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Controlled invariant distributions for affine systems on manifolds*) 

by 

H. Nijmeijer 

ABSTRACT 

The purpose of this paper is to give an expos;j.tion of a.new approach 

to the problem of nonlinear (A,B)-invariance. We will introduce this problem 

through the concept of distributions. With the ideas of the geometric approach 

to linear systems in mind we will derive the solution of this problem under 

conditions which are equivalent to those in the linear situation. 

· KEY WORDS & PHRASES: Nonlinear system theory, (involutive) distributions, 

linearizable systems, controlled-invariant distributions 

*) This paper has been presented at the Mathematical Systems Theory Meeting, 
University of Warwick, U.K., 7th-11th July, 1980. 
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1. INTRODUCTION 

The geometric approach for linear systems is a successful way to solve 

various synthesis problems in control theory, for example the Disturbance 

Decoupling Problem (D.D.P.) and other, related decoupling problems (see e.g. 

[16]. It would be interesting to develop an analogue theory for nonlinear 

systems. Apparently at this moment differential geometry is the adequate 

apparatus (see e.g. [7],[8]). In this paper we want - by using differential 

geometry - to discuss nonlinear (A,B)-invariance. Here we don't consider 

output-maps, for reason that we don't need them in defining (A,B)-invariance, 

although it will be clear t.~at for synthesis problems one also has to bring 

in output-maps. The systems that will be treated here have the form (locally) 
• tm 
x(t) = A(x(t)) + li=l ui (t)Bi (x(t)). 

2. PRELIMINARIES ON DIFFERENTIAL GEOMETRY 

In this section we give a brief review of the necessary parts of the 

theory of calculus on manifolds. The reader is referred to BOOTHBY [1], 

SPIVAK [2] and especially for the analytic case to VARADARAJ~_N [3]. Sometimes 
W 00 

we have to distinguish between the analytic (C .) and the smooth (C .) case 

for the differences that will appear. 
00 00 

We start with a C n-dimensional manifold M. By C (M) we denote the 
00 00 

collection of all c functions on Mand also V (M) will be the collection of 
00 

all C vectorfields on M. The tangentspace of M will be denoted by TM and in 

a point m by TM. 
m 

00 00 

DEFINITION 2.1. The Lie-bracket of two c vectorfields X,Y EV (M) is another 

vectorfield, denoted by [X,Y], and defined by 

[X,Y](f) = X(Y(f)) - Y(X(f)) 
00 

Vf E C (M) 

or briefly 

[X,Y] = XY - YX. 
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In local coordinates (i.e. in a chart of M) the bracket can easily be 

computed: If 

n 
Xi(x) a n 

Yi(x) a X(x) = I axi Ix and Y(x) = I Ix ax. i=1 i=1 1 

then 
n 

(i!1 
Xi(x) 

ayj 
Yi(x) 

axj 
(x)) a!. [X,Y](x) = I (x) -

axi 
I • 

j=1 ax. X 
1 J 

Next we will give a definition which turns out to be one of the most impor­

tant concepts of this paper: 

~ 

DEFINITION 2.2. A k-dimensional distribution 6 on M (C -manifold) is a 

map .6 which assigns to each point m EM a k-dimensional subspace of TM. The 
m 

~ 

distribution is called C if for all m EM there exist a neighbourhood U(m) 
~ 

of m and x1, ••• ,~ EV (M) such that for each point pin U(m): 

Span{x1 (p), ••• ,Xk(p)} = 6(p). We note that x1, ••• ,Xk are linear independent 

in each point of U(m). 

REMARK. By XE 6 for a vectorfield X we mean that X(p) E 6(p) for all pin M. 

An interesting question in differential geometry, which also occurs in the 

theory of partial differential equations is the following one: Is it possible 

to find for all pin Ma submanifold N(p) of M such that for all q E N(p) 

TqN(~) = 6(q)? Before we can give the general solution we first give some 

definitions. 

~ 

DEFINITION 2.3. Let 6 beak-dimensional C -distribution on M. A (k-dimen-

sional) submanifold N of Mis called an integral manifold of 6 if for all 

p EN we have TPN = 6(p), 6 has the integral manifold property if for all 

p EM t,here:exist. an integral manifold Np. 

