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Controlled invariance for affine control systems 

by 

Henk Nijmeijer 

ABSTRACT 

In this paper we will give a solution of the Disturbance Decoupling 

Problem for nonlinear systems. The main difference with related other works 

in this field is the construction of a new (state-dependent) basis for the 

inputs. 

KEY WORDS & PHRASES: Nonlinear systemstheory controlled-invariant 

distributions 

The results of this report appeared at the same time in another 
preprint [11] 





1.· INTRODUCTION 

The geometric approach for linear systems is a succesfull way to 

solve various synthesis problems in control theory, for example the Dis~ 

turbance Decoupling Problem and other related decoupling problems (cf. 

[10]). It would be interesting to develop an analogue theory for nonlinear 

systems. Apparently differential geometry is the adequate apparatus. In this 

paper we want to discuss nonlinear A (mod B) invariance or as it is also 

called controlled invariance. 

The systems that will be treated here have the form (locally) 
• lcn x(t) = x0 (x(t)) + r. 1 u.(t)X.(x(t)). 

i= 1 1 

We assume the reader is familiar with some basic concepts of differen-

tial geometry (see [1],[6]). Throughout the paper Mis an n-dimensional 

smooth manifold. The set of all smooth vectorfields on Mis denoted by · 

V(M) and the set of all smooth functions on Mis given by C(M). The Lie 

bracket of two vector fields X and Y is denoted by [X,Y] and by [D 1,D2J, 

where D1 and D2 are (affine) distributions - we mean the set of all 

[X,Y] with XE DI and YE D2• 

The organization of the paper is as follows. In section 2 we give a 

coordinatefree definition of a control system. In section 3 we introduce 

the concept of controlled invariant distributions and we prove here our 

main theorems. A conceptual algorithm for computing a controlled invariant 

distribution is given in section 4. In section 5 we discuss the concept of 

'input-insensitivity' and in the last part we give a brief discussion of 

our results. 

2. AFFINE CONTROL SYSTEMS. 

DEFINITION 2.1. An affine distribution 6 on M will be a map 6 which assigns 

to each point x in Man affine subspace of TM. 6 ism-dimensional if the 
X 

affine subspace 6(m) ism-dimensional for all x. 

~ 

DEFINITION 2.2. AC m-dimensional affine control system on M will beam-

dimensional affine distribution 6 on M such that for all x there exists a 

neighbourhood U(x) and vectorfields x0 , .•• ,Xm E V(M) such that 
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REMARKS. 

(i) In fact an affine control system (or briefly control system) will be 

considered as a family of trajectories in state space M (See also 

Willems [9] for linear systems) 

- !J. "=" {x:lR + Ml x absolutely continuous and ~(t) = x0 (x(t)) + an 

element of Span {X1(x(t)), ••• ,Xm(x(t)} almost everywhere} 

{x:lR + Ml x absolutely continuous and :Ju 1, ••• ,um:lR + lR 

such that ~(t) = x0 (x(t)) + u 1(t)X1(x(t)) + ••• +um{t)Xm(x(t)) 

almost everywhere} 

(Locally we identify !J. with x0 + Span{X1, ••• ,Xm}) 

It follows easily that !J. is 'feedback invariant' i.e. !J. does not depend 

on the choice of a basis of Span{X1, ..• ,Xm} and 

= { x: lR + Ml x absolutely continuous and 3v 1, •.• , vm: JR. + lR 

such that x(t) = x0(x(t)) + E~ 1a.(x(t))X.(x(t)) + 
1= 1 1 

+ E~ 1v.(t)X.(x(t)) almost everywhere} (a. E C(M),i=l, .•• ,m). 
1= 1 1 1 

(ii) A control system !J. induces a distribution tJ.0 , defined by 

tJ.0 := !J.-!J. = {X-YIX,Y E !J.} or if locally !J. = x0 + Span{X1, ••• ,Xm} then 

tJ.0 = Span{X 1, •.• ,Xm}, i.e. the subspace of directions in which we can 

steer. 

3. CONTROLLED INVARIANCE 

Now we are going to discuss the generalized notion of (A,B)-invariance. 

Recently several people studied this problem: In Isidori et al [4] (see 

also [3]) the control theoretic setting of the disturbance decoupling problem 

for nonlinear systems is given in terms of invariant distributions. 

