
stichting

mathematisch

centrum

AFDEL I NG MATHEMAT I SCHE BESL I SKUNDE
(DEPP..RTMENT OF OPERATIONS RESEARCH)

E. L. LAWLER

BW 137/81

PREEMPTIVE SCHEDULING OF PRECEDENCE-CONSTRAINED JOBS
ON PARALLEL MACHINES

Preprint

~
MC

~JOY EMBER

kruislaan 413 1098 SJ amsterdam

PJun:ted a;t .the Ma;themruc.ai. Cen.tll.e., 413 KJc.U.i.6.laan, Amo.teAd.am.

The Ma;thema..tic.ai. Cen.tll.e , oounde.d .the 11-.th oo Fe.b.tw.aJr.y 1946, ,u., a. non
pll,o oil .,{_i,-u,;tUu;t,i_o n a..,[m.,[ng a:t .the. pll,omotio 11 a O pMe. ma;themruC-6 a.nd ill
a.ppUc.a,ti.on..6. 1.t ,u., .6pon.6oll,ed by .the Ne.:theA.la.nd6 GoveAnme.n..t .thMugh .the.
Ne..theA.la.ncv.~ Qll,ga.nlzruon ooll, .the. Adva.nc.eme.n:t oo PMe. Rue.Mc.h (Z.W.O.).

1980 Mathematics Subject Classification: 90B35, 68C25

PREEMPTIVE SCHEDULING OF PRECEDENCE-CONSTRAINED JOBS

ON PARALLEL MACHINES

E.L. LAWLER

Computer Science Division, University of California, Berkeley, CA 94720, USA

ABSTRACT

Polynomial time-bounded algorithms are presented for solving three problems

involving the preemptive scheduling of precedence-constrained jobs on paral

lel machines: the "intree problem", the "two-machine problem with equal re

lease dates", and the "general two-machine problem". These problems are pre

emptive counterparts of problems involving the nonpreemptive scheduling of

unit-time jobs previously solved by Brucker, Garey and Johnson and by Garey

and Johnson. The algorithms and proofs (and the running times of the algo

rithms) closely parallel those presented in their papers. These results im

prove on previous results in preemptive scheduling and also suggest a close

relationship between preemptive scheduling problems and problems in nonpre

emptive scheduling of unit-time jobs.

KEY WORDS & PHRASES: preemptive scheduling, parallel machines, precedence

constraints, polynomial time algorithm.

NOTE: This report will appear in Deterministic and Stochastic Scheduling,

edited by M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, to be

published by Reidel, Dordrecht, in 1982.

1

1. INTRODUCTION

In this paper we present polynomial time-bounded algorithms for
solving three problems involving the pceemptive scheduling of pre
cedence-constrained jobs on parallel machines. These three problems,
which we call the "intree problem", the "two-machine problem with
equal release dates", and the "general two-machine problem", are
preemptive counterparts of problems involving the nonpreemptive
scheduling of unit-time jobs previously solved by Brucker, Garey
and Johnson [1] and by Garey and Johnson [2,3]. The algorithms and
proofs we present closely parallel those given in their papers,
and the running times of the algorithms are nearly comparable. Prob
lems involving nonpreemptive scheduling of unit-time jobs are some
times formulated as approximations of preemptive scheduling

2

problems. The results presented in this paper suggest that U1en.:
is an even closer algorithmic relation between precmpti ve sd1edul
ing and nonprecmptive scheduling of unit-time jobs than had pr0\·i
ously been appreciated.

2. PROBLEM DEFINITION

We shall define a general sr.heduling problem and then indicate hrn-:
each of the three problems dealt with in this paper is a special
ization of this problem.

There are n jobs to be scheduled for processing. For each job
j, j = 1,2, ... ,n, there are specified a processing requirement
Pj > 0, a release date rj 2: 0, prior to which the job is unavail
able for processing, and a due date dj 2: 0.

The jobs are to be scheduled subject to precedence constraints
"➔" in the form of a partial order induced by a given acyclic di
graph on Podes j = 1,2, ... ,n. If i ➔ j then job i must be completed
before the processing of job j is begun.

The jobs are to be scheduled on m parallel machines. At least
m-1 of the machines are identical. One machine is permitted to have
the same speed or a strictly slower speed than the others. More
specifically let si denote the speed of machine i, i = 1,2, ... ,m,
and assume that s1 = s2 = ... = sm-1 = 1, Sm= s $ 1. The process
ing capacity of machine i in a time interval [t,t'] is equal to
si(t'-t). In order for a job to be completed, the job must be al
located sufficient processing capacity to satisfy its processing
requirement.

We make the usual assumptions which apply to the scheduling
of parallel machines. A machine can process at most one job at a
time and a job can be processed by at most one machine at a time.
The schedules we consider are preemptive, in that processing of a
job can be interrupted at any time and processing resumed at the
same time on another machine or at a later time on any machine.
There is no penalty for such an interruption or "preemption".

A schedule is feasible if no job is processed prior to its
release date, if all jobs are completed, and if precedence con
straints are observed. A feasible schedule meets al,l due dates if
each job is completed no later than its due date.

If in a given feasible schedule the completion time of a job
j is Cj, then its lateness with respect to its specified due date
dj is

Our objective is to find a schedule which minimizes

(Note that there exists a schedule which meets all due dates if

3

and only if there exists a schedule for which Lmax S 0.)
We now indicate the three special cases of the general problem

1-:hich are dealt with in this paper.

Tht." Intrcc Problem: All release dates are ZEro and the precedence
constraints are in the form of a forest of intrees. That is, each
job has at most one immediate S"<1ccessor. In the notation of tS],
this problem is essentially Plpmtn,intree!Lmax·

The Two-Machine Problem with Equal Release Dates: All release
dates are zero and there are exactly two machines. This problem is
denoted Q2lpmtn,prec!Lmax•

The General Two-Machine Problem: There are exactly two machines.
This is Q2lpmtn,prec,rjlLmax·

It should be noted that, by symmetry of release dates and due
dates, other specifications are equivalent to the first and second
problems above. The "outtree problem" with arbitrary release dates
and equal due dates (which may be assumed to be zero) is equivalent
to the intree problem. Similarly, the "two-machine problem with
equal due dates" (and arbitrary release dates) is equivalent to
the two-machine problem with equal release dates. Minimizing maxi
mum lateness for each of these symmetric problems is equivalent to
minimizing

(This is the same as minimizing "makespan".) The algorithms pre
sented in this paper apply equally well to these symmetric problems,
with certain obvious modifications.