. ~ 

D~FINITION 2.4. A k-dimensional C -distribution 6 on Mis called involutive 

or integrable (see [2]) if for all X,Y E 6 also [X,Y] E 6. 

Now we are able to give the solution of the above question: 
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00 

THEOREM 2.5. A k-dimensional C distribution 8 on M has the integral 

manifold-property if and only if 8 is involutive. 

REMARK. A 1-dimensional distribution 8 is trivially involutive. Integral­

manifolds can be found as integral curves of a non-zero vectorfield in 8. 

Theorem 2.5 is known as Froebenius' theorem, which also has a local version: 

00 

THEOREM 2.5'. Let 8 'be a k-dimensional·c distribution on M. If 8 is involu-

tive then for every p EM there exists a coordinate system (x,U(p)} with 

X 
n 

tJ (p} · -+ ]R X (p} = 0 , x(U(p}} = (-e:,e:), ••• , (-e:,e:) (n-times) 

such that for each ¾+1 , ••• ,an with lajl < e:, j = k+1, ••• ,n the set 

{q E U(p} l·"k.+i (q) = ak+l (q) , ••. ,xn(q) = an} is an integral manifold of 8. 
00 

Moreover we can find vectorfields x1, ••• ¾ EV (U(p)) such that in local 

coordinates x. (q) = f- I ( } i = 1, ••. ,k. 
J. Xi X q 

This means that locally we can find a set of vectorfields x1, ... ,xk E 8 such 

that the corresponding integral curves will transform in the local chart into 

straight lines. The family of integral manifolds of M of theorem 2.5 is 

called a foliation of M. For a detailed study the reader is referred to the 

excellent portugesian book of LINS NETO & CAMACHO [4]. 

We now proceed with a few examples which will be important in the next 

section. 

EXAMPLE 2.6. M = lR.n. We use 'global' coordinates (x1 ••• x ) • Consider the · 
00 • an a . 

C distribution 8 which in each point is spanned by {-,,- , ••• ,-,,- } • 
0X1 c,Xk 

8 is involutive. Every integral manifold N of 8 has the form · 

a } • 
n 

n k n~ In fact we made a decomposition if lR. · in two subspaces: JR x JR • 

This turns out to be useful in ·the theory of (A,B)-invariant subspaces. 

The following example will show that the situation is not always 'fine'. 
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EXAMPLE 2. 7. [4] Let f : JR2 -+ JR be the function defined by f(x,y) = a.(x2)ey • 
00 

where a. : JR -+ JR a C function such that 

a.Ct) = 1 fort E (-£,£) 

a.(1) = 0 

a.' (t) < 0 for ltl > £. 

The integral manifolds of the 1-dimensional distribution 6 on JR2 now are 

given by the level curves off. We can define an equivalence relation~ on 

JR2 by p 1 ~ p 2 .,.. p 1 and p2 are on the same integral manifold of 6. If we 

consider the quotient manifold JR2 /~ we see that this space is not even a 
~ Hausdorff space. For example the points a= ~(1,t) and b = ~(1,t) don't have 

disjunct neighbourhoods (here ~ : JR2 -+ JR2 / ~ the quotient map) • 

The last example will illustrate that for global control theory we can some­

times only use local descriptions. SUSSMANN studied in [18] the problem 

whether or not we have a global decomposition as in example 2.6. Here we 

will not give the result, but we will proceed with the analytic analogue of 

Froebenius' theorem. Let CW(M) and v00 (M) be defined as in the smooth case. 

DEFINITION 2.8. A c00~distribution 6 on M (from now on c00 ) is a map 6 which 

assigns to each point m EM a linear subspace of TM and such that for all 
m 

m there exists a neighbourhood U(m). and x1 , ••• ,xk E Vw(M) such that6(q) = 
= Span{x1 (q), ••• ,~(q)} for all q in U(m). It is not necessarily true that 

x1, ••• ,~ are linear independent everywhere. The definitions of integral 

manifold and involutive remain the same as in the smooth case. 

00 

THEOREM 2.9. (NAGANO [5]) An analytic distribution 6 on a C manifold M has 

the integral manifold properly if and only if 6 is involutive. 

2 
EXAMPLE 2. 10. Let 6 be the distribution on JR spanned by the vectorfield 

(x, y) -+ - y .1.... + x 2 · the integral manifolds are the circles {x2 + y2 = 
2 ax ay' 

= r} >Q; so all integral manifolds are 1-dimensional except for the point 
r-

(0,0). 
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3. CONTROL SYSTEMS ON MANIFOLDS 

We start with some motivating examples. 

