed out 

from j or a forward arc directed into j whose head is unsaturated and 

e' is either a backward arc directed into J or a forward arc directed 

out from j whose tail is unsaturated. (If j = s(t), then there is only a 

single arc e' (e).) Third, there may be arc pairs of the form (e! ,e. ), 
l l 

i = 1,2, ... ,£, where each e. is a forward arc directed out from j whose 
l 

tail is saturated and e! E T(e. ). Moreover, the sets H(eh), {e,e'} and 
l l 

T(e.) are disjoint. 
l 

From these observations we can conclude that an augmenting path 

which does not admit a shortcut contains at most one forward arc in A. 
J 

which is unsaturated with respect to a. and at most one forward arc in 
J 

B. which is unsaturated with respect to s .. And, moreover, each of the 
J J 

sets H(eh) and T(ei) remains saturated after augmentation. 

LEMMA 4.2. Suppose all capacity functions and the existing feasible flow 

are integer-valued. Then for any augmenting path which admits no shortcut 

there exists a strictly positive integer value of o by which the flow can 

be augmented. 



Proof. Let the maximum permissible value of o be determined as in the proof 

of the previous lemma. If o is determined by the amount of flow in a back­

ward arc, then o is an integer. So suppose a constraint of the form (4,3) 

is binding. If m(X) = 1, then o is an integer. So suppose m(X) > 1. After 

augmentation of the existing flow f by o, the resulting flow f' saturates 

X. As before, let e 1 ,e2 , ••• ,et denote the forward arcs in X whose tails 

are saturated by f. Then the sets T(ei), i =·1,2, ... ,t remain saturated 

after augmentation, and the set 

is also saturated by f'. Hence 

f' (X') = f(X' )+om(X') = a. (X'). 
. J 

(4.4) 

But there is at most one forward arc in X' whose tail is unsaturated by f. 

Hence m(X') ~ 1 and (4.4) indicates that o is integer. D 

5, A LABELING PROCEDURE 

Augmenting paths can be found by means of a labeling procedure which is 

much like that employed for ordinary flow networks. The principal differ­

ence is that labels are applied to arcs rather than to nodes. A labeling 

procedure which constructs augmenting paths without shortcuts is as fol­

lows: 

Step O. Initially all arcs are unlabeled and unscanned. 

Step 1. To each nonvoid arc directed into s apply the label(-,*) and to 

each arc directed out from s whose tail is unsaturated apply the label 

(+,*), 

Step 2. If there is an arc labeled"-" which is directed out from tor an 

arc label.ed "+" which is directed into t whose head is unsaturated, stop. 

(An augmenting path has been found. The arcs in this path can be determined 
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by backtracing, using the second component of each arc label.) 

Step 3. If there are no arcs which are labeled and unscanned, stop. 

(There is no augmenting path.) Otherwise, find such an arc e and scan it 

as follows: 

Suppose either e has a"+" label and is directed into node j ore has a 

"-" label and is directed out from node j. If e has a"+" label and its 

head is saturated, then apply the label (~,e) to all unlabeled arcs in 

H(e). If e has a"+" label and its head is unsaturated ore has a"-" 

label then apply the label (-,e) to all nonvoid arcs directed into j 

and apply the label (+,e) to all unlabeled arcs directed out from j whose 

tails are unsaturated. In addition, if e has a"-" label and its tail is 

saturated, apply the label (+,e) to all arcs e' such that e E T(e'). 

Return to Step 2. 

We have asserted in Step 3 that if the labeling procedure fails to find 

an augmenting path, then no augmenting path exists. This fact is by no 

means evident. The alert reader may even suspect that the labeling proce­

dure may be defective, in that it permits a given arc to be given only 

one type of label("+" or"-"), whereas both types might be applicable. 

We shall now prove that if the procedure fails to find an augmenting path 

then not only is there no augmenting path, but the flow is in fact maximal. 

THEOREM 5.1 (Augmenting Path Theorem). A flow is ma:x:imaZ if and only if 

it admits no augmenting path. 

