
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

K. NAKAJIMA, S.L. HAKIMI, J.K. LENSTRA

BW 131/80 DECEMBER

COMPLEXITY RESULTS FOR SCHEDULING TASKS IN FIXED INTERVALS
ON TWO TYPES OF MACHINES

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

P.tunt.ed a:t .the Ma:themati.c.ai. Cen.tll.e., 413 Kll.lL,{,6.ta.an., Aw.,.teJui.am.

The Ma:thema..t,foai. Cen.tlr.e , 6ou.n.ded .the 11-.th 06 Feb'1.J.l.aJc.y 1946, b., a. n.on.
pJc.do,lt -ln6W'11.:twn. a.,im,[n.g a..t .the pJc.omo:Uon. 06 puJLe. ma..themati.eo a.n.d ill
a.ppUc.au.ow.,. I.t b., .6pon6oJc.e.d by .the Ne.thefl.la.n.dJ., GoveJc.n.ment. .thfl.ough .the
Ne.thefl.la.n.d6 OJtga.n.-lzati.on. 6oJc. .the Adva.n.c.ement. 06 PuJc.e Ruea.Jc.c.h (Z.W.O.).

1980 Mathematics Subject Classification: 90B35, 68C25

COMPLEXITY RESULTS FOR SCHEDULING TASKS IN FIXED INTERVALS

ON TWO TYPES OF MACHINES

K. NAKAJIMA

Computer Science Division, Department of Electrical Engineering, Texas Tech

University, Lubbock, TX 79409, U.S.A.

S.L. HAKIMI

Department of Electrical Engineering and Computer Science, Northwestern

University, Evanston, IL 60201, U.S.A.

J.K. LENSTRA

Mathematisch Centrum, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

Suppose that n independent tasks are to be scheduled without preemption on

an unlimited number of parallel machines of two types: inexpensive slow

machines and expensive fast machines. Each task requires a given processing

time on a slow machine or a given smaller processing time on a fast machine.

We make two different feasibility assumptions: (a) each task has a specified

processing interval, the length of which is equal to the processing time on

a slow machine; (b) each task has a specified starting time. For either

problem type, we wish to find a feasible schedule of minimum total machine

costs. It is shown that both problems are NP-hard in the strong sense. These

results are complemented by polynomial algorithms for some special cases.

Key words & phrases: parallel machines, tasks, release dates, deadlines,

computational complexity, NP-hardness, polynomial algorithm.

Note: This report has been submitted for publication in a journal.

1. Introduction

We begin by considering the following problem. Suppose there are n tasks

T 1 , ... ,Tn and an unlimited number of identical parallel machines. Each task

T. requires a given processing time p. and is to be executed without inter-
] J

1

ruption between a given release date r. and a given deadline d. == r. +p. . The
J J J J

tasks are independent in the sense that there are no precedence constraints

between them .. Each machine can execute any task, but no more than one at a

time. The problem is to find the minimum number of machines needed to execute

all tasks as well as a corresponding schedule of the tasks on the machines.

This problem is known as the "fixed job schedule problem" [6] and as

the "channel assignment problem" [8;9;10]. It has applications in such di

verse areas as vehicle scheduling [2;15], machine scheduling [6;8], and com

puter wiring [8;9;10]. As a special case of Dilworth's chain decomposition

problem, it is solvable in O(n2) time by the staircase rule of Ford and Ful

kerson [3,p.65] and by the step-function method of Gertsbakh and Stern [6].

Hashimoto and Stevens [9;10] presented some interesting graph theoretical

approaches to the problem and proposed an O(n2) algorithm, for which Kerni

ghan, Schweikert and Persky [12] gave an O(n log n) implementation. Recently,

Gupta, Lee and Leung [8] independently developed a different O(n log n)

algorithm and also showed that any solution method for the problem requires

rl(n log n) time.

In this paper we will consider a natural generalization of this problem

which has potential applications in the scheduling areas mentioned above.