EXAMPLE 3 • 1 • Consider the linear system l : :x = Ax+Bu with x E JRn =: X, 
m u E JR =: U and A,B matrices of appropriate dimensions. Another way to look 

at l is the following one, introduced by WILLEMS [15]. Ix= {x : JR+ Xix 

absolute continuous and there exists u : JR + U such that :x(t) = Ax(t) + Bu{t) 

almost everywhere}. This definition fits more to the general situation, but 

there are still problems in interpreting such expression on a manifold. The 

key-word seems to be trajectories. Of course we want a coordinate-free 

definition for a control system; there are no a priori coordinates on a 

manifold. Another point is that in the above definition the input space 

plays a role. The only requirement in lx is that we are interested in trajec­

tories .?:!. : JR+ X with !Ct) - Ax (t) E Im B := B, Vt E JR. Of course B has to 

be identified with the corresponding linear subspace of Tx(t)X. Finally an 

important observation is the fact that the definition of lx does not depend 

on the feedback-group [19] consisting of the following coordinate·transfor­

mations: 

1) SE Gl(n) 

2) Q E Gl(m) 

(A,B) t+ (SAS-1,SB) 

(A,B) I+ (A,BQ) 

3) F E L(JRm 1,JRn) (A,B) I+ (A+BF,B). 

The set of all trajectories of lx is feedback invariant. 

EXAMPLE 3.2. ([20]) Consider a spherical pendulum with a gasjet control which 

is always directed in the tangent space. We suppose that the magnitude and 

direction of the jet is completely adjustable within the tangent space. It is 

easy to give a local description of this situation: :x(t) = A(x(t)) + l~=l 
u. (t) x. (x(t)), where A(), x1 c) and x2 c) are c~. vectorfields on s2 and 

l. l. . 2 
x1 (x) 1, x2 (x); u = (u1 ,u2) E JR • But it is clear that this will not a global 

s2 has a singular point p, 
~ 

description, for every C vectorfield x1 on 

x1 (p) = 0([2]). In p the controls form a 1-dimensional subspace of 

contradicts our assumption of free direction of the·gas-jet. 

T s2 
p 

i.e. 

which 

The last example is of great importance; it shows that for defining general 

control systems (i.e. control systems on manifolds) we need another descrip-
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tion then the often used x(t) 

[15] and BROCKETT [20]. 

= A(x(t)) + ~ 1 u. (t)X. (x(t)), see WILLEMS Li= J. J. 

Now we will give the definition of a control system on a manifold. 

Again, as in section 2, we have to distinguish between the smooth and the 

analytic case. 

DEFINITION 3.3. An affine distribution 6 on M (Cm or Cw manifold) will be 

a map 6 which assigns to each point min Man affine subspace of TM. 6 is 
m 

k-dimensional if the affine subspace 6(m) is k-dimensional for all m. 

m ~ 

DEFINITION 8.4. AC k-dimensional control system on a C manifold M will be 

a k-dimensional affine distribution 6 on M such that for all m there is a 
~ 

neighbourhood U(m) and vectorfields x0 , ••• ,xk Ev (M) such that 

'v'q € U(m) 

And in the analytic case: 

DEFINITION 3.5. A Cw control system on M (Cw) will be an affine distribution 

6 on M such that for all m there is a neighbourhood U(m) and vectorfields 
w 

x0 , ••• ,~ EV (M) with the property that 'v'q E U(m): 

We want to make some remarks about these definitions: 
m 

i) Although it is not necessary that in the C -case we have fixed dimension, 

we made this assumption for simplicity. It turns out to be extremely 

difficult to get results without this condition. (Of course we claim 

that the X. 'sin definition 3.4 are independent on U(m), i = 1, ••• ,k). 
]. 

r Also we can give a C (r ~ 0) version of a control system but again it 

makes it more difficult to treat. 

ii} Locally we arrived at the 'famous' nonlinear situation x(t) = x0 (x{t))+ 

+ f~ 1 u. (t) X. (x(t)) as studied in for example [13], [11], but it is Li= J. J. 

important to point out that we have a 1 feedback invariant' form, for if 

we choose functions a. (i = 1, ••• ,k) E C(M) then 
]. 
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= Xo(q) + l:=1 ai(q) Xi(q) + Span{X1 (q), ••• ,¾(q)} 

iii) As already noted in the examples in the beginning of this section we 

only have to do with the effects caused by the inputs (in linear terms 

we do not see u, the input-space, but only Im B). One can even say 

that the inputs are parametrized by the choice of the vectorfields 

x1,·••r¾• 

EXAMPLE 3.6. M = lRn. 

