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ABSTRACT

Necessary and sufficient conditions are derived for "(A,B)-invari-
ance", called here controlled invariance, for nonlinear systems x = f(x,u).
The obtained results generalize and elucidate already known results about
systems x = A(x) + 2?;1 uiBi(X)° A new and direct differential geometric
interpretation of the concept of controlled invariance and the derived
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§1. INTRODUCTION

Basic to the solution of various problems in linear systems theory
is the notion of (A,B)—invariance or, also called, controlled invariance
(cf£.[1,13]). Recently several people studied the problem of generalizing

this notion to nonlinear systems of the form

m
(1.1) x = A(x) + iZl uiBi(x)
(c£.[4,5,6,7,8,9])
Actually, very recently conditions have been found which seem very conclu-
sive for this class of systems (cf.[6,9]).
The aim of this paper is to generalize the concept further to general

nonlinear systems
(1.2) x = f(x,u)

and to derive conditions similar to those derived for systems of the form
(1.1). In the course of doing this it became clear that the concept of
controlled invariance can be translated, in a natural and clarifying way,
into classical differential geometric notions like integrability condi-
tions and connections on fiberbundles. Actually, we will show that this
point of view also elucidates the alrecady known results about systems

of the form (1.1) (we will call these systems affine systems)

Before going on we will briefly summarize some of the ideas and re-
sults about controlled invariance for linear and affine systems(for an in-
troduction see also [4,5,8]). First we define the related notion of
invariance. Consider a linear system

(1.3) x=Ax +Bu, xe X:=R® uel:=R"

We call a linear subspace V c X Znvariant if AV c V. We can interpret
this condition in the following way. The collection of affine subspaces

x + U,x € ]Rn, can be regarded as the leaves of a foliation of RrR™.



Then AV c V is equivalent to saying that the system (1.3) leaves

the foliation invariant; i.e.take two arbitrary points X and X, on a
same leaf and take an arbitrary inputfunction a(*), then the integral
curves starting from X, and X5 generated by x = Ax + B ﬁ, intersect
at every time t the same leaf.

This idea can be generalized to nonlinear systems
(1.4) x = f(x,u), X € M, M a manifold

Take instead of a linear subspace V an involutive distrnibution D on M. The
maximal integral manifolds of this distribution are the leaves of a folia-
tion of M. Then we say that the distribution D is invariant if again for
every input function u(-), the system x = f(x,u) leaves the foliation
invariant.

Actually it is a standard fact from differential geometry, that this
condition is, just as in the linear case, equivalent with an {nfinitesimal

condition, namely

[£(-,u), D] €D
(see for notation the end of this §)
Controlled invariance is defined as follows. An involutive distribution D
is called controlled invariant if there exists a feedback u+ v := a(x,u)
such that after applying this feedback D is invariant with respect to the
modified dynamics

x = f(x,v)

Within the "category" of linear systems feedbacks should have the form

and for affine systems

u = v o= M®)u - v(x)



The defect in this definition of controlled invariance is that it re-

quires the existence of a feedback. Therefore conditions should be sought
on the distribution D and the system X = f(x,u) which ensure the existence
of a feedback which makes D invariant. In fact for linear systems (1.3) it

can be easily proven that
AV c UV + ImB

is necessary and sufficient for the existence of a matrix F such that
(A+BR)V < V.
Very recently, in [6] and independently in [9] the following result

has been proven for affine systems

. m
x = A(x) +-z

u,B, (x)
1_] 1 1

Define the affine distribution A by A(x) := A(x) + Span {B{(X),w...,
Bm(x)} and the distribution Ag by Ao(x) := Span {Bl(x),....,B (x)}. Then a

distribution D is controlled invariant iff

(A,D] c D + AO
(see for the notation the end of this §), where we suppose, to avoid tech-
nical difficulties, that the dimension of D n AO is constant. This last
result includes an earlier result in [4].

Finally, in this paper we will give the conditions for controlled
invariance for general systems x = f(x,u) (see 84).