Hirschorn also gives under specific conditions in [2] a solution of the 

nonlinear disturbance decoupling problem. The present approach unifies 

both works in the sense that it fits the special solution of Hirschorn to 

the general setting of Isidori et al. 

In [9] Willems has given a collection of (equivalent) definitions of 

controlled-invariance for A (mod B) invariance for linear systems. The most 



useful ones for our purpose are given here. 

Let I: x = Ax + Bu x E ]Rn =: X, u E ]Rm - . U A and B matrices of 

appropriate dimensions. 

3 

DEFINITION 3.1 (a) A linear subspace V c Xis A (mod B)-invariant if there 

exists a linear feedback F:X ➔ U such that ~tic V where~ :=A+ BF 

(b) A linear subspace V c Xis A (mod B)-invariant if 

AV c V + B i(B := ImB) 

(c) A linear subspace V c Xis A (mod B)-invariant if 

I (mod V) is a linear system. 

We first give the 'distributional version' of this definition. (See 

also [2]). Let V be a linear subspace of X. We can associate a distribution 

DV with the linear subspace V by defining Dv(x) = V .'.=.. TxJRn where we use the 

natural identification of ]Rn with TxJRn . Another way of defining DV if 

given by the following: Let {v 1, .•. ,vk} be a basis of V then DV is given 

The condition ~v C V will transform in 

E Span{-33 I , ... ,-33 I } 
vl x vk x 

i = 1, ... ,k. 

c..,.., 

k 

Now we will give the generalization of definition (a). In the context 

of the definition of a control system A (mod B)-invariance becomes 

/::, (mod t-:,0)-:i.nvariance. 

DEFINITION 3.2. A smooth involutive distribution D (of fixed dimension) 

will be called a controlled invariant distribution for a control system 

/::,or/::, (mod t-:,0 )-invariant if there exists an XE t,, such that [X,D] c D. 
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REMARKS. 

(i) Throughout this paper we will use b (mod b0)-invariance - in analogy 

with A (mod B)-invariance for linear systems - rather than controlled 

invariance. 

(ii) It will be clear what we mean by locally b (mod b0)-invariant namely: 

Locally we can find XE b such that [X,D] ~ D. 

If we work out a coordinate version of this definition then we get the 

following appealing result: Locally we can find around each point in Ma 

coordinate system such that in that chart the distribution Dis spanned by 

the vectorfields -;f---·, ... , ~. That such a coordinate system exists is a 
oXI o~ 

consequence of the local version of Frobenius' theorem (cf. [l],[6]). 

Writing the equation [X,D] c D now gives 

ax. (x) 
l. 

ax. 
] 

= 0 
i = k+ I, ... ,n 

J = I, ••• ,k if X(x) = 
n 
l X. (x)-f-1 

i= I 1 xi x 

or equivalently, if we write ~I= (x 1, ••• ,~) and ~2 = (~+I''""'xn) then 

we get the following form for X 

X(x) = 
~ (~I '~2) 

~+I (~2) 
which is the nonlinear 

analogue of (*)! 

Because we cannot check for a given distribution D if there exists an XE b 

such that [X,D] for all XE b!) this definition as it stands is not very 

useful. What we need is an analogue statement of definition 3.l(b) for 

nonlinear systems. 

REMARK. In [4] also def. 3.I(c) is discussed. The basic problem for this 

(global!) definition is the requirement that the quotient M (mod D) is 

again a manifold. See for a study of this problem Sussmann [8]. 
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The main result of this paper is given by the following 

THEOREM 3.3. Let D be an involutive distribution of fixed dimension (f.d). 

If D n AO 'has fixed dimension then we have the following equivalence: Dis 

locally A (mod A0)-invariant iff [A,DJ ~ D + A0 □ 

Before we will prove this theorem we formulate the result of Hirschorn 

[2]. Let as before locally A be given as A= x0 + Span{X1, ••• ,Xm} then 

THEOREM 3.4. [2] An involutive distribution D(f.d.) which satisfies 

and 

cx0 ,nJ c n + A0 

[X. ,DJ C D 
1 

i = I, ... ,m 

is locally a controlled invariant distribution. □ 

As will be clear Hirschorn's result depends on the choice of the basis 
~ ~ x1, ••• ,Xm for the 'inputspace' A0 (In gen~ral another basis x1, ••• ,Xm of 

A0 does not satisfy [Xi,D] ~Di= I, ••• ,m if [Xi,D] ~Di= I, ••• ,m). This 

fact is rather unsatisfactory and therefore we will first prove a technical 

result of independent interest. 