Again, there are n independent tasks T 1 , ... ,Tn, but there are two types of

machines: slow machines of cost Cs and fast machines of cost Cf> Cs. Each

task T. requires a processing time pJ. on a slow machine or q. < p. on a fast
J J J

machine and is to be executed without interruption between its release date

2

r. ·and its deadline d. = r .+p .. It is assumed that all numerical problem data
J J J J

are integers. In a feasible schedule, the tasks assigned to slow machines

have to start at their release dates in order to meet their deadlines. For

the tasks T. assigned to fast machines, we make two different feasibility
J

assumptions:

(a) VST (variable starting times): T. may start at any time in the interval
J

[r . , d . -q .] ;
J J J

(b) FST (fixed starting times): T. has to start at timer .•
J J

A schedule using ms slow machines and mf fast machines has total costs

msCs+mfCf. For either problem type, we wish to find a feasible schedule of

minimum total costs.

In Section 2 we show that the VST problem is NP-hard [1;4;5;11], even

if all release dates are equal. In Section 3 we extend our techniques to

prove that the FST problem is NP-hard in the case of arbitrary release dates;

the case of equal release dates is trivially solvable in O(n) time. The NP-

hardness results are "strong" [4;5] in the sense that they hold even with

respect to a unary encoding of the data; this implies that there exists no

pseudopolynomial algorithm for these problems unless 8}J = JV8}).

In Sections 4 and 5 we consider the special case that q. = 1 (j = 1, ... ,n) .
J

We present O(n log n) algorithms for the VST problem with equal release dates

and for the FST problem with arbitrary release dates, respectively.

VST FST

pj arbitrary
r. arbitrary r. equal r. arbitrary rj equal

J J J

q-; arbitrary NP-hard (§ 2) NP-hard (§2) NP-hard (§ 3) O(n) (§ 3)

qj = 1 open O(n log n) (§4) O(n log n) (§5) O(n) (§ 3)

TABLE 1. Summary of complexity results.

3

These results represent an almost complete complexity classification of

the problem class under consideration, as demonstrated by Table 1.

2. NP-hardness of the VST problem

THEOREM 1. The VST problem is NP-hard in the strong sense, even if all

release dates are equal.

f s
Our proof holds for the case that C /C = 3 and pj/qj = 3 (j = 1, ••• ,p).

Theorem 1 dominates a previous result, stating that the VST problem is NP

hard in the strong sense if the release dates are arbitrary, Cf/Cs is an

arbitrary constant between 1 and 7, and pj/qj = 4 (j = 1, ••• ,n) [17].

Proof of Theorem 1. We have to show that a problem which is known to be NP

complete in the strong sense is reducible to the VST problem. Our starting

point will be the following problem [5,p.224,[SPlS]]:

3-PARTITION: Given a set S = {1, ••• ,3t} and positive integers a 1 , .•. ,

a 3t,b with ¼b < aj < ½b (j ES) and ljES aj = tb, does there exist a

partition of S into t disjoint 3-element subsets s 1 , ••• ,st such that

l· S a.= b (i = 1, ••• ,t)?
JE i J

Given any instance of 3-PARTITION, we construct a corresponding instance of

the VST problem with equal release dates as follows:

the cost coefficients are defined by Cs= 1, Cf= 3;

there are 4t tasks:

a-tasks Ta (j S) with
a 0, a

6a.,
a

E r. = pj = qj J J J

b-tasks T1:> (i {1, ••• ,t}) with b 0, b 3b, b
E r. = pi = qi l. l.

= 2a.;
J

= b.

We claim that 3-PARTITION has a solution if and only if there exists a

* feasible schedule with total costs at most C = 3t.

4

Suppose that 3-PARTITION has a solution {s 1 , ••• ,St}. It is possible to

construct a feasible schedule for all tasks on t fast machines M~, ... ,M: as

follows (cf. Figure 1): for each i E {1, •.• ,t}, machine M~ processes the
l.

three tasks T~ (j ES.) in nondecreasing order of q~ value in the interval
J l. J

[0,2b], and the task~ in [2b,3b]; note that the starting time of each task
l.

falls within the required interval. The total costs of this schedule are

equal to tcf = c*.