Proof. If there is an augmenting path then Lemma 4.1 shows that the flow 

cannot be maximal. So suppose that the labeling procedure fails to find 

an augmenting path and let us show that this implies that the flow is 

maximal. The discussion which follows is with reference to the labels 

existing at the termination of the procedure. 

Let us partition the nodes of the network into two sets, Sand T. 

Sis to contain nodes, together with all nodes j such that either there 

is an arc directed from j with a II II label or there is an arc directed 



into j with a"+" label whose head is unsaturated. All other nodes (includ­

ing necessarily t) are in the set T. 

We have thus defined a cut ( S, T). Each "backward" arc ( i, j), where 

i ET, j ES, must be void, else it would have received a"-" label and i 

would be in S. Let us partition the forward arcs (i,j), where i ES, j ET 

into two sets U and L. Set U is to contain all unlabeled forward arcs and 

Lis to contain all forward arcs which are labeled (either"+" or"-"). 

We thus have the situation indicated in Figure 1. 

Figure 1. Cut (S,T,L,U). 

Consider any node i ES and the set of arcs UnA .. The tail of each 
l 

arc e E UnA. is saturated, else e could have a "+" label. Moreover, 
l 

T(e) ~ UnAi. For suppose there is some e' E T(e) such that e' i U. Such 

an arc e' cannot be unlabeled and directed to a node in S, else it could 

have received a II II label. So e' must be labeled and directed to a node 

in T. If e' has a"-" label, then e could have received a"+" label from 

the scanning of e'. So e' must have a"+" label and this can be so only 

because there is some arc e" E T(e') which has a"..,." label. But if 

e" E T( e) then e could have a "+" label. And if 

e' E T(e)nT(e') # T(e' ), a contradiction. Hence 

e" i T( e), we would have 

e' EU and T(e) c UnA .. 
- l 

It follows that UnA. is the union of saturated sets and is itself a 
l 

saturated set. 

Now consider any node j ET and the set of arcs LnB .. If an arc 
J 

e· E LnBj has a"-" label, then there is a"+" labeled arc e' E LnBj such 

that e E H(e' ). If an arc e E LnB. has a"+" label, then its head is 
J 

saturated (else j ES) and H(e) ~ LnBj, by the following reasoning. An 

arc e' E H(e) cannot be unlabeled because it could receive a"-" label 

from the scanning of e. If e' has a II II label, then it must be directed 

9 
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from a node in S, by definition of S. If e' has a"+" label this label 

must have resulted from the scanning of an arc incident to a node in S. 

Hence e' EL and H(e) c LnB .. It follows that LnB. is the union of 
- J J 

saturated sets and is itself a saturated set. 

We have shown that the net flow across the cut (S,T) is 

l· 8 f(UnA.) + I- T f(LnB.) = I- 8 a..(UnA.) + l· T f3.(LnB.). lE l JE J lE l l JE J J 

The flow is therefore maximal and there can be no augmenting path. D 

From Theorem 5.1 and Lemma 4.2 we also obtain the following result in 

the case of integer capacities. . 

THEOREM 5.2 (Integral Flow Theorem). If all capacity functions are 

integer-'valued, then there is a maximal flow which is integral. 

6. MAX-FLOW MIN-CUT THEOREM 

The proof of Theorem 5.1 clearly indicates the form of a max-flow min-cut 

theorem for polymatroidal network flows, which we now proceed to state. 

An arc-partitioned cut (S,T,U,L) is defined by a partition of the 

nodes into two sets Sand T, withs ES, t ET, and by a partition of 

the forward arcs across the cut into two sets U and L. The capacity of 

such an arc-partitioned cut is defined as 

c ( s , T , U , L) = l · 8 a. . ( u nA . ) + l . T f3 . ( Ln B . ) . 
lE l l JE J J 

As in the case of ordinary flow networks, the value v of any 

feasible flow f is equal to the net flow across any cut, 1.e. 

v = f(U)+f(L)-f(B), 

where Bis the set of backward arcs, and clearly 

v:,; c(S,T,U,L). ( 6. 1 ) 



THEOREM 6.1 (Max-Flow Min-Cut Theorem). The maximum value pf a flow is 

equal to the minimum capacity of an arc-partitioned cut. 