3. PREVIOUS RESULTS

A more specialized version of the intree problem was considered by
Muntz and Coffman [11] and by Gonzalez and Johnson [4]. In this
version, release dates are equal, due dates are equal and the ob
jective is to minimize makespan, i.e. the problem is
Plpmtn,treelCmax· The Muntz-Coffman algorithm requires O(n2) time
and the Gonzalez-Johnson algorithm requires O(n log m) time. Our
procedure solves the more general problem of Plpmtn,treelLmax in
O(n2) time. (In both [11] and [4] it is also assumed that them
machines are strictly identical.)

Muntz and Coffman [10] also solved a more specialized version
of the two-machine problem in which release dates are equal, due
dates are equal and in which the two machines are identical, i.e.
P2lpmtn,prec1Cmax· Horvath, Lam and Sethi [6] extended the Muntz
Coffman algorithm to allow the two machines to have different
speeds, i.e. to Q2lpmtn,prec1Cmax· The running time required for

4

both the: Muntz-Coffman and t1,e Horvuth-Lurn-Sethi alqori thms is
O(n 2), which is the san,e as we require for Q2lpmtn,prec1Lmax•
(This time bound does not take into account the time required to
obtain the transitive closure of the precedence constraints.)

It follo~s that all three problems dealt with in this paper
are strictly more general than those for which polynomial-bounded
algorithms have previously been obtained. However, for the more
special case of the intree problem considered by Gonzalez and
Johnson, the time bound for their algorithm is preferable.

The problems solved by Brucker, Garey and Johnson [1] and by
Garey and Johnson [2,3] differ from our problems in that jobs with
unit processing times (pj = 1 for all j) are to be nonpreemptively
scheduled on strictly identical machines. Our algorithms, theorems
and proofs are modelled closely after those in [1,2,3], and we
achieve fairly similar running time bounds: For PJintree,pj=l ILmax
a time bound of O (n log n) is achieved in [1]. (This can be reduced
to O(n) time, as shown-by Monma [9]). For Plpmtn,intreelLmax we
require O(n 2) time. In [2], Q2lprec,pj=l ILmax is solved in O(n 2)
time, the same as we require for Q2lpmtn,prec1Lmax· (Time for
transitive closure not included.) In [3], Q2lprec,pj=l,rj,djl- is
solved in O(n 3) time, the same as we require for
Q2lpmtn,prec,rj,djl-. However, Garey and Johnson require only
O(n 3log n) time for Q2lprec,pj=1,rjlLmax, whereas the best time we
have achieved for Q2lpmtn,prec,rjlLmax is O(n6).

4. PLAN OF ATTACK

In the next section we shall describe a priority scheduling algo
rithm which can be applied to any instance of the three problems
we propose to deal with. This priority scheduling algorithm plays
the same role as, but is necessarily more complex than, the list
scheduling procedure employed for nonpreemptive scheduling of
unit-time jobs in [1,2,3].

In general, there is no assurance that the priority scheduling
algorithm yields an optimal schedule, or even finds a schedule in
which all jobs meet their due dates, if such a schedule exists.
Hence we consider special conditions under which the algorithm
yields such a schedule. For the problems Plpmtn,intreelLmax,
Q2lpmtn,prec1Lmax, and Q2lpmtn,prec,rj ILmax we obtain successively
stronger "consistency" conditions on the problem data and show that
if these conditions are met, then the priority scheduling algoritho
finds an optimal schedule (or, in the case of the last problem, one
in which all due dates are met).

We than describe procedures for modifying due dates so that
the appropriate consistency conditions are satisfied. We prove
that the priority scheduling algorithm finds a schedule meeting
the modifie~ due dates if and only if there exists such a schedule
with respect to the original due dates.

The general procedure for solving each of the three scheduling

5

problems is then:
(1) Compute the transitive closure of the precedence constr.:i.ints.
(Unnecessary for Pipmtn,intreelLmax-l
(2) Modify the due dates. (More than one application of the due
date modification procedure required for Q2lpmtn,rjlLmax-l
(3) Apply the priority scheduling algorithm to determine a se
quence of time intervals and the amount of each job to be processed
in each interval.
(4) Construct an optimal schedule from the output of the priority
scheduling algorithm.

5. THE PRIORITY SCHEDULING ALGORITHM

The priority scheduling algorithm schedules jobs in successive time
intervals. Having scheduled intervals [t1,t2], ... ,[tk-1,tk], the
algorithm determines a schedule for the next interval ~tk,tk+lJ
from data for the jobs available for scheduling at tk. A job j is
said to be available at time tk if:
(1) rj S tk,
(2) the processing of each of the predecessors of j (with respect
to precedence constraints ➔) has been completed, and
(3) there is a nonzero amount of processing p~k) > 0 remaining to
be done on j.

The principal differences between our priority scheduling al
gorithm for preemptive scheduling and the list scheduling algorithm
for nonpreemptive scheduling of unit-time jobs in [1,2,3] are:
(1) Priorities are assigned to jobs according to the values
b(k) = dj-p~k) (where the smallest value has highest priority). In
t~e case of unit-time jobs, priorities are determined by due dates
dj.
(2) Priorities are dynamic. That is, the priority of a job rela
tive to other jobs is not necessarily known in advance of the time
the job becomes available. (However, relative priorities of jobs
do not change, as long as they remain available.) In the case of
unit-time jobs, priorities are static.
(3) The time intervals [tk,tk+1J vary in length. In the case of
unit-time jobs, each interval has unit length.
(4) Typically only a fraction of the total processing required
for a job is done in a single in~erval. In the case of unit-time
jobs, the processing of a job is "all or none".