Conversely, suppose that there exists a feasible schedule with total

* costs at most C. Let there be:

s slow machines processing one a-:-task and nob-tasks, mo
s

slow machines processing no a-tasks and one b-task, m1

f
fast machines processing four a-tasks and nob-tasks, mo

f
fast machines processing,three a-tasks and one b-task. m1

It is easily argued that no other possibilities need be considered. We have:

Instance of 3-PARTITION:

:t. = 3 ; b = 25; j 1 2 3 4 5 6 7 8 9

a. 7 7 7 8 8 8 9 10 11

Solution: {{1,2,9},{3,4,8},{5,6,7}}

Corresponding VST schedule on :t. fast machines:

0 14 28 50

M~I 1:14 I ~:14 I ~:22 I b. T1 .25

0 14 30 50

M~I ~:14 I ~:16 I ~:20 I T~:25

0 16 32 50

M~I ~:16 I ~:16 I ~:18 I T~:25

FIGURE 1. Illustration of the transformation in Theorem 1.

75

75

75

5

s s f f
(since * mo + ml + 3mo + 3m1 :::;; 3t C = 3t) ,

s f f
3t (since 3t a-tasks), mo + 4mo + 3m1 = there are

s f
(since there b-tasks). ml + ml = t are t

s s a b
relations imply that f f Since IjES I~=l These mo =ml= mo = 0, ml = t. q, + qi J

= 3th = t•max{max. {p~},max. {p?}}, the t fast machines are busy in the inter-
J J l. l.

a val [0,3b]. It follows that the i-th one of them processes three tasks T.
J

(j E S .) with L, S q ~ =
l. JE i J

2b. The collection {s 1 , •.• ,st} constitutes a solu-

ti.on to 3-PARTITION. 0

3. NP-hardness of the FST problem

THEOREM 2. The FST problem is NP-hard in the strong sense.

THEOREM 3. The FST problem is solvable in O(n) time if all release dates are

equal.

f s Our NP-hardness proof holds for the case that C /C = (t+2)/(t+1) and

pj/qj = z (j = 1, ••• ,n), where t and z are input variables. Theorem 2 is

still true if Cf/Cs is an arbitrary constant between 2 and 3 and p./q. = 2
J J

(j = 1, ••. ,n) [16]; the proof of this further refinement is quite involved.

Theorem 3 shows that the NP-hardness result cannot be extended to the case

of equal release dates, unless f!l' = ...,,Yf!l'.

Proof of Theorem 2. We will start from the following strongly NP-complete

problem [5,p.224,[SP17]]:

NUMERICAL MATCHING WITH TARGET SUMS: Given a set S = {1, ••• ,t} and posi-

do there exist permutations a and S of S such that aa (i) +bS (i) = ci (i E S)?

6

We may assume without loss of generality that a 1 < •.. < at, b 1 < ..• < bt

and c 1 < ... <ct.Further, we will assume that for any instance of this

problem there exists a positive integer z such that

(If this does not hold, then define z = max{at+l,bt+l} and set ai + ai+z,

b. + b.+2z, c. + c.+3z (i ES).) We will use the notation S' = {1, ... ,t-1}.
l l l l

Given any instance of NUMERICAL MATCHING WITH TARGET SUMS, we construct

a corresponding instance of the FST problem as follows:

the cost coefficients are defined by Cs = t+l, cf t+2;

2
there are 2t +t tasks:

a-tasks T~ (i S) with
a o, a a E r. = pi = zai, qi = a.,

l l l

b-tasks
~i

(h s, i S) with
b b

zb.,
b

b., E E rhi ah, phi = qhi l l

c-tasks T~ (i S) · with
C C

3z
3 C

3z
2

E r. = Ci' pi I qi = I l l

d-tasks
d

(h s It i S) with
d

2z+zb. ,
d 3 d 2

Thi E E rhi phi = z I qhi = z .
l

We claim that NUMERICAL MATCHING WITH TARGET SUMS has a solution if and only

* t 3+t2+t. if there exists a feasible schedule with total costs at most C =

Suppose that the matching problem has a solution (a,B). It is possible

h . f (" S) to construct a feasible schedule for all tasks on t fast mac ines M. l E
l

and t 2-t slow machines M~i (h ES', i ES) as follows (cf. Figure 2): for

each i ES, machine Mf processes the tasks T~(i) '~(i)S(i) ,T~ in the inter

vals [O,aa(i)],[aa(i) ,aa(i)+bS(i)],[ci,ci+3z2 J (note that aa(i)+bS(i) = ci),

and each of the t-1 machines M~i (h ES') processes one of the t-1 tasks

~i (h E s-{a(S- 1 (i)) }) in [¾,ah+zbi] and one of the t-1 tasks T~i (h ES')

in [2z+zb. ,2z+zb.+z3] (note that a < 2z). The total costs of this schedule
l l h

f 2 s * are equal to tC +(t -t)C = C.