Proof. The proofs of Theorems 5.1 and 5.2, together with (6.1 ), are suf­

ficient to establish the theorem for networks in which all capacity func­

tions are integer (or rational) valued. 

To complete the proof of the theorem, we must show that every network 

actually admits a maximal flow. (There is the possibility that a sequence 

of flow augmentations might fail to terminate with a well-defined maximal 

flow.) This question will be resolved in a later paper, in which questions 

of algorithmic efficiency will also be addressed. D 

In the next several sections we shall indicate how the max-flow min-cut 

theorem specializes in various applications of the polymatroidal network 

flow model. 

7. MATROID INTERSECTION 

The (unweighted) matroid intersection problem is as follows. Given two 

matroids (E,p 1 ) and (E,p 2 ), find the largest possible set I which is 

independent in each of the matroids, i.e. such that p 1(I) = p2 (I) = (I). 

This problem can be formulated and solved as a polymatroidal network flow 

problem, a:3 shown in Figure 2. There are exactly two nodes, s and t, in 

the network and each arc from s tot corresponds to an element of E. The 

e n 

Figure 2. J:i'low Network for Matroid Intersection. 
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two capacity functions are determined by the two matroid rank functions: 

as= p1 , St= p2 . Since these capacity functions are integer-valued, 

there exists a maximal flow which is integer. Any such integral maximal 

flow corresponds to a solution to the matroid intersection problem. 

When the maximal flow algorithm suggested in Section 5 is applied 

to the network shown in Figure 2, it specializes precisely to the well­

known matroid intersection algorithm [6, 7]. An augmenting path without 

shortcuts corresponds to an "augmenting ·sequence". Minimal saturated sets 

T(e) and H(e) correspond to circuits c( 1 ) and c( 2 ) as defined in [6,7], 
e e 

and so forth. 

It is also interesting to note that the max-flow min-cut theorem 

specializes exactly the well-known matroid intersection duality theorem. 

A partitioned cut (S,T,L,U) must have S = {s}, T = {t} and is obviously 

determined by a partition of the set E into subsets Land U. Thus we have 

the following 

THEOREM 7.1 (Matroid Intersection Duality Theorem). 

max!II = min {p 1(u)+p 2(L)}. 
LuU=E · 

8. MATROID PARTITIONING 

Suppose we are given k matroids (E,p. ), i = 1,2, ... ,k, and we wish to 
J. 

determine whether or not there exists a partition of E into k sets I., 
J. 

J. = 1,2, .•• ,k, such that I. is 
J. 

independent in (E,p. ). We can construct 
J. 

a flow network as shown in Figure 3. In this network each arc (s,e) has 

unit capacity, the flow into each node (E,p.) is constrained by a capac-
1 

ity function S- = p., and there are no other capacity constraints. If 
J. J. 

there exists an integral maximal flow of value !El (which necessarily 

saturates each arc (s,e)), then there exists a partition of the desired 

type, otherwise not. 

As it I!Ught be expected, when the maximal flow algorithm is applied 

to the network shown in Figure 3, it specializes to an algorithm very 

similar to that which has been proposed for solving the matroid partition 
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problem [ 1, 7]. 

elements matroids 

e (E ,P. ) 
1 

Figure 3. Flow Network for Matroid Partitioning. 

A well-known set of necessary and sufficient conditions for the exis­

tence of a solution to the partitioning problem can be obtained quite easily 

from the max-flow min-cut theorem for polymatroidal network flows. There 

exists a solution to the matroid partitioning problem if and only if for 

the network of Figure 3 there does not exist an arc-partitioned cut with 

capacity strictly less than !El. Any cut of finite capacity must be of 

of the form shown in Figure 4 where S = Au{s}, for some A~ E. (A node 

(E,p.) cannot be in S, else the cut would have unbounded capacity.) The 
1 

capacity of such a cut is Ip.(A) + IE-Al, and if this is strictly less 
1 

than !El we have LP-(A) < !Al. 
1 

Figure 4. Cut in Proof of Theorem 8.1. 
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THEOREM 8.1 (Edmonds and Fulkerson [2]). There exists a solution to the 

matroid partition problem if and only if for all A~ E, 

IAI ~ I.p.(A). 
l l 

9. A SCHEDULING PROBLEM 

The polymatroidal network flow model can be applied to formulate and 

solve problems which have no readily apparent polymatroidal structure. 