The outline of the paper is as follows. §2 contains preliminaries
about definitions of nonlinear control systems which will clear up the way
to the definitions of controlled invariance in §3. It will be argued
that a natural concept for controlled invariance is the idea of an
(integnable) connection, which will be dealt with in §4. It will be shown
here that for affine systems the vanishing of the fors{on and the curva-
fure tensor of an affine connection exactly gives the integrability con-
ditions needed for the construction of a feedback. Furthermore the con-

dition for controlled invariance for general nonlinear systems is derived.

§5 contains the conclusion.



Some notation

Our basic reference to differential gemometry will be [11]. All our
objects like manifolds, maps, etc. are C”. We call A an affine distribu-
tion on a ménifold M if A in every x € M is given by an affine subspace
A (X) c TxM (in a smooth way). Given two (affine) distributions DI’DZ’ then
we define the distribution

[D,,D,] := {[X,Y] | X € D;,Y e D,}.

1°
where [, 1 is the Liebracket. Given a distribution D on M,

then we define ﬁ, a distribution on TM, as follows. Let X be a vectorfield

on M. X generates a group of diffeomorphisms X M —> M (t small), such

that t — Xt(x) is the integralcurve of X starting from x. Then (Xt)*:

TM — TM is a group of diffeomorphisms which in the same way belongs

to a vectorfield on TM. Denote this vectorfield by X. Next, define for a

vectorfield Y on M, the trivial extension ; of Y as the vectorfield on TM,

which, restricted to M, is equal to Y and which, restricted to the fibers

of TM, is zero. Then define
D := {X |X e D} u {Y |Y € D}

If D is a k-dimensional involutive distribution we can give the following
simple description of D in local coordinates. Take coordinates (xl,....,xn)
for M (from now on we shall always assume M to be a n-dimensional manifold)
such that

D= {2 ,. a},withkSn

9 e 0 e 9T A
axl Bxk

Denote the corresponding coordinates for TM by (xl,——,xn,xl,—~,xn)

(ij:TM-——+ R is defined as: ij(v): = dxj(v), for v € TM). Then
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§2. PRELIMINARIES

Before going to the problem of controlled invariance for general non-—
linear systems, we will first review the definitions of nonlinear control
systems we shall use henceforth. This new approach was proposed by WILLEMS
[12], and elaborated in [10,8], and is related to recent proposals of
BROCKETT [2]. In fact the problem centers around a coordinate f§ree way of

defining the equations
(2.1) x = f£(x,u)

where x is the state of the system, and u is the input. Usually this
is done by looking at (2.1) as a family of globally defined vectorfields
f(-,u) on the state space manifold, parametrized by u. However there are
serious objections to this definition (cf.[2,10,12]) and moreover in many
cases it happens that the input space is state dependent.

Therefore the most natural definition seems to be

DEFINITION 2.1. (Nonlinear control system) (cf.[12]).
A nonlinearn contrnol system T is a 3-tuple xn(M,B,f) with M a manifold, B a

fiberbundle above M with projection m: B — M and f a smooth map such that

the diagram

commutes

(ﬂM is the natural projection of TM on M)



REMARK 1. M is to be considered as the state space while the fibers of B
represent the (state dependent) input spaces. If we denote coordinates

for M by x, and coordinates for B by (x,u), with u coordinates for the
fibers, which are assumed to be m—dimensional then locally this definition

comes down to (writing f as (x,u) —(x,f(x,u)), abuse of notation!)

x = f(x,u)

REMARK 2., The usual approach is recovered by taking B a trivial bundle,

i.e.B =Mx U, with U (most times) c r".

REMARK 3. Note that our definition is also coordinate free with respect

to the inputs, i.e. there are no a priori specified coordinates for the
. . m
inputspace as in the usual approach where Uc R~ and hence has already

coordinates.

In this framework feedback can be defined in an appealing way. A
system & (M,B,f) is 4eedback equivalent to a system T(M,B,T) iff there

exists a bundle isomorphism a: B — B such that the diagram
£

B
\ i /
™ .
> M
M 74

with the same abuse of notation as in remark 1 we shall write o in local

commutes

coordinates as (x,u) — (x,a(x,u)).
A special, but important, class of nonlinear systems is given by

DEFINITION 2.2. (Affine control system)

A nonlinear control system I (M,B,f) is an agf{ine control system if B is
a vectorbundle and the map f restricted to the fibers of B is an affine map
into the fibers of TM. Also we assume, to avoid singularities, that f is an

immersion.