7

Instance of NUMERICAL MATCHING WITH TARGET SUMS:

:t = 3; z = 4; ,{, 1 2 3

a. 5 6 7
,{,

b.
,{,

9 10 11

C., 14 16 18
,{,

Solution: a(i) 1 2 3

13(-i) 1 2 3

Corresponding FST schedule on :t fast machines and :t2-:t slow machines:

0 5 14 62

M~J~:5\
b

T11:9 l rf:48 I
0 6 16 64

M11 ~: 6 1
b . r 22 . 10 I T~:48 I

0 7 18 66

M~I ~:7 I T~3:11 I
C. r 3:48 !

6 42 44 108
-6

M11 I T~1:36 I I T~1 :64 =]
7 43 44 108

~1 I T~1:36
11

d . r 21 .64 =]
5 45 48 112

~2 I T~2:40 I I r12 :64 =~ 7 47 48 112
-6

M22 I T~2:40
11

~2:64 =~ 5 49 52 116

~3 I T~3:44 I I T~3:64 I
6 50 52 116

~3 I rt:44 I I T~3:64 I
FIGURE 2. Illustration of the transformation in Theorem 2.

8

Conversely, suppose that there exists a feasible schedule with total

costs at most c*. We make the following propositions.

(1) Two a-tasks are not assigned to the same machine.

Proof. Each a-task is processed during the interval [0,z].

(2) Two b-tasks are not assigned to the same machine.

Proof. Each b-task is processed during the interval [2z,3z].

(3) Two c- or d-tasks are not assigned to the same machine.

2 2
Proof. Each c- or d-task is processed during the interval [3z +z,3z +3z].

(4) An a-task and ab-task are not assigned to the same slow machine.

Proof. On a slow machine, each a- orb-task is processed during the

2
interval [2z-1,z +z].

(5) Ab-task and a c-task are not assigned to the same slow machine.

Proof. On a slow machine, each b- or c-task is processed during the

2
interval [5z-1,2z +2z+1].

All tasks are assigned to at most t 2 machines, since (t2+1)Cs > c*. Proposi

tions (1), (2) and (3) imply that there are exactly t 2 machines, each proc-

essing at most one a-task, exactly one b-task and exactly one c- or d-task.

These machines include at most t fast ones, since (t2-t-1)Cs+(t+1)Cf > c*.

Propositions (4) and (5) imply that there are exactly t fast machines, each

processing one a-task, one b-task and one c-task; hence, there are exactly

2
t -t slow machines, each processing one b-task and one d-task.

We denote the t fast machines by M~ (i ES) and the t 2-t slow machines
l.

b Ms
y hi

and Td
hi

(h ES', i ES). It may be assumed that T~ is assigned to M~ (i ES)
l. l.

s
to Mhi (h ES', i ES). There exists a permutation a of S such that

Ta . . d to Mf (1." ES). a(i) 1.s assigne i

9

Let us define the size of T°h. as b., its processing time on a fast l. l.
f

machine. The size of ab-task on Mi is at most ci-aa(i), and the size of a

b-task on ~i is at most LC2z+zbi-a1)/zJ =bi.The sum of these upper bounds

over all machines is equal to l· 5 (c.-a (')) + 'h , . b. = t '. Sb., l.E i a i l ES ,iES i liE i

which is the total size of all b-tasks. It follows that all these upper

bounds are actually achieved. More explicitly, for each i Es, there exists

an index 8(i) E S such that ~ (i) 8 (i) is assigned to M:, and there exists l.

an index y (i) € s such that the t-1 tasks b
Thi (h E S-{y (i) }) are assigned to

the t-1 machines ~i (h E s I) , while Tb (.) . y l. l. is assigned to a fast machine.

This implies that the functions 8 and y_ are permutations of S with y(8(i)) =

a{i) (i E S).