Suppose without loss of generality that there are n jobs
available at tk and that these jobs are ordered in nondecreasing
order of priority, i.e.

b~k) s b~k) s

(Recall b(k)
J

remaining to
dj-P?),

be done on
ing of job j to be done

s b (k) .
n

where p\kl > 0 is the amount of processing
job j.)JLet x~k) be the amount of process
in the interval [tk,tk+lJ, where

6

l = tk+1-tk. We propose to determine the values x3k) by solving
the following optimization problem:

(bl(k+l) ,b2(k+1), ... ,bn(k+l)) lexicographically maximize

subject to

(5 .1) b (k+l)
1

< b(k+l)
- 2

:,; :,; b (k+l)
n ,

(5.2)
(k)

max. {x. } :,; /j,
J J

(5.3) I.x~k) :,; (m-1+s)6,
J J

(5.4) 0 :,; x ~k) < (k) for all j. - p, I

J J

In words, what we propose to do, subject to constraints (5.1)-(5.4),
is to process as much as possible of the highest priority job.
Then, subject to this amount of proce~sing of the highest priority
job, to process as much as possible of the job with second-highest
priority, and so forth, Inequalities (5.1) require us to maintain
the relative priorities of the jobs which remain uncompleted at
time tk+l· Inequalities (5.2) and (5.3) are well-known necessary
and sufficient conditions for the processing amounts x3k) to be
schedulable within an interval of length 6. Moreover, given values
x1k), j = 1,2, •.• ,n, satisfying (5.2) ,(5.3), a feasible schedule
for the interval [tk,tk+lJ can be constructed in O(n) time [5].
Inequalities (5.4) simply require us to do no more processing of
any job than is required to complete it.

The interval length/:, is chosen to be the minimum of the next
release date (if any), i.e.

min . { r ·. Ir . > tk},
J J J

and the smallest value necessary to complete at least one available
job, when the x3k) values are chosen as above.

Let us now consider the form of a solution to the optimization
problem posed above. We begin with the case in which 6 is fixed
and the values p3k) are suitably large, e.g. p~k) ~ 6. If there
are m-1 or fewer available jobs, the choice of the x~k) values is
simple:

(k)
x. = 6, for all j.

J

This solution is indicated in Figure l(a), in which each job j is
represented by a bar extending from b3k) to dj. The shaded portion
of bar j represents x~k).

Now suppose that there are at least m jobs available at time
tk. We assert that the Xj values are determined by two parameters:
an integer u, 1 ~ u ~ m, and a real number T. For given u and T,

1

2

n

111111

(a) n ~ m-1

1

2

u.

m-

m

n

1111

1

(b) n ~ m

I

I

T

I
I

I
I

1111 I

I

I
I

j

I
I

1

I
I I

LJ

Figure 1. Scheduling when tk+l determined by release date.

(k) {I:!,,
xj = {O T-b(k)} max , . ,

J

j < u,

j ~ u.

l!i. solution of this form is illustrated in Figure 1 (b).

7

8

For convenience, let v be the index such that bJk) ~ T, bJ~l
(where bAii = +o-,). We assert that u and T provide an optimal solu
tion to our optimization problem if they are such that

(5.5)

(5.6)

b (k) A ,

l +Ll ~- T,
u-

I~ (T-b ~k))
J=u J

(m-u+s)l.

Inequality (5.5) insures that the ordering conditions (5.1) are
satisfied. Equation (5.6) implies that the total capacity of ma
chines u,u+l, ... ,mis completely utilized in processing jobs
u,u+l, ... ,v (while machines 1,2, ... ,u-1 are completely utilized ir.
processing jobs 1,2, ... ,u-1). There is thus no idle time on any of
them machines; in order to increase the amount of processing of
any job, we would need to decrease the amount of processing of
some other job, thereby violating conditions (5.1). We assert that
it is intuitively obvious that such a solution is optimal.

The procedure below computes u, v and T for an interval length
determined by a fixed value of tk+l, under the assumption that
processing requirements are large, e.g. P1k) ~ tk+l-tk, for all j.
The procedure begins with/':,= O, u = v = m and T = b~k). Tis then
increased in steps, where at each step the increase in Tis limited
by the amount required before (i) u must be decremented, (ii) v
must be incremented, or (iii) the corresponding value of/':, becomes
equal to tk+1-tk. (This latter is determined by the total amount
of processing P which must be done on jobs u,u+l, •.• ,v and the
capacity of machines u,u+l, ... ,m in a time interval of length
tk+1-tk.) There are at most n steps and the procedure requires at
most O(n) time.

FIXED INTERVAL PROCEDURE
Input: m,s, specifying machine environment;

bj, j = 1,2, ... ,n, specifying job priorities;
tk,tk+l, specifying a fixed interval.

Output: u,v,T, specifying processing amounts in interval (it is
assumed that processing requirements are large).

begin procedure
t:, := O;
u := m;

V ·= m;
T := bm;
P := O;
while/':,< tk+1-tk
do while T = bu-1+/':,

do u := u-1;
p := P+/':,

od;
while T = bv+l
do v := v+l [If v = n then let bn+l = +00 .]

od;

T1 ·= ((bu-1+L) (m-u+s)-(v-u+l)T)/((m-u+s)-(v-u+l));
T2 := bv+l;
T3 := T + (tk+l-tk-6) (m-u+s)/(v-u+l);

9

[T1,T2,T3 are limits on the new size of T, as descriLed
in text.]

od

T' := min{T1 ,T2,T3};
P := P + (v-u+l) (T'-T);
6 := P/(m-u+s)

end procedure.

Now let us consider how to determine/:, in the case that the
interval length is to be just large enough so that one or more
jobs are completed. Clearly, when 6 is properly determiried and
u,v,T are found as above, we should have

(5. 7)

(5. 8)

b.+L
J

T

5

5

d.,
J

d,,
J

j = 1,2, ... ,u-1,

j u,u+l, ... ,m,

with equality in at least one case.
Our strategy is as follows. We first carry out a computation

very much as in the fixed interval procedure, but with two modifi
cations:
(1) When Tis stepped, Tis not permitted to violate conditions
(5.8). When T = dj, for some j ~ u, the computation stops.
(2) When u is decremented, the condition bu-1+L > du-1 is checked.
When this is found to hold, the computation stops.