The following problem in scheduling is such an example. 

Suppose there are n jobs, j = 1,2, ... ,n, each with a release time 

r., a deadlined., and a processing requirement p .. It is desired to 
J J J 

obtain a feasible preemptive schedule for these n jobs on m machines, 

where machine i has speed si, with s 1 2 s 2 2 2 sm. The usual conven-

tions apply, i.e. a machine can work on only one job at a time and no 

job can be worked on by more than one machine at a time. 

The set of 2n numbers {r.}u{d.} defines at most 2n-1 distinct 
J J 

time intervals. We construct a flow network as shown in Figure 5, with 

a node for each job j and a node k for each of the time intervals. There 

is an arc (j,k) if and only if it is feasible to process job j in inter­

val k. The arc flow f((j,k)) indicates the number of units of processing 

of job j to be done in interval k. 

jobs 

J 

time 
intervals 

k 

Figure 5~ Flow Network for Scheduling Problem. 

Suppose interval k has length tk. It follows from a well-known result 



of scheduling theory that the arc flows into node k should be constrained 

by a capacity function of the form 

J(s1+s2+ ... +si)tk, 

- l(s1+s2+ ... +sm)tk, 

if 

if 

IX I = i ::;; m-1, 

IXI 2':: m. 

The function Skis easily shown to satisfy properties (2.1)-(2.3). 

Finally, a capacity of p. is specified for each arc (s,j). There are 
J 

no other capacity constraints in the network. We assert that there exists 

a feasible schedule if and only if there exists a flow whose value is 

equal to LP·, i.e. a flow which saturates each arc (s,j). 
J 

If there does not exist a feasible schedule, the maximal flow algo-

rithm identifies a subset of jobs for which it is easy to show that there 

is not enough available machine capacity. The details of the application 

of the max-flow min-cut theorem can be found in [9]. 

We comment that if the machines are identical, i.e. all have the 

same speed, the polymatroidal flow network for this problem specializes 

to an ordinary flow network [ 5]. If the machines are unrie lated, i.e. have 

different speeds for different jobs, there appears to be no better alter­

native than solution by linear programming [8]. 

10. FURTHER EXTENSIONS 

The polymatroidal network flow model can be extended and elaborated 

in many of the same ways as the classical model. Lower bounds on arc 

flow, in the form of supermodular set functions, can be applied. Convex 

cost functions can be specified for the flow through individual arcs, 

and a minimum-cost feasible flow can be computed. It appears that the 

polymatroidal model retains the desirable features of ordinary network 

flows under these extensions, and this will be one direction for future 

investigation. 

15 



16 

REFERENCES 

1. 

2. 

3. 

Edmonds, 

J. Res. 

Edmonds, 

J. Res. 

J., 

NBS, 

J., 

NBS, 

Minimum partition of a matroid into independent subsets, 

69B, 67-72, 1965. 

Fulkerson, D.R., Transversals and matroid partition, 

69B, 147-153, 1965. 

Giles, R., A min-max relati•on for submodular functions 

on graphs, Annals Discrete Math., 1, 185-204,1977. 

Edmonds, J., 

4. Hassin, R., On network flows, Ph.D. thesis, Yale University, May, 1978. 

5. Horn, W., Some simple scheduling algorithms, Naval Res. Logist. Quart., 

21, 177-185, 1974. 

6. Lawler, E.L., Matroid intersection algorithms, Math. Programming, 

9, 31-56, 1975. 

7. Lawler, E.L., Combinatorial optimization: networks and matroids, 

Holt, Rinehart and Winston, 1976. 

8. Lawler, E.L., Labetoulle, J., On preemptive scheduling of unrelated 

parallel processors by linear programming, J. ACM, 25, 612-619, 1978. 

9. Martel, C.U., Generalized network flows with an application to 

multiprocessor scheduling, Ph.D. thesis, University of California at 

Berkeley, May, 1980. 