Since ~(i)S(i) leaves no idle time between T:(i) and T~ on M~, we

have aa(i)+bS(i) = ci (i ES). The pair (a,8) constitutes a solution to

3-PARTITION. 0

Proof of Theorem 3. In the FST problem with equal release dates, each task

has to start at the same time and therefore each machine can process at most

one task. It follows that an optimal schedule uses n slow machines and has

total costs ncs. It is constructed in O(n) time. D

4. A well-solvable case of the VST problem

THEOREM 4. In the case that q. = 1 (j = 1, •.• ,n), the VST problem is solvable
J

in O(n log n) time if all release dates are equal.

The complexity of the VST problem with all q. = 1 and arbitrary release dates
J

remains unresolved (cf. Table 1).

10

Proof of Theorem 4. In the VST problem with equal release dates, a slow

machine can process at most one task but a fast machine may be able to

process more than one.

Let us assume that there are m fast machines, with 0 ~ m ~ n, and let

X denote the maximum number out of then unit-time tasks that can be com
m

pleted in time on these machines. A schedule using m fast machines has to

use n-X slow machines; its total costs are equal to C
m m

f s = me +(n-x)C. It
m

follows that an optimal schedule has total costs min0~m~n{cm}.

For each given value of m, the number X and a corresponding schedule
m

on m fast machines can be found by an O(n log n) algorithm due to Lawler

[14;7,p.295]. Straightforward application of this algorithm form= O, •.. ,n

would yield an overall optimal schedule in O(n2 log n) time.

However, all x0 , ••• ,Xn together can be determined by an O(n log n) al

gorithm, which constructs a schedule on n fast machines with the property

that, for any value of m, the partial schedule on the first m machines is an

optimal schedule on m machines [13]. This algorithm considers the tasks in

order of nondecreasing deadlines and assigns each task to the machine with

lowest index on which it can be completed in time. A formal statement is as

follows.

VST ALGORITHM (only fast machines, all q. = 1, all r. 0)
J J

Initialize. Reorder the tasks in such a way that d 1 ~ ~ dn; set d0 + - 00 •

Introduce an array x of size n and set x + 0 (m = 1, ... ,n) [x
m m

tasks have been assigned to machine Mf].
m

Introduce an arrayµ of size n [T. will be assigned to Mf].
J µ,

J
Set m + 1.

Iterate. for j +- 1 ton do

begin

11

set m +- if d. 1 < d. then 1 else if x < d. then m else m+l;
- J- J -- -- - m J -- --

setµ.+- m, x +- x +1
J m m

end.

Finalize.

It can be shown that X is the maximum number of tasks that can be completed
m

in time on m fast machines, form= 0, •.• ,n [13]. The algorithm requires

O(n log n) time to order the tasks, and O(n) time to construct the schedule

and to determine the values x0 , ... ,Xn. It follows that an overall optimal

schedule is obtained in O(n log n} time. 0

Note. Since x ~ x (m = 1, ••• ,n-1), X is a concave function of m, m m+l m

so that C is convex. A similar observation will be exploited in the next
m

section. 0

5. A well-solvable case of the FST problem

THEOREM 5. In the case that qj = 1 (j = 1, ••• ,n}, the FST problem is solvable

in O(n log n} time.

The assumption that all q. = 1 is too strong: an analysis of the proof below
J

shows that our algorithm is applicable in the more general situation that the

q. are bounded from above by the minimum length of the interval between two
J

different adjacent release dates. Although this restriction still limits the

practical value of our result, we feel that the insight gained might be use-

ful in the design of approximation algorithms for the general FST problem.

12

Proof of Theorem 5. The development of our algorithm will proceed along the

same lines as in the previous section. First, we will assume that there are

m fast machines and we will determine an optimal set of tasks to be scheduled

on these machines. Next, we will compute the minimum number of slow machines

needed to execute the remaining tasks. Finally, we will describe an efficient

method to find the optimal value of m.

We start by representing the problem data in a convenient way. Suppose

- - -that the release dates assume k different values r 1 , ••• ,rk with r 1 < ••• < rk.