We shall call the modified procedure the "variable interval
procedure". (We leave implementation of the modifications to the
reader.) At the conclusion of the variable interval procedure we
shall have either:
(1) determined u,v,T for the interval [tk,tk+lJ, without violating
(5 • 7) or (5 • 8) ;
(2) found values u,v,T and L < tk+l-tk such that (5.7),(5.8) are
satisfied, and one of the constraints (5.8) is satisfied with
equality;
(3) found values u,v,T and 6 < tk+l-tk such that sonditions (5.8)
are satisfied, but at least one constraint (5.7) is violated.

In the first two cases we are done: the value tk+l = tk+6
found by the procedure is correct. In the third case, the correct
value of tk+l is simply

tk+l = tk + min{p~k) 11 s j s u-1}.

Running the procedure one more time with the correct value of
tk+l completes the computation.

We are now ready to indicate the complete priority scheduling
procedure.

10

PRIORITY SCHEDULING PROCEDURE
Input: m,s, specifying machine environment;

triples (pj,rj,dj), j = 1,2, ... ,n, specifying jobs;
an acyclic digraph specifying precedence constraints.

Output: intervals ~tk,tk+1J, k = 1,2, ... ,N-1, where N s 2n-l;
values Xjk ~ 0, indicating the amount of processing of
job j to be performed in interval [tk,tk+1J.

begin procedure
compute the in-degree of each job;
create a priority queue Q (by release date) containing all
jobs with in-degree zero;
create a list A of available jobs in nondecreasing order of
bj (job priority) values; initially A is empty;
k := O;
while Q is nonempty
do k := k+l;

tk := min{rjlj E Q};
add to A and remove from Q all jobs in Q such that
rj = tk;
while A is nonempty
do tk+l := min{rjlj E Q};

od
od

apply the variable interval procedure to the jobs
in A; if the resulting values of 6,u,v,T violate
conditions (5.7), rerun the procedure with tk+l =
tk + min{p1k) 11 $ j $ u-1}; [This determines u,v,T,
and x3k), for all j.]
remove from A all jobs completed in the interval
[tk,tk+1J; for each such job decrement the in-degree
of each of its successors and place in Q each job
whose in-degree is reduced to zero;
add to A and remove from Q all jobs in Q such that
rj $ tk+l;
k := k+l

end procedure.

We assert that the priority scheduling procedure c~n be implemented
to run in O(n2) time overall. As we commented above, the output of
the procedure can also be transformed into an actual schedule in
O(n2) time.

6. A USEFUL LEMMA

We wish to consider the effect ·of applying the priority scheduling
procedure to jobs whose due dates satisfy the consistency condi
tions

(6. 1) dj $ bk whenever j ➔ k

11

and

(6. 2)

The following is a self-evidc•nt property of the priority scheduling
procedure.

PROPOSITION. The procedure fails to schedule all jobs to meet due
dates if and only if at some interval [t£-1,t£] there is a job j
(available at tf-iJ for which bjQ,) < t£.

LEMMA 6.1. Suppose the_priority scheduling algorithm is applied to
a set of jobs for which (6.1) and (6.2) hold. Let [tf-1,t;] be the
earliest interval at which there is a job j with bjQ, < tQ,. Then
bjQ) = T < tQ, for all jobs scheduled for processing in the interval
and there is no idle time on any of the machines in the interval.

Proof. Assume the ~obs are numbered so that bi£-l) ~ b~£-l) ~ ...
s bA£-l), bf£) s b2£) s ... ~ bA£). Then bi£) < tQ,. If n ~ m and
u = 1 the result follows immediately.

So let us suppose that either n ~ m-1 or n ~ m and u ~ 2. Then
we would have bi£) = bt£-l)+tQ,-t£-1 and bt£-l) < t£-1· If£~ 2
and job 1 was available at tQ,-2, then [t1-1,t1J would not be an
earliest interval at which there is a job j with b~£) < ti. If
£ = 1 or if job 1 was not available at ti-2, then job 1 first be
came available at t£-1· This implies that either r1 = t1-1 > bi£-l)
= b1, in contradiction to (6.2), or that some job j, with j ➔ 1,
was completed in the interval ~ tQ,-2, t£-1]_. But if this latter were
the case, then, by (6.1), b?-) = dj ~ b1 = bi£--l) < tf-1 and
[tQ,-1,tiJ would not be the earliest interval with ab~£ < t. It
follows that n ~ m and u = 1, and the lemma is proved. D

7. THE INTREE PROBLEM

We now turn to the in-tree problem, Plpmtn,intreelLmax· Each job
has at most one immediate successor and rj = 0 for all jobs.

We first consider the question of whether or not there exists
a schedule meeting all due dates. If a job k is to'meet its due
date dk, then the latest possible time at which its processing can
begin is bk= dk-Pk· If j ➔ k, job j must be completed by time bk,
else k will be late. Thus not only must job j be completed by time
dj, it must be completed by time bk. Since the processing of job j
must obey both constraints, we can replace due date dj by a new
due date dJ = min{dj,bk} without changing the problem in any essen
tial way. A schedule meets all due dates in the new problem if and
only if it meets all due dates in the original problem. This type
of due date modification can be applied repeatedly until we finally
obtain an equivalent problem having modified due dates dJ satisfy
ing the consistency conditions

12

(7. 1) d' s b' = d'-p whenever j ➔ k.
j k k k'

The following simple algorithm constructs such a set of modified
due dates and can be implemented to run in time O(n).

DUE DATE MODIFICATION PROCEDURE
Input:

Output:

m,s, specifying machine environment;
ordered pairs (pj,dj), j = 1,2, ... ,n, specifying jobs;
an acyclic digraph in which each node has out-degree at
most one.
modified due dates dj, j = 1,2, ... ,n.

begin procedure
for each job j
do dj := dj
od;

which has no successor

while there is a job which has not been assigr.ed its modified
due date and whose immediate successor k has had its due date
modified, select such a job j and
do dj := min{dj,bk = dk-pk}
od

end procedure.

The arguments above establish the following result.

LEMMA 7.1. There exists a schedule meeting the original due dates
if and only if there exists a schedule meeting the modified due
dates.

THEOREM 7.2. The schedule obtained by applying the priority sched
uling algorithm to the problem with modified due dates meets all
original due dates if and only if such a schedule exists.