THEOREM 3.5. Let D be an involutive distribution (f.d.) which satisfies 

[A0 ,DJ ~ D + A0 and D n A0 has fixed dimension then locally there exists 

a basis x1, ••• ,X for A0 such that [X.,DJ c Di= I, ••• ,m. D 
m i -

It is easily seen that thm. 3.4 and thm. 3.5 imply thm. 3.3. We first 

give an outline of the proof of thm. 3.5. In fact we will reduce it to a 

set of partial differential equations. Suppose 

(I) 

Choose around point pin Ma coordinate system (U(p),x) as in the local 

Frobenius' theorem, so D a a 
= Span{ axl , •.. , ax/ and choose an arbitrary basis 

the (n,m) matrix B(x) by 

(2) 
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Then from (I) we have 

(3) ~B (x) = B(x).M.(x) (mod D) 
oX, 1. 

i = 1, ••• ,k) 
1. 

where M.(x) are (n,m) matrices and mod D means modulo a (n,m) matrix of 
1. 

the form 

( .* )}k 
\ 0 • 

From 

we deduce 

= a2B(x) 
ax.ax. 

1. J 
i,j = I , •.• , k 

clM. (x) 3M. (x) 
B(x)[ax~ -- ax~ + M. (x)M. (x) - M. (x)M. (x)J = 0 (mod D) 

J 1. J 1. 1. J 
(4) 

We would like to find another basis x1, ••• ,Xm for 60 which satisfies 

ax. 0 (mod D) 

J 

~ ~ ~ or if B(x) = (X 1(x) ••• Xm(x)) then 

(5) 
~ 

aB(x) = 0 (mod D) 
ax. 

J 

~ 

l = 

j = 

l, ... ,m 

I , ••• , k 

The two bases Band B of 60 are connected via a nonsingular (m,m) matrix 

A such that 

(6) B(x) = B(x).A(x) 

and so 

~ (x) = aB (x) 
ax. ax. 

A(x) + B(x).~A(x) 
ox. J = l, ... ,m 

J J J 



and according to (5) and (6): 

(7) 

combining (7) with (3) we get: 

(8) J = l, ... ,m 

In the following we will show that we can solve the set of partial 

differential equations: 

A-1 (x) ~A (x) 
ox. 

J 

M.(x)=O 
J 

J = l, ... ,k 

with for example A(O) = I the -identity matrix i.e. we are looking for 
m 

a (m,m)-matrix A(x) which satisfies 

A(O) = I 
m 

(9) 
clA(x) = A(x) .M. (x) 
clx. J 

J 

J l, ..• ,k 

7 

where the matrices M. (x) are given 
J 

and satisfy the "integrability conditions" 

(see (6)) 

( IO) 
clH . (x) 
- 1. 
3x. 

J 

clM . (x) 
-;:;-x. J + M. (x)M. (x) - M. (x) .M. (x) = O 
0 1. J 1. 1. J 

1.,J = l, ... ,k 

The required basis for ~O then will be given by the columns of the matrix 

B (x) • A - I (x) . 

Thus we can formulate the following equivalent. 

LEMMA 3.6. The set of partial differential equations (9) has a solution on 

a neighbourhood of O if and only if the integrability conditions ( 10) are 

satisfied. 

The proof of thm. 3.5 and therefore of Lemma 3.6 is rather involved and 

can be skipped by the reader who is only interested in the systems theory. 

Basically our proof will be geometric. We will first treat the 'most regular' 
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-ca_se 1. e. D n Li.0 = 0 and later on indicate how the other cases can be treat-

ed. (~0 is the involutive closure of Li.0 , i.e. it contains all vectorfields 

in Li.0 and iterated Lie brackets of vectorfields in Li.0 . 

We need the following two lemmas. 

LEMMA 3.7 . .If [D,Li.0 ] .=.. D + Li.0 then D + Li.0 is involutive. 