For j = 1, •.• ,k, there are n. tasks T1 ., ••• ,T . with release dates
J J njJ

r 1J. = ••. = r . = r. and deadlines d 1 .. ;::: ••• ;::: d .• We have n = lk n.
n.J J J n.J j=l J

J J
and define n' = maxlsjsk{nj}. This representation can be obtained by sorting

the release dates and the deadlines in O(n log n) time and applying a bucket

sort [1] to order the tasks with ,the same release date according to deadlines

in O(n) time.

th h f h • f f 'th O I Let us now assume at t ere are m ast mac ines M1 , ••• ,Mm, wi s m s n •

For j = 1, ••• ,k, each of these machines can process exactly one of the tasks

T1J., ••• ,T .• It is obviously optimal to assign T .. to M: for j = 1, ••• ,k and
n.J l.J l.

J
i = 1, ••• ,min{n.,m}, so that the remaining tasks will be as short as possible.

J

Let /57 denote the set of tasks that are not assigned to them fast machines,
m

where ~ = {T1 , ••• ,Tn} and ,o/""n' =~'and let tm denote the minimum number of

slow machines needed to execute these tasks. A schedule using m fast machines

has total costs C = mef+t Cs. It follows that an optimal schedule uses m*
m m

fast machines, where c * = min0 ,{c }.
m smsn m

For each given value of m, the number t and a corresponding schedule
m

of the tasks in fY on t slow machines can be found in O(n log n) time. This m m

problem has already been discussed in the first two paragraphs of Section 1.

The following algorithm is a slight modification of the channel assignment

13

algorithm of Gupta, Lee and Leung [8]; for simplicity, it is stated for the

case that m = 0.

FST ALGORITHM (only slow machines)

Initialize. Reorder the tasks in such a way that r 1 ~ ••• ~ rn; determine a

permutation o of {1, ••• ,n} such that do(l) ~ ••• ~ do(n)"

Introduce a stack S of size n and push machine indices 1, ••• ,n

Iterate.

Finalize.

onto Sin such a way that mis on top of m+l (m = 1, ••• ,n-1).

s
Introduce an array A of size n [T. will be assigned to MA_].

J J
Set j + 1, i + 1.

while j ~ n do

if rj < do(i)

then begin set A.+ top element of S; pop S; set j + j+l end
J

else begin push Ao(i) onto S;

Set t 0 + max1<.< {A.}.
-J-n J

set i + i+l end.

It can be shown that t 0 is the minimum number of slow machines needed to

execute all tasks. The algorithm requires O(n log n) time to order the tasks,

and O(n) time to construct the schedule and to compute the value t 0 • Since

the release dates and the deadlines have already been sorted, each application

of this algorithm requires only O(n) time. Straightforward computation oft
m

form= O, •.• ,n' would yield an overall optimal schedule in O(n log n + n'n)

= O(n2) time.

However, it will be shown below that C is a convex function of m, and
m

this property can be exploited to arrive at an O(n log n) algorithm. The

* convexity of C implies that, if C < C +l' then m E {0, ••• ,m}, and else m m m

m* E {m+l, .•• ,n'}. Thus, m* can be found by a bisection search as follows:

* form= L~n• J, compute C and C 1 , reduce the domain of m by a factor of
m m+

14

two by eliminating either [O,m] or [m+l,n'], and repeat the procedure on the

remaining interval. The optimal value of mis found in at most r1og2 (n'+l) 1
iterations.

The entire algorithm requires O(n log n) time to sort the release dates

and the deadlines and, for each of O(log n') values of m, O(n) time to

compute C. It follows that an overall optimal schedule is obtained in
m

O(n log n) time.

It remains to be shown that C is a convex function of m. Since C = m m
f s

me +i C, we have to prove that ,Q, is conve:x, or equivalently that
m m

(1) ,Q,m-1-,Q,m~,Q,m-,Q,m+l (m=l, •.. ,n'-l}.

We define the degree of overlap of the set !J? at time t as the number of

tasks T. E !/? such that t E [r.,d.). Let X (t) denote the degree of overlap
J J J m

of f1 at t and x 1 (t) the degree of overlap of /!T 1- P7 at t, i.e.,
m m- m- m

= X 1 (t)-X (t). It is known [9] that
m- m

(2) im=maxt{Xm(t)} (m=O, ... ,n').