We use global coordinates (x1, ••• ,xn) and consider the linear system 

l: x =Ax+ Bu u E lRm (A and B of appropriate dimensions). l can also 

be defined by an affine distribution ti x + Ax + Span{b1 , ••• ,bm} where 

b 1 , ••• ,bm are the columns of Im B. 

In this example we still used the standard coordinates for lRn. As 

already said we donot want to use a ·coordinate representation in describing 

a system. The definitions 3.4 and 3.5 are also coordinateless. But this 

raises the question whether or not a system on lRn is linear. Therefore we 

use a recent result of JAKUBCZYK & RESPONDEK [9] (see also [10]). Although 

they give the result on lRn it is easy to formulate it in general terms. 
00 00 

Let b. be a c control system on M. By ti0 =: ti - b. we denote all B E V (M) 
00 

with B = X - Y, X,Y € b. (Recall that X € b. means XE V (M) and 

X(p) E b.(p) Vp EM). We also observe that ti+ b.0 = b.. In the linear case b.0 

stands for Im B. We define b.k =: [ti,tik-i], which means for example YE b. 1• 

then Y is the Liebracket of a vectorfield XE ti and a vectorfield B €. b.0 • 

Again we wish to point out the linear analogue where b. 1 = B + AB, 

b.2 = B +AB+ A2B •••• Whether or not a system is linear now can be express­

ed in terms of b. and ti. (i E N ) . 
l. 

DEFINITION 3.7. We will call a control system on a manifold M locally linear­

izable if for each point m we can give a coordinate neighbourhood (x,U) 

such that in these coordinates the system has the form x = A +Bu+~ 
X 

~ E lRn, fixed. Now we are able to apply the result of Jakubczyk and 

Respondek (we only give a reformulation). 
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00 

THEOREM 3.8.{[9]) Let 6 be a C control system on M. 6 is locally linear-

izable if and only if 

Vk,l e: :N, 

2) Vk e: :N dim(6. {x)) is independent of x, 
1 

3) dim 6 1 = n .(= dim M) • 
n-

REMARKS. 

i) 

ii) 

The theorem only has to do with the controllable situation, see 3. 

There exists a direct connection between the dimensions of 6. and the 
1 

Kronecker indices of the pencil {A,B), the resulting linear system is in 

BRUNOVSKY - canonical form {[19]): define 

dim 6. = r. 
1 1 

i € :N 

then the p, 's are the Kronecker indices of the pair {A,B). · 
1 

iii) The conditions 1 and 2 of theorem 3.8 have an interesting consequence 

in terms of distributions. It is easy to see that the distribution 6. 
1 

is involutive, so for all i e: :N we can apply Froebenius' theorem 

{theorem 2.5). Furthermore the distributions are nested: 60 c 61 c 62 c ••• , 

which is the essential part of the proof. 

iv) With great ease we can apply the results of [14]-to this situation. 

Structural stability of a system depends on the 6. 's. 
1 

v) It is easy to construct a cw-example which does not satisfy the condi-

tions of theorem 3. 8. In fact every bilinear system does not satisfy · 

the dimension assumption. 

Let 

then we see that 60 is given by 

60 is not involutive. 
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It is an interesting question whether or not a cw analogue of theorem 

3.8 exists. 

vi) Another observation of this theorem is that the feedback-group now 

changes; instead of linear diffeomorphisms on JRn, i.e. elements of 
n Gl(n), we can use all diffeomorphisms on the state space JR • 

Next we will give an elementary example of the above theorem, which 

illustrates how to linearize. 