PROOF. Use the Jacobi-identity. □ 

-
LEMMA 3.8. (Frobenius' theorem extended). Let D and D + Li.0 be involutive 

distributions of fixed dimension3 then around each point pin M there exists 

a coordinate system (U(p),x) such that in that chart 

D 
3 3 

Span{3xl , ••• '3xq} 

and 

-
D + tio 

3 3 3 = Span{-3-, ..• •~, .•. ,~ }. 
xi p q 

PROOF. See Jakubczyk [6]. □ 

- -
Now if D n Li.0 = 0 we have that 1n the local chart of lenrrna 3.8 Li. 0 1s 

spanned by l := q-p vector fields 

3 

3x I p+ 
+ 

MoreovE!r [Y ,Y] 0 s,t = 1, .•• ,l. Furthermore it will be clear 
s t 

that [D,Y Jc D s = 1, ••• ,l. 
s -

PROOF OF THEOREM 3.5 (and Lemma 3.6). Let D n Li.0 = 0. Choose locally an 

arbitrary basis x 1, ••• ,Xm for Li.0 and select some other vectorfields 

Xm+i•···,X,e_ such that Span{X 1, ••• ,Xl} = Z0 = Span{Y 1, ••• ,Y,e_} (See lennna 3.8). 

(Here x 1, ••• ,Xl are linearly independent 1n each point). 

Define (n,l) matrices B(x) and B(x) by 

B(x) (X 1 (x) ..• X,e_ (x)) 

B(x) (Y 1(x) ... Y,e_(x)). 



-Now {x1, ••• ,Xl} as well as {Y1, ••• ,Yl} form a basis for ~O so there exist 

a non-singular (l,l)-matrix A such that 

B(x) = B(x).A(x). 

Therefore ~B(x) = aB(x) .A(x) + B(x).aA(x) 
oX, ax. ax. 

( 11) 

i i i 

aB(x) 
=> - = ax. 

i 

(mod D) 

Furthermore we may assume that A(O) = Il. 

i = 1, ••• , k 

9 

On the other hand we deduce from [D,h0 ] c D + h0 that [D,~0 ] c D + h0 

(le1Illlla 3. 7) and 

(12) ~(x) = 
ax. 

i 

B(x).M.(x) (mod D) 
i 

i = 

where the (l,l)-matrix M.(x) has the form 
i 

(13) 
M. (x) 

i * 

0 * 
'-'-v--' 

m 

Combining (11) and (12) leads to: 

( 14) 

and by the fact that D n h0 = 0 it follows 

1, ••• , k 

(mod D), 

A-l(x)aA(x) -M.(x) = 0 
ax. i 

i = 1, ••• ,k 
i 

i = I, ..• ,k 

(This could be seen by skipping the first k-rows of equation (14) and by 

observing that the reduced matrix B (i.e. a (n-k,l)-matrix has rank l). 
So we have given an unique solution of the set of partial differential 

equations 
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_clA(x) 
= A(x)M. (x) l. = I , .•. , k 

ax. l. 
l. 

A(O) = I,e: 

Now if we partition the (l,l)-matrix A(x) 1.n the following way 

A(x) = ( A1 (x) A2 (x)~ }m 

A3 (x) A4 (x) 

._,,__. I 
ID 

we see that A1(x) satisfies 

aA1 
(x) A1 (x)Mi (x) = 

ax. 
l. 

A1 (O) = I 
ID 

l. = I , •.• , k 

Therefore the columns of the matrix (X 1 (x) ...• ~ (x)) 

basis for A0 • 

-I 
A1 forms a nice 

Now we will shortly indicate the proof for the more general situation 

where we assume that the distribution D n A0 has fixed dimension. In that 

case we do not bother about the part of A0 which is contained in D n A0 
(every basis of D n A0 already has the required properties); the essential 

part of the proof remains the same for an arbitrary basis of A0 (mod A0 n D). 

Finally we note that the assumption that D + Z0 has fixed dimension 

(see Lemma 3.8) is not essential in the proof. By using Sussmann's method 

of generalizing Chow's theorem [7] we can embed D + A0 in an involutive 

distribution of fixed dimension. D 

4. A NAIVE ALGORITHM 

For the disturbance decoupling problem (see Section 6) it is relevant 

to solve the following problem: 

Find the largest A (mod A0)-invariant distribution S contained in a 

given distribution K of fixed dimension. The existence of Sis shown by 

Hirschorn [2] and Isidon et.al. [4]. 

Let A and A0 be given as before and let D be an arbitrary distribution 



-) 
(not necessarily involutive). Then define: A (A0 + D) := 

{XE V(M)![A,X] .=. A0 + D}. It is straightforward to show that 

A- 1(A + D) n Dis a distribution. 
0 

11 

The following theorem is a slight modification of the linear algorithm 

[JO]. 