Since the number of tasks TJ. E P7 - P7 and the lengths of their intervals
m-1 m

[r.,d.) do not increase as m increases, it is also true that
J J

(3) X 1 (t) ~ X (t)
m- m

(all t; m = O, •.. ,n'-1).

Defining t such that X (t) = maxt{x (t)} (m = O, ••. ,n') and applying (2),
m m m m

we rewrite (1) as

X 1 (t 1)-X (t) ~ X (t)-X +l(t +l). m- m- m m m m m m

We have for the left-hand side that

X 1 (t 1)-X (t) = X 1 (t 1)-X 1 (t)+x 1 (t) ~ x 1 (t).
m- m- m m m- m- m- m m- m m- m

Similarly, we have for the right-hand side that

= X +l(t)+x (t }-X +l(t +l) ~ x (t). mm mm mm mm

Application of (3) fort = t now implies the validity of (1). This completes
m

the proof of Theorem 5. 0

Note. By means of ingenious counting techniques, the above algorithm

for computing a single value i can be extended to an O(n log n) algorithm
m

15

for computing all i 0 , .•• ,in' together [13]; when the data have already been

sorted, it requires only O(n) time, as before. A similar result has been

used in the previous section. 0

Acknowledgments

This research was in part supported by the National Science Foundation Grant

ENG79-09724. The authors gratefully acknowledge constructive suggestions by

B.J. Lageweg.

References

1. A.V. AHO, J.E. HOPCROFT, J.D. ULLMAN (1974) The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, MA.

2. G.B. DANTZIG, D.R. FULKERSON (1954) Minimizing the number of tankers to

meet a fixed schedule. Naval Res. Logist. Quart. _!_,217-222.

3. L.R. FORD, JR., D.R. FULKERSON (1962) Flows in Networks, Princeton

University Press, Princeton, NJ.

4. M.R. GAREY, D.S. JOHNSON (1978) "Strong" NP-completeness results: moti

vation, examples and implications. J. Assoc. Comput. Mach. ~,499-508.

5. M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a Guide

to the Theory of NP-Completeness, Freeman, San Francisco.

6. I. GERTSBAKH, H.I. STERN (1978) Minimal resources for fixed and variable

job schedules. Oper. Res. 26,68-85.

7. R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979) Opti-

mization and approximation in deterministic sequencing and scheduling:

16

a survey. Ann. Discrete Math. 2_,287-326.

8. U.I. GUPTA, D.T. LEE, J.Y.-T. LEUNG (1979) An optimal solution for the

channel-assignment problem. IEEE Trans. Comput. C-~,807-810.

9. A. HASHIMOTO, J.E. STEVENS (1970) Path cover of acyclic graphs. ILLIAC

IV, Document 239, University of Illinois, Urbana, IL.

10. A. HASHIMOTO, J.E. STEVENS (1971) Wire routing by optimizing channel

assignment within large apertures. Proc. 8th Design Automation Workshop,

155-169.

11. R.M. KARP (1972) Reducibility among combinatorial problems. In: R.E.

MILLER, J.W. THATCHER (eds.) (1972) Complexity of Computer Computations,

Plenum Press, New York, 85-103.

12. B.W. KERNIGHAN, D.G. SCHWEIKERT, G. PERSKY (1973) An optimum channel

routing algorithm for polyce~l layouts of integrated circuits. Proc.

10th Design Automation Workshop, 50-59.

13. B.J. LAGEWEG (1980) Personal communication.

14. E.L. LAWLER (1976) Sequencing to minimize the weighted number of tardy

jobs. RAIRO Inform . ..!.Q_.5 Suppl.27-33.

15. J.K. LENSTRA, A.H.G. RINNOOY KAN (1979) Complexity of vehicle routing

and scheduling problems. Report BW 111, Mathematisch Centrum, Amsterdam;

to appear in Networks.

16. K. NAKAJIMA (1980) On Nonpreemptive Multiprocessor Scheduling with

Discrete Starting Times, Ph.D. Dissertation, Department of Electrical

Engineering and Computer Science, Northwestern University, Evanston, IL.

17. K. NAKAJIMA, S.L. HAKIMI (1979) On the NP-completeness of a real-time

scheduling problem with two types of machines. Proc. 17th Allerton Conf.

Communication, Control, and Computing, University of Illinois, Urbana,

IL, 652-658.