Proof. Since dj $ dj, for all j, if the schedule obtained by apply
ing the priority scheduling algorithm meets the modified due dates
then it meets the original due dates. So suppose the schedule ob
tained does not meet the modified due dates. We shall show that
this implies that there exists no schedule meeting the modified
due dates. Then, by Lemma 7.1, there is no schedul~ meeting the
original due dates.

So suppose the schedule does not meet the modified due dates
and let us apply Lemma 6.1. Let [ti-1,ti] be the earliest interval
at which there is a job j with bj£) = T <ti.We assert that in
each earlier interval [tk-l~tk], k = 1,2, .•. ,£-1, there is no idle
time on any machine and bjk ~ T for each job processed in the
interval. For suppose this were not the case. Then at least one
job j processed in [ti-1,ti] was unavailable at tk-1, else the
algorithm would have scheduled it (in preference to idle time or
to a job i with b1k) > T). But j could only have been unavailable
at tk-1 because one or more of its predecessors was not yet com
pleted. But for each predecessor i of j, dl ~ bj, so necessarily

13

b{k) :ST. No two jobs processed in Lt,Q,-1,tQ.J have a common prc.,de:
cessor (a property of intree orders), so we have established our
assertion.

Let

{
p,'

p. (t) = J

J w.ax{0,p,-(d'.-t) },
J J

t ~ d'.'
J

t s;: d' ..
J

Then Pj(t) denotes an amount of processing that must be done on
job j prior to time t, if its due date is to be met. The above
analysis shows that

I:. p, (T) 2'. (m+s-l)t 0 > (m+s-l)T.
J J ,.,

In other words, there is more processing which must be performed
before time T than them machines have processing capacity. Hence
there can be no schedule meeting the modified due dates and the
theorem is proved. 0

As it turns out, not only have we solved the problem of con
structing a schedule meeting all due dates, if such a schedule
exists, but we have also solved the problem of minimizing maximum
lateness.

THEOREM 7.3. The schedule obtained by applying the priority sched
uling algorithm to the problem with modified due dates minimizes
maximum lateness with respect to the original due dates.

Proof. The problem of minimizing Lmax is clearly equivalent to the
problem of determining the smallest possible value of L such that
when the original due dates dj are replaced by due dates dj+L,
j = 1,2, ... ,n, there exists a schedule meeting the new due dates.
But for any such L the modified due dates are simply changed by
the same constant L. That is, if modified due dates dJ are obtained
from the original due dates dj and dj are obtained from due dates
dj+L, then dj = dj+L, j = 1,2, ... ,n. (This can be proved by
straightforward induction.) Moreover, the priority.scheduling al
gorithm yields precisely the same schedule when applied to due
dates dJ and dj. (We also omit proof of this fact, considering it
to be obvious.) It follows that the schedule constructed by the
algorithm when applied to the problem with modified due dates dJ
minimizes maximum lateness. 0

Notice that if all the original due dates are the same, our
procedure constructs a schedule which minimizes makespan. However,
as we pointed out earlier, the algorithm of Gonzalez and Johnson
[4] provides a running time of O(n log m), whereas ours is O(n2).

14

8. THE TWO-MACHINE PROBLEM WITH UNIFORM RELEASE DATES

Now let us consider the two-machine problem with uniform release
dates, Q2lpmtn,prec1Lmax·

We first consider the question of whether or not there exists
a schedule which meets all due dates. As in the case of the intree
problem, we note that due dates can be modified so as to observe
condition (6.1). However, additional modifications are necessary,
as well as more notation.

As in the proof of Theorem 7.2, let us define

p. (t)
J

{
p,,.

= J

max{O,p.-(d.-t) },
J J

t 2': d.,
J

t < d ..
J

In words, Pj(t) is a lower bound on the amount of processing that
must be done on job j prior to time t, if job j is to meet its due
date. Let S(j) denote the set of all successors (immediate or not)
of job j. Then in any schedule in which each successor k of j
meets its due date, it must be the case that

C, $ t - _l_ E · p (t), for all t 2': d ..
J l+s kES(j) k J

The reason for this is that the processing capacity of the two
machines in the interval [Cj,t] is (l+s) (t-Cj) and this must not be
less than the total amount of processing of the successors of j
which must be performed prior tot.

This suggests the additional consistency condition

(8. 1) for all j and t 2': d ..
J

Fortunately., in order to modify due dates so that they conform
with this consistency condition, it is not necessary to check
(8.1) for all values oft 2': dj.

LEMMA 8.0. If for given j, conditions (8.1) are satisfied for all

then condition (8.1) is satisfied for all t 2': dj.

Proof. Lett 2': dj and let

d min{dkl~ 2': t, j ➔ k},

d max{dkldk $ t, j ➔ k}.

If both sets above are empty, then j has no successors and (8.1)
is clearly satisfied. If the first set is empty, but not the
second, d =_max{dklj ➔ k} and it is easy to verify that satisfaction

15

of (8.1) for~ implies satisfaction fort. There is a similar ar
gument_if the second set is empty. So assume neither set is empty
and d,d are both well defined.

- -
If IP}: (d) 2 Ipk (t) - (1+s) (t-d) or if Ipk (d) ::, Ipk (t) +

(l+s) (d-t), then satisfaction of (8.1) for d,d, respectively,
implies satisfaction fort. Suppose that Ipk(d) < Ipk(t) -
(l+s) (t-d) and Ipk(d) < Ipk(t) + (l+s) (d-t). Examination of the
definition of Pj(t) reveals that

Ipk(t) - l::pk(~)

t-d

Ipk (d) - !.pk (t)
:,:

d-t

which yields a contradiction. D

The following algorithm constructs a set of modified due dates
satisfying both (6.1) and (8.1). It can be implemented to run in
O(n 2) time, provided precedence constraints are already in transi
tively closed form.