THEOREM 4.1. Let K be a given in~olutive distribution of dimension k. 

Consider the algorithm 

then 

lim Dm = Dk 
m+"" 

m=0,1,2, •.• 

and assume that the involutive closure Dk has fixed dimension then Dk equals 

the largest A (mod A0)-invariant distribution in K. 

PROOF. By induction we 
if Ds c Ds-l then Ds+l 

s s-1 1 0 show D c D , s = 1,2, •.•• Clearly D c D and 

= D8 n A- 1(A + Ds) c Ds-] n A- 1(Ao + Ds-l) = Ds. 
0 -

Furthermore it is easy to see that the algorithm ends after at most k steps. 

The resulting distribution Dk is A (mod A0) invariant but not necessarily 

involutive. By using the Jacobi identity we can show that the involutive 

closure of Dk is also A (mod A0) invariant. 

Finally let D be a A (mod A0) invariant distribution in K then 
0 s-1 s-1 -I s-1 -I s-1 DC D and if DC D then DC D n A (D + Ao) CD n A (D +Ao)= 

Ds. Therefore Dk is the greatest A (mod A0) invariant distribution. D 

5. INPUT-INSENSITIVITY 

Theorem 3.3, as it stands, can be considered as a closed loop formula­

tion; given x0 EA with [X0,DJ .=. D + A0 we can find a vectorfield BE A0 
such that [X0 + B,D] .=. D. Before we will treat a mixed (i.e. closed and 

open loop) situation we want to investigate the linear dituation somewhat 

deeper. 



12 

Let x =Ax+ Bu and V c X be an (A,B)-invariant subspace. Let F be 

a feedback such that (A+ BF)V c V. We can associate - as in the beginning 

of section 3 - an involutive distribution DV with the linear subspace 

= Span{~ I , ... , ~ I }. 
oV I X oVk X 

Now let bI, ••• ,bm be the columns of B, then for each vectorfield DE DV 

we have [b.,D] c DV i = I, ••. ,m (Compare with theorem 3.5). If we apply a 
l. -

feedback of the form u = Fx + v then we have the system x = ~x + Bv and 

[~x + Bv, D(x)J E Dv(x) VD E DV. Geometrically this implies that when we 

start at t = t 0 in two different points of the same leaf of DV then these 

points will be following the integral curves of ~x + Bv - at any time 

t = t 1 > t 0 at the same leaf of D. This fact is called 'input insensitive' 

(see [9]). 

For nonlinear systems the situation is a bit different. From theorem 

3.5 it will be clear that we can give 80 a basis such that the modified· 

system (i.e. first selecting XE 8 with [X,D] ~ D and then selecting the 

basis x1, ••• ,~ of theorem 3.5 for 80) is input insensitive. So for the 

system x(t) = X(x(t)) + u 1(t)X 1(x(t)) + •.•• +~(t)¾(x) we have that start­

ing in two points on the same leaf of D will remain on the same leaf of D 

for every u 1, ••• , ~: 1R + 1R. But as noted before this is in general not 

true for an arbitrary basis of 80 • So the mixed situation of input insensi­

tivity depends on the choice of a basis of 80 . 

6. DISCUSSION 

It is very natural to apply the results of sections 3 and 4 to the 

Disturbance Decoupling Problem (D.D.P. cf. [IO]). For an extensive treat­

ment the reader is referred to Isidorietal [4]. We will briefly indicate 

how to solve D.D.P. Let us assume that there is also given an output map 

h: M ➔ N, where N is another manifold and his a smooth function. With h 

we can associate a distribution K (K of kernel compare [IO]) consisting of 

all XE V(M) which satisfy h (X) = 0 (h: TM ➔ TN, given in local coordinates 
* * 

by(:~)). The algorithm of section 4 will provide you with the greatest 

8 (mod 80) invariant distribution in K. Disturbances contained in this in­

variant distribution - i.e. vectorfields which cause disturbances - do not 
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influence the output. Theorem 3.3 guarantees that we can find an appropriate 

XE 8 which leaves this distribution invariant. The main difference with 

the paper of Hirschorn, except for the fact that we solved the D.D.P. in a 

far more general way, lies in the input-insensitivity as sketched in section 

5. 

In a forthcoming paper we will also introduce the concept of controlled 

invariance for arbitrary nonlinear systems. 
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