EXAMPLE 3.9. Consider the nonlinear system 

2 
on JR • 

~O is spanned by the vectorfield B(x1 ,x2) = 2x2 a!1 + a! and ~O has fixed 

dimension. Solving the associate di~ferential equation t~ get the integral 

curves of B (which are also the integral manifolds of the distribution ~0) 
2 

leads to x1-x2 =constant.We now compute a specific new member of ~1 : 

and furthermore ~l has fixed dimension. Solving again the associate differ­

ential equation now gives x2 =constant.Finally we use the coordinate 

transformation 

2 
xl = xl - x2 

f~ = x2 x2 

and we arrive at the linear control system 

Of course we could have used the transformation 
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then we'll get the system 

2 
or, there is no reason of selecting a specific point of JR as the origin of 

the new coord:inate system, what also can be expressed by saying that the 

feedback gro~p is extended by translations. 

Controllability of a control system. 

The last decade various people attacked the problem of controllability of 

nonlinear systems (see e.g. [6], [7], [8]). Before we can give the result 

in our notation we have to introduce the concept of accessibility. 

DEFINITION 3.10. ([7]) Let~ be a control system on M. Given a subset o of 

M a point x' :is weak a-accessible from a point x" (denoted by x 'WA0x 11 ) if 

there exists .a collection of vectorfields x1 , ••• ,xa E ~ and points 

X 1 = x0 ,x1, ... ,Xct 

through x. 1 (i = 
J.-

= x" such that x. belongs to the integral curve of X. 
l. l. 

1, ••• ,a) and the paths, given by these integral curves, 

belong to O. :e'or a neighbourhood o of x0 the set of all weak-a-accessible 

points from x0 is denoted by WA0 (x0 ). 

DEFINITION 3.11. ([7]) ~ is locally weakly controllable in XO if WAO(xo) 

is a neighbourhood of x0 for all O. ~ is locally weakly controllable if it 

is locally weakly controllable in x0 for all x0 in M. Recall that 

~0 = ~ - ~ = {x-Ylx,Y E ~} and ~k = [~.~k-lJ. 

00 00 

THEOREM 3.12. (C version) Let~ be a C control system on M. Let~ 
p = ~ p-1 

be a k-dimens.ional involutive distribution on M. Then for all x0 in M 

WA0 (x0 ) is an open subset of the corresponding integral manifold through x 0 . 

THEOREM 3.12. (Cw version) Let~ be a Cw control system on M. Let~ = ~ 1 p p-
be an involut.ive distribution on M. Then for all x 0 in M WA0 (x0 ) is an open 
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subset of the corresponding integral manifold through x0 • 

The proof of this theorem may be found in the literature ([7]). 

COROLLARY. 6 is locally weakly controllable if dim 6m = dim 6k = n (k suffi­

ciently large) • 

REMARK. We note that although it seems to be an infinite procedure to compute 

6m we can stop after a finite number of times (A is·lecally of the form x0 
+ Span{x1, ••• ,xa}). In the controllable case for example we have done after 

(n-1) steps (compare with the linear case). 

4. (6,60)· INVARIANT DISTRIBUTIONS 

In this section we want to discuss the generalized notion of (A,B)­

invariance. Recently several people studied this problem (ISODORI et al [11], 

NOMURA & FORUTA [12], HIRSCHORN [13]).Although we don't consider output in 

this paper (so we cannot apply the results to the disturbance decoupling 

problem) the nonlinear analogue of (A,B)-invariance is interesting to treat 

with the distributional approach. 

In [17] WILLEMS has given a collection of various definitions of (A,B)­

invariance in the linear case. We'll pick up a few of them which turn out to 

be most useful for nonlinear systems. Let 

I X =Ax+ Bu x E lRn =: X, u E lRm =: U. 

DEFINITION 4.1. (1) A linear subspace V c Xis (A,B)-invariant if there 

exists a (linear) feedback F: X + U such that AF V c V where~=: A+BF. 

DEFINITION 4.1. (2) A linear subspace V c X ~s,(A,B)~invariant if AV c V+B. 

DEFINITION 4.1. (3) A linear subspace V c Xis (A,B)-invariant if }:(mod V) 

is a linear system. We now give the distributional version of this definition 

(the reader is referred to example 2.6). Let V be a· linear subspace of X. We 

can associate a distribution DV with the linear subspace V by defining 

DV (x) = V c T lRn where we use the natural identification of lRn with 
- X 
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TxJRn. Another way of defining DV is given by the following: Let {v1, •.• ,vk} 

be an orthonormal basis of V then DV is given by Span{J- , ••• ,J-}. 
oVl oVk 

The condition ~V c V will transform in 

a a I a I [AF' , "I J (x) E Span{-..,- , ••• ,-..,- } 
oV i oV l ~ oV k X 

0 

....___. 
k 

k 

Vi=l, ••• ,k 

Now we will give generalization of 4.1. We don't distinguish between the 

smooth and the! analytic case. In the context of the definition of a control 

system (A,B)-i.nvariance becomes (t::.,!S.0)-invariance. 