DUE DATE MODIFICATION PROCEDURE
Input: s, 0 < s ~ 1, specifying speed of second machine;

ordered pairs (pj,dj), j = 1,2, ... ,m, specifying jobs;
a transitively closed acyclic digraph specifying prece
dence constraints ➔-

Output: modified due dates dj, j = 1,2, ... ,m.
begin procedure

for each job j which has no successors
do dJ : = dj
od;
create two ordered lists of jobs whose due dates have been
modifi·ed, one ordered by modified due dates dj, the other
ordered by the values bj = dj-pj;
while there is a job which has not been assigned its modified
due date and all of whose successors have had their due dates
modified, select such a job j and
do scan the two lists of dj and bj values, extracting all

the successors of j;

od

merge the two sublists and use the merged list to compute
the sum IkES(j) Pk(d'), for each modified due dated'
assigned to a successor of j; [All such sums can be com
puted in O(n) time.]
dj := min{dj,mind,{d' - Ipk(d')/(l+s) }};
for each successor k of j
do dj := min{dj,bk = dk-Pk}
od;
insert dj, bj = dj-Pj into ordered lists

eind procedure.

16

LEMMA 8.1. There exists a schedule meeting the original due dates
if and only if there exists a schedule meeting the modified due
dates.

THEOREM 8.2. The schedule obtained by applying the priority sched
uling algorithm to the problem with modified due dates meets all
the original due dates if and only if such a schedule exists.

Proof. As in the proof of Theorem 7.2, if the schedule obtained by
applying the priority scheduling algorithm meets the modified due
dates, then it meets the original due dates. So, as before, suppose
the schedule obtained does not meet the modified due dates and let
us show that this implies that there exists no schedule meeting
the modified due dates.

Let [ti-1,tiJ be the first interval in which b~£) < ti for
some job j. By Lemma 6.1, there is no idle time on any machine in
this interval and b~£) = T < ti for all jobs j processed in
[t,11,-1, t,11,].

Case 1. In each earlier interval [tk-1,tk] there is no idle
time on any machine and bj£) ~ T for each job processed in the
interval. Then we have

E. p. (T) ~ (l+s)t 0 > (l+s)T,
J J . /1.,

and there can be no schedule meeting the modified due dates.
Case 2. There is an earlier interval [tk-1,tk] in which there

is either idle time or a job j is processed with bj,11,) > T. Let
[tk-1,tk] be the latest such interval. It must be the case that
the jobs processed in [t,11,-1,t,11,J are unavailable for processing in
[tk-1,tk], from which it follows that some job j is processed and
completed in [tk-1,tk] which is a predecessor of all such jobs.
Let j be this job. By (8.1),

1
dj ~ T - l+s EkES(j)pk(T).

But

EkES(j)pk(T) ~ (l+s)(t£-tk) > (l+s)(T-tk~'

which implies dJ < tk. But dJ = bjk) ~ tk, which yields a contra
diction. Hence Case 1 must apply and there can exist no schedule
meeting the modified due dates. 0

THEOREM 8.3. The schedule obtained by applying the priority sched
uling algorithm to the problem with modified due dates minimizes
maximum lateness with respect to the original due dates.

Proof. Similar to that for Theorem 7.3. 0

17

9. THE GENERAL TWO-MACHINE PROBLEM

Now consider the general two-machine problem, Q2lpmtn,prec,rj ILmax=
there are arbitrary release dates and precedence constraints, but
of course only two machines.

Once again we first consider the question of whether or not
there exists a schedule which meets all due dates. Consistency
conditions (6.1) and (8.1) apply as in the previous section, but
are not strong enough for our purposes. More restrictive conditions
can be formulated as follows.

Let Pj(t) be some known lower bound on the amount of process
ing of job j which must be done prior to time t. A function defin
ing lower bounds of this type will be required to satisfy the con
ditions

(9. 0) {
= p.,

p. (t) J

J ~ max{O,p. (t')-(t'-t) },
J

t 2 d.,
J

t ::; t' ::; d ..
J

For given j,r,t, with rj s rs t, define

If P(j,r,t) > (l+s) (t-r), the amount of processing to be done
prior to time t and after the completion of job j exceeds the
total processing capacity of the two machines in the interval
[r,t]. It follows that if all due dates are to be met we must have

1
C. st - -- P(j,r,t).

J l+s

Similarly, if P(j,r,t) s (l+s) (t-r), (l+s) (t-r)-P(j,r,t) is an
upper bound on the amount of processing of job j which can be done
in the inteival [r,t]. It follows that we should have

p. (r) ;::,: p. (t)-(l+s) (t-r)+P(j,r,t).
J J

Motivated by these observations, we frame the following defi
nition.

Definition. Release dates rj and due dates dj, j = 1,2, ... ,n, are
internally consistent if there exist functions Pj(t) satisfying
(9.0), such that for all j,r,t, with rj s rs t,

(9. 1) r. ;::,: r.+p. whenever i ➔ j,
J]_]_

(9. 2) d. s t-pk (t) whenever j ➔ k,
J

(9. 3) p. (r.) 0 for all j ,
J J

(9.4) d.
1

P(j,r,t) if P(j,r,t) (l+s) (t-r), s t - >
J l+s

18

(9.5) p. (r) ~ p. (t)-(l+s) (t-r)+P(j,r,t)
J J if P(j,r,t) ~ (l+s)(t-r).

The following lemma shows that in order to establish internal
consistency of due dates, it is unnecessary to verify conditions
(9.0)-(9.S) for all j,r,t, with rj ~ r ~ t. It is sufficient to
consider only r f. R, t E RuD, where R = {rklk = 1,2, ... ,n},
D = {dklk = 1,2, ... ,n}.

LEMMA 9.0. Let Pj(t) be functions with domain RUD. If these func
tions satisfy (9.0)-(9.5) for r ER, t E RUD, then the due dates
are internally consistent.

Proof. Extend the functions by the rule

p. (t) =
J

t :2'. d.,
J

t < d .•
J

The lemma follows by reasoning similar to that used in the proof
of Lemma 8.0. D

Lemma 9.0 suggests that it is possible to construct an algorithm
for modifying due dates, based on the construction of functions
Pj(t) over the domain RUD. We shall employ three loops in this al
gorithm. The outer loop considers values oft E RUD, in decreasing
order. The middle loop considers values of j, in arbitrary order,
and the inner loop considers values of r ER in increasing order.

For a given triple t,j,r, the algorithm compares P(j,r,t) with
(l+s) (t-r) and modifies either dj or Pj(r), in accordance with
(9.4), (9.5), as necessary. When the processing of j is completed
for a given value oft, the values Pj(u), u ~ t, are revised to
conform with condition (9.0). The algorithm then halts if
Pj(rj) > 0, in violation of (9.3). The due dates of predecessors
of j are then modified in accordance with (9.2).

Each value t considered in the outer loop is either a (fixed)
release date or a due date which remains unchanged by any further
processing. Because of the maintenance of conditio~s (9.2), if
t = dj then Pk(t) = 0 for all successors k of j. Hence if
P(j,r,t) > (l+s) (t-r) (which is the only condition under which dj
can be changed), then P(k,r,t) > (l+s) (t-r) for any job k such that
r = rk, and Pk(rk) > 0, in violation of (9.3). It follows that at
most 2n values oft are considered by the outer loop.

We next note that P(j,r,t) is determined only by the values
of Pk(t), k = 1,2, ... ,n. Since values oft are processed in de
creasing order, the values Pk(t) are not changed by further repe
titions of the loop. It follows that if the due date modification
algorithm runs to termination without halting because of violation
of condition (9.3), the functions Pj(t) constructed by the algo
rithm satisfy conditions (9.0)-(9.5). By Lemma 9.0, the modified

19

due dates are then internally consistent.

DUE DATE MODIFICATION PROCEDURE
Input:

Output:

m,s, specifying machine environment;
triples (pj,rj,dj), j 1,2, ... ,n, specifying jobs;
a transitively closed acyclic digraph specifying prece
dence constraints ➔-

[We assume that

rj 2 max{ri+Pili ➔ j},

dj s min{di-Pilj ➔ i};

if this is not so, release and due dates should be modi
fied accordingly.]
modified due dates dj, j = 1,2, ... ,n, or indication that
release dates and due dates are not internally consistent.

£egin procedure
t • = +co;

R := {rjlj = 1,2, ... ,n};
D := {djlj = 1,2, ... ,n};
loop if all t E RUD have been considered

then stop
fi; [Modified due dates are internally consistent.]
sett to the largest value in RUD less than current t;
for all j with dj st
do r := rj;

P(j,r,t) := LkES(j) Pk(t) + Ek¢S(j) ,rk2r Pk(t);
while there is an r' in R such that r < r' st, let
r' be the smallest value ih R greater than rand
do P(j,r,t) := P(j,r,t) - Ek¢S(j) ,rsrk<r' Pk(t);

r := r';

od;

if P(j,r,t) s (l+s) (t-r)
then Pj(r) := max{pj(r) ,Pj(t)-(l+s) (t-r)+P(j,r,t)}
else dj := min{dj,t - P(j,r,t)/(l+s)};

update D, as necessary
fi

let rj = u1 < u2 < ... < ui = t be the different
values in RuD between rj and t;
if Pj(Ui) has not previously been computed
then Pj(Ui) := 0
fi;
for
do
od;

i = £-1,£-2, ... ,1
Pj Cui) : = max{pj (ui) ,Pj (ui+l) - (ui+l -ui)}

if p·(r·) > 0 - J J
then stop
fi; [Due dates are not internally consistent.]
t' := min{u E RuDlpj(u) > O},
for each k such that k ➔ j

20

od
forever

end procedure.

do dk := min{dk,t'-pj(t')}
od

Notice that the for loop on j is executed O(n 2) times and that the
computation of P(j,r,t) requires only O(n) time. The while loop on
r is executed O(n 2) times and the revision of P(j,r,t) requires at
most one reference to a given job k, k i S(j), for each corriliination
oft and j. Hence only O(n 3) time is required for the revision of
P(j,r,t). A similar analysis of other details confirms that the
algorithm runs in O(n 3) time.

We now wish to show that if due dates are internally consis
tent, then there exists a schedule meeting all due dates. We shall
do this, not by applying the priority scheduling algorithm direct
ly to then jobs with modified due dates, but by applying the
priority scheduling algorithm to a new problem with an expanded
set of O(n 2) jobs.

Suppose at the termination of the due date modification al
gorithm there is a job j and at E RUD, t < dj, such that Pj(t),
as computed by the algorithm, is such that

p. (t) > p.-(d.~t),
J J J

where dj is the modified due date. If we were simply to apply the
priority scheduling algorithm to the original set of jobs with
modified due dates, it might fail to sche_dule a sufficient amount
of processing for job j prior to time t, thereby constructing a
schedule which fails to meet due dates, though such a schedule
exists. To overcome this difficulty, we replace each job j by a
chain of s~aller jobs, as follows.

Let Pj(t), j = 1,2, ... ,n, t E RUD, be the values computed by
the due date modification algorithm. For each job j, let

{ulu E RUD, pj(u) > 0, u ~ dj} = {u1 ,u2 , ... ,u£},

with u1 < u2 < ••• < ui = dj. Create£ new jobs, j(l) ,j(2) , ... ,j(£).
Set Pj(l) = Pj(u1), dj(l) = u1, rj(l) = rj, and sel Pj(i+l) =
Pj(Ui+l)-pj(Ui), dj(i+l) = Ui+l, rj(i+l) = dj(i)• for i = 2,3, ... ,£.
Replace job j by the£ new jobs, and modify the precedence con
_straints so that h ➔ j(l), for all h ➔ j, j(£) ➔ k, for all j ➔ k,
and j(i) ➔ j(i+l), for i = 1,2, ... ,£-1.

PROPOSITION. There exists a schedule meeting the modified due
dates of then jobs if and only if there exists a schedule meeting
the due dates of the expanded set of jobs, as obtained above.

We also note that any feasible schedule for the O(n2) jobs is easily
transformed into a feasible schedule for the original n jobs.

21

THEOREM 9.2. If due dates and release dates are internally consis
tent, then there exists a schedule meeting all due dates.

Proof. Apply the priority scheduling algorithm to the expanded set
of O(n 2) jobs obtained as above. Suppose it fails to obtain a
schedule meeting all due dates, and let [ti-1,ttJ be the first
interval in which there is a job j with b~£) = T < ti.

Case 1. In all earlier intervals [tk-1,tk] there is no idle
time and there is no job i with b{k) > T. Then

I: i pi (T) 2 (1 + s) (t £ - r l) > (1 + s) (T- r l) ,

where r1 is the earliest release date. But this is not possible,
else Pl (r1) > 0.