DEFINITION 4.2. An involutive distribution D (fixed dimension) on M will be 

called (!:::.,t::.0)-·invariant if there exists X in I:::. such that [X,D] s_ D. If we 

work out a coordinate version of this definition then we get the following 
00 

appealing result (C version). Locally we can find around each point in Ma 

coordinate system such that the involutive distribution D - with fixed dimen­

sion p - is spanned by the vectorfields ~, ••• ,J- (theorem 2. 5') • Writing 
ox1 ox 

down the equation [X,D] s_ D now gives that p 

= 0 
Vi= p+l, .•• ,n 

V. = 1, ••• ,p 
J 

if X = 
n a 
l xi axl., I 

i=l 

or equivalently if we write ~l = (x1 , ••• ,xp) and x2 = (xp+l' •.• ,xn) then we 

get the following form for X 

which is the nonlinear.analogue of (*) ! 
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Next we will show that under certain conditions the equivalence of definition 

4.1 (1) and definition 4.1 · (2) will be true in the nonlinear cas.e. We will 

treat here the c= version although we also can do in the cw-case. 

ASSUMPTION. From now on we consider a class of involutive distributions, 

F (60) (here we use F (60) which stands· for a•' friend' of 60 , compare [16]} 

such that D E F (60) ~ 60 + D is involutive and has fixed dimension. 

0 

REMARK. For a linear system x =Ax+ Bu one only considers (A,B}-invariant 

subspaces V which are linear subspaces of lR.n; moreover Im Bis a linear 

subspace of m.n. The associated distribution automatically satisfies the 

above property (and also 60 is involutive}. 

THEOREM 4.3. DE F(60} is locally (6,60 )-invariant if and only if 

[6,D] ED+ 60 • 

PROOF. (=>} Dis (6,60) inva:iant implies that there exists XE 6 such that 

[X,D] En. Then, for every XE 6 we have 

(The last inclusion follows from the fact that DE F(60}}. 

(<=) Now we assume [6,D] ED+ 60 • Let XE 6 then [X,D] ED+ 60 • 

We now construct the 'feedback' (associated with the choice of X}. 

Let D beak-dimensional involutive distribution. So around each point p EM 

we can find a local chart (U(p} ,x} and vectorfields Y1, ••• ,Yk on U(p) as in 

the local Froebenius' theorem (Th 2.5') [X,D] ED+ 60 => 3 vectorfields 

B1, ••• ,Bk E 60 such that [Yi,x] = Bi (mod D} i = 1, .•• ,k (here mod D means 

of course modulo a vectorfield in D). 

[Y., [Y. ,X]] = [Y. ,B.] (mod D) i,j = 1, ••• ,k 
J l. J l. 

[Y.,[Y.,X]] = [Y. ,B.] (mod D} i,j = 1, ••• ,k 
l. J l. J 

[Y., [Y. ,X]] - [Y. ,[Y. ,X]] = [Y.,B.] - [Y., B.] (mod D} i,j = 1, ••• ,k 
J l. l. J J l. l. J 
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but by the Jacobi-identity we have 

Now we 

In the 

and we 

Define 

[Y.,[Y.,X]] - [Y.,[Y.,X]] = [[Y.,Y.],X], 
J 1 1 J J 1 

i,j = 1, ..• ,k. 

construct a vectorfield Bin t::. 0 + D such that [Y. ,BJ 
1 

local chart (U(p) ,x) we let 

n 
B~ (x) a B. (x) = I dXj Ix 1 j=l 1 

define 

B 

1 B. (x) 
1 

f\ 
n Rn by B. (x) i 1, ... ,k. ]R -+ = = 

1 

n B. (x) 
1 

Rn -+ Rn by 

B (0, ••• o,~+l' ... xn) = O 

x1 

B(~c1,·••1Xn) = J B1(t,O .•• ,o,~+1'·••1Xn)dt+ 

0 

X2 

J S2 (x1,t,O, ••. o,~+l'"··•xn)dt + 

0 

= 

xk 

+ J Bk(x1 , ... ,~_1,t,~+l'"""'xn)dt 

0 

B. 
1 

(mod D). 

and B will be the corresponding vectorfield. In the local coordinates we 

compute [Y. ,B]: i.e. 
1 
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xi+l · 

+ J-- I s.+1 (x1,·••1X, ,t,0 •.. 0,x. 11•••1X )dt 
oXi O i i k+ n 

~ 

+ a!i I 8k(x1···"J<-1•t•"k+1m ••• ,xn)dt. 

Now £ram (*) we have 

asi asj 
(x) - - (x) = 0 (mod D). ax. ax. 

J i 

So we have 

3S (x1 , ••• ,x) = S. (x1 ••• x.,O ••• O,xk 1 ••. x) 
-- n i i + n ax. 

i 

as. 
i 

0 

Here D1 (x1 ..• x) is a vectorfield which by the involutivity of D belongs to 
n as- as· 

D. You' 11 get it by integrating the differences ~ - ~ in D by a vector-
ox · o~ 

field in D Cf~j···dxj is just integrating with re~pect to the vector~ 

field Y.) 
J 

as 
-;:;-:- (x1··-X) = B.(x1···x,,o •.• o,x. 1··-X) ox. n i i k+ -n 

i 
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= 18. (xl ••• x ) (mod D) • 
1 n 

Finally we ob:serve that the vectorfield B belongs to ti0 + D. (By the involu­

tivity of ti0 + D and because we integrate with respect to vectorfields from 

D!) Now we cru~ see that Bis the appropriate feedback for 

[Y. ,x] = B. (mod D) = [y. ,BJ (mod D) 
1 1 1 

~ [Yi,X-B] E lD and now X-B E ti if BE ti0 (otherwise we only use the component 

of B in tio) =~ [D,X-B] C D. D 

REMARKS. 
00 

i) We have proved the C -version here, in the same spirit we can prove the 

cw-case. 

ii) Feedback is unique up to vectorfields which belong to D n ti0 (Compare 

with the linear case). 

iii) We can also drop the assumptions about ti0 and D. In the same way we can 

prove thia following theorem: D is (ti,ti0 )-invariant ~ [ti,D] !=. [ti0 ,oJ + D, 

but the 'feedback' we can construct, belongs to involutive closure of 

ti0 + D (which is not a feedback in the usual sense). 

iv) It is st:raightforward to show that - under the assumption that ti0 is in­

volutive - our results are a generalization of [13]. The distributional 

approach presented here, seems to be better in treating nonlinear 

(A,B)-invariance. 

COROLLARY 4.4. 

i) If o1 ,n2 E F(ti0 ) then o1+n2 - the involutive closure of the distribution 

o 1+o2 - belongs to F(ti0 ). So F(ti0 ) is closed under addition. 

ii) If o1,o2 are (ti,ti0 )-invariant distributions then o1+n2 is (ti,ti0 )-in­

variant 

PROOF. 

i) We have to show that o 1+n2+ti0 is involutive. It will be clear that we've 

done if VY E D1+n2 , 'v'B E ti0 , [Y,B] E D1+o2+ti0 • 
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YE o 1+D2 then YE D1 (or YE D2) or YE" [D1 ,D2] or inspaces generated 

by high◄=r order Liebrackets. 

y E D1 ==> [Y ,B] E D1 +bo c D1 +D2+.t:.o 

Y = [Y1,Y2], yl E D1, y2 E D2, then 

[Y,B] = [[Y1 ,Y2],B] = [Y1,[Y2 ,BJ] + [Y2 ,[B,Y1]J (Jacobi!) and this 

belongs to D1+o2+t:.0 • In the same way one can treat higher order brackets. 

ii) [t:.,D1] S D1+.t:.0 

[t:.,D2] S D2+.t:.0. 

Thus [t:.,Dl+D2] 5=. D1+D2+t:.o 

==> D1+D2 is (t:.,t:.0 )-invariant. 

Finally we note that D1+o2 as well as o 1+o2+t:.0 have fixed dimension if 

o 1,o2 E F(t:.0). 