Case 2. There is an earlier interval [tk-1,tk] in which there
i:s either idle time or some job i is processed with b{k) > T. Let
[tk-1,tk] be the latest such interval.
(a) Suppose that a job his completed at time tk- Then each job
processed between time tk and time ti is either a successor of job
h or is a job with release date tk or later. (Note that condition
(9.1) insures that each successor of a job with release date tk or
later has a release date later than tk.) It follows that

But this is not possible, else dh < tk and [tf-r'tiJ would not be
an earliest interval with a job j such that bj£ < ti.
(b) Suppose that no job is completed at time tk, but tk is the
release date rh of a job h. By an argument similar to the above,
it follows that Ph(rh) > 0, which is not possible by internal con
sistency. D

We note that although the priority scheduling algorithm is applied
to O(n2) jobs, the time required for the computation is bounded by
O(n 3). The precedence constraints are such that at most n jobs are
available at any given time and the number of intervals is O(n 2).
It follows that O(n 3) time is sufficient to determine whether or
not there exists a schedule meeting all due dates.

Unfortunately, it is not possible to minimize'maximurn lateness
a:s easily as in the previous two sections. It is clearly not the
case that if Lis added to all due dates then all modified due
_dates are changed by the same constant L.

One way to minimize maximum lateness is to apply the technique
of Meggido [8]. In this approach, the due date modification algo
rithm is applied to due dates dj+L, where Lis maintained as a
symbolic variable. Each time a numerical comparison is made whose
outcome depends upon the value of L, there is an easily computed
"critical" value L* such that one outcome occurs if L ~ L* and
another if L > L*. If the minimum value of L yielding an internally
consistent set of due dates is already known to be larger or

22

smaller than L* there is no ambiguity about the outcome of the
comparison. Otherwise, the due date modification algorithm is ap
plied to due dates dj+L*. If the resulting due dates are internally
consistent, the desired value of Lis known to be no greater than
L*; otherwise, the desired value is known to be larger. Proceeding
in this way, one can determine the minimum value of maximum late
ness in O(n 3) applications of the due date modification algorithm,
or O(n6) time overall.

10. EXTENSIONS AND GENERALIZATIONS

The possibilities for finding polynomial time algorithms for more
general cases of the problems considered in this paper appear to
be limited. NP-hardness proofs exist for several more general
problems.

In the context of nonpreemptive scheduling of unit jobs,
Brucker, Garey and Johnson [1] showed that the intree problem
becomes NP-hard if outtree constraints replace intree constraints
(but release dates remain equal and due dates are arbitrary). The
problem Plpmtn,outtreelLroax is NP-hard [7], since there is no ad
vantage to preemption for. the subclass of problem instances of
Plouttree,pj=l ILmax shown to be NP-hard in [l].

One question which remains unresolved is the status of the
intree problem when generalized to allow them machines to have
different speeds instead of m-1 identical machines and one possibly
slower one. The algorithmic approach taken here appears to be not
quite adequate for this case.

Also with reference to nonpreemptive· scheduling of unit jobs,
Ullman [13] proved that it is NP-hard to schedule jobs to minimize
makespan, when scheduling jobs for an arbitrary number of machines
subject to ~rbitrary precedence constraints. The preemptive version
of this problem is also NP-hard [14].

Ullman's result leaves open the question of whether NP-hard
ness holds for any fixed number of machines and, in particular,
for three machines. It is reasonable to believe that if a polyno
mial time algorithm can be found for nonpreemptive scheduling of
unit jobs on three machines, a similar algorithm can be found for
the preemptive version of the three-machine problem.

ACKNOWLEDGMENTS

This .research was supported in part by NSF grant ~CS78-20054. The
author wishes to acknowledge the help of Harold Gabow, in pointing
out an.error in [3]. (It is necessary to require that release dates
be consistent, as in (9.1).) He also wishes to thank Jan Karel
Lenstra for his advice, and for his patience and encouragement in
the preparation of this paper.

23

REFERENCES

1. P. BRUCKER, M.R. GAREY, D.S. JOHNSON (1977) Scheduling equal
length tasks under tree-like precedence constraints to mini
mize maximum lateness. Math. Oper. Res. I,275-284.

2. M.R. GAREY, D.S. JOHNSON (1976) Scheduling tasks with non
uniform deadlines on two processors. J. Assoc. Comput. Mach.
23,461-467.

3. M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with
start times and deadlines. SIAM J. Comput. §_, 416-426.

4. T.F. GONZALEZ, D.B. JOHNSON (1980) A new algorithm for pre
emptive scheduling of trees. J. Assoc. Comput. Mach. 27,
287-312.

5. R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN
(1979) Optimization and approximation in deterministic se
quencing and scheduling: a survey. Ann. Discrete Math. 5,
287-326.

6. E.C. HORVATH, S. LAM, R. SETHI (1977) A level algorithm for
preemptive scheduling. J. Assoc. Comput. Mach. ~,32-43.

7. J.K. LENSTRA. Private communication.
El. N. MEGGIDO (1979) Combinatorial optimization with rational

objective functions. Math. Oper. Res. _!,414-423.
9. C.L. MONMA (1979) Linear-time algorithm for scheduling equal

length tasks with due dates subject to precedence constraints.
Technical Memorandum 79-1712, Bell Laboratories, Holmdel, NJ.

10. R.R. MUNTZ, E.G. COFFMAN, JR. (1969) Optimal preemptive sched
uling on two-processor systems. IEEE Trans. Comput. C-.!..§_,
1014-1020.

11. R.R. MUNTZ, E.G. COFFMAN, JR. (1970) Preemptive scheduling of
real-time tasks on multiprocessor systems. J. Assoc. Comput.
Mach. 2,324-338.

12. S. SAHNI, Y. CHO (1979) Nearly on line scheduling of a uni
form processor system with release times. SIAM J. Comput. _§_,
275-285.

13. J.D. ULLMAN (1975) NP-Complete scheduling problems. J. Comput.
System Sci. 10,384-393.

14. J.D. ULLMAN (1976) Complexity of sequencing problems. In: E.G.
COFFMAN, JR. (ed.) (1976) Computer & Job/Shop,Scheduling
Theory, Wiley, New York, 139-164.

n N 2 4 1981