LEMMA 4.5. Li':!t F be a non-empty class of involutive distributions on M such 

that also D ,~ F ==> D has fixed dimension. Then F contains a supremal element 

* . * D (i.e. VD i~ F : D 5=. D ) • 

PROOF. By th◄= fact that Fis closed under addition there exists an involutive 

distribution of greatest dimension: o* E F. Now, if DEF we have D+D* E F 

and so dim(D'I<) ::?: dim(D+D*) that is, D* = D+D*, hence D* =:i D and so D* is 

supremal. D 

THEOREM 4.6. Every KE F (t:.0) contains a unique supremal (t:.,t:.0 )-invariant 

distribution. We will denote this distribution by S(t:.,t:.0 ;K). 

PROOF: Corollary 4.4 and lemma 4.5. D 

We want to conclude this paper with an algorithm for S(t:.,t:.0 ;K). One should 

compare this procedure with the linear algorithm (See [16]). Define 

THEOREM 4.--7~ Let KE F (t:.0 ). Define the sequence {Dµ} according µ=0,1,2, ••• 
to 

µ = 1,2, ••• 

µ = 1,2, .•• 
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ii) Dµ is involutive and moreover if we assume that Dµ has fixed dimension 

then Dµ E F(ti.o) (µ = 0,1,2, ••• ). 

iii) for some k ~ dim(K) we have Dk= sup(ti.,ti.0 ;K). 

PROOF. 

i) Dµ c Dµ-l 

Clearly D1 c DO and if Dµ c Dµ-l then 

ii) Dµ is involutive. 

DO= KE F(ti.0 ) thus n° is involutive. 

suppose Dµ-l E F(ti.0 ) then Dµ =Kn ti.- 1 (ti.0+Dµ-l), 

now 

[X,Y] EK 

and VA E ti. we have [A,X] 

[A,Y] 

[A,[X,Y]] = -[X,[Y,A]] - [Y,[A,X]] (Jacobi) 
µ µ-1 

E [D ,ti.0+D ] 
µ-1 µ-1 µ-1 

E [D ,ti.o+D J E t,.o+D 

(h A µ-1 • • 1 t • ) ere we use il0+D is invo u ive. 

( 1) 

(2) 

From (1) and (2) we conclude that Dµ is involutive. By the dimension 

assumption and the next lemma (4.8) it will follow that Dµ+ti. 0 is 

involutive and Dµ E F(ti.0 ). 

iii) Suppose D E F (ti.a> D c Kand D is (ti.,ti.0)-invariant then D c Kand 

[ti.,D] S. o+ti.o 

~DC K,. D S, ti -1 (o+ti.o> 

0 if D 
µ-1 

then => D c D and C D 
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k 
Therefore we have D c D Vk € :N • But we can easy show by a dimension 

argument that Dµ+l = Dµ forµ~ dim(K). Therefore lim Dµ exists and 

We still have to show that Dµ+8 is involutive. 
0 

LEMMA 4.8. Let n1,n2 and n3 be involutive distributions of fixed dimension 

and D1 c n2• n2+n3 is involutive and has fixed dimension then n 1+n3 is in­

volutive and has fixed dimension. 

PROOF. We only give here the proof in case n2 n n3 = .Q_; the general case can be 

done in the same wat. By a modification of Frobenius' theorem, as given in 

[9], we can locally find vectorfields x1, ••• ,x such that [x.,x.J = 0 
m 1 J 

i,j = 1, ••• ,m and 

Span{x1 •• •¾} = n1 -

Span rn1 ••. ,xk ••• ,xl} = n2 
Span{X1 ••• 1¾• .. ,X.e., ••• x!Jl} = D2+D3 

n1+n3 = Span{x1 ••• ,xk,Xl+l···Xm} (here we use n2 n n3 = O !) 

and also [X.,X.]=O 
1 J 

.,. D1+n3 is involutive. D 

i,j = 1, ••• k, l+1, ••• m 

An induction argwnent now will give that Dµ+8 0 is involutive for allµ€ :N 

(note that n°+~0 = K+80 is involutive). 

5. CONCLUSION 

In this paper we have attempted to give a new treatment of a particular 

class of nonlinear control systems. Under certaln conditions we completely 

solved the problem of controlled-invariance. Apparently one can also consider 

some other 'linear problems' as for example: controllability subspaces in 

this terminology. 
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