REMARK 1. Because the fibers of B and TM are vector spaces, ''affine" is

well defined.



REMARK 2. If we take coordinates x for M and affine coordinates
(ul,...,um) for the fibers of B (i.e. affine maps from the fibers into IR)

then the system is locally described by

m
x = A(x) +>izl uiBi(X)

where span {Bl(x),...,B (x)} has constant dimension.
m

REMARK 3. Note that the class of feedbacks which preserve the affine struc-—
ture consist of those o :B —> B which restricted to the fibers are affine.

Hence in coordinates as above
(x,u) —— (x,M(x)u-v(x))

with M(x) a mxm matrix (nonsingular).

An equivalent definition is obtained by looking only at the image
of the map £ in TM. Because f is affine, the image of the fiber of B above
a point X € M under f is an affine subspace of TxM' Hence we obtain
(c£.[8,9])

DEFINITION (2.2)'

An affine system on a manifold M is an affine distribution A.

REMARK. Define Ay := A - A := {X-Y[X,Y € A}. Then A; is a distribution,
given in local coordinates as above by span {Bl(x), «++5B (x)}. We denote
the affine system by ( A, Ao)

As already noted, our definition is also coordinate free with respect
to the inputs. A local coordinatization of B is given by a trivializing
chart, i.e. an open neighborhood 0 such that n~1(0) =~ OxF, where =~ stands
for isomorphic and F is the so called standard fiber. Notice that a co-
ordinatization of 0 and F immediately gives a coordinatization (x,u) of
ﬂ_l(O) such that x are coordinates for 0 ¢ M. We will call these kind of
coordinates fiber respecting.

In general there are many trivializing charts, and hence many fiber

respecting coordinatizations of B.



In this context it is easy to see that, given a local fiber respecting
coordinatization of B, feedback (x,u) V— (%, a(x,u)) can be interpreted
as defining a new fiber respecting coordinatization (x,v) with v = o (x,u).
This idea, translating feedback into choice of coordinates will be used in
the sequel.

Finally we will define the extended system, introduced in [10], which

will be important henceforth.

DEFINITION 2.3 (Extended system)
Let ¢ (M,B,f) be a control system (def. 2.1). The extended system, denoted
z€ (M,B,f), is an affine system (def(2.2)') constructed in the following

way. Take as state spce the manifold B. Let (x,v) be a point in B. We
construct an affine subset Ae'(§,§) of T(; ;) B as follows. The map f:B
b ]

— TM gives a vector f£(x,V) € T§M. Now define
e - -
AT (x,v) :={X e T,

Then Ae, in every (x,v) defined as above, is an affine distribution on B.

8 := A% = {X e TB | m X = 0}. Hence (Ae,AS) is

an affine system on B, denoted by ¢ (M,B,£).

It is easy to see that A

§3,. CONTROLLED INVARTANCE FOR NONLINEAR CONTROL SYSTEMS.

1. As we saw in the Introduction the underlying idea of (A,B)-invari-
ance or controlled invariance is the following. Let D be a distribution,
which is involutive and:therefore induces a foliation. Then D is invariant
with respect to the dynamics of a system x = f(x,u) if for any two points
X, and X, On a same leaf of the foliation and for all imput functions u(.)
the integralcurves starting from X, and Xy with a fixed u (°) will be
on the same leaf at the same time t. D is controlled invariant if this

holds after applying feedback. The infinitesimal translation of this gives:

(PRELIMINARY) DEFINITION 3.1. Le I (M,B,f) be a control system. Let (x,u)

be fiber respecting coordinates for B, in which the control system has
the form x = f(x,u). A distribution D (involutive) on M is called con-

trolled invariant if there exist a feedback, i.e. a bundle isomorphism



a:B —> B, in coordinates given by
(x,u) F= (x,v := a(x,u))

such that the control system in these new coordinates (x,v) given by

x =t {x,v) satisfies
Tf (-,v),D] c D, for every v constant

REMARK 1.This readily implies that for every time function v (+) also
['E("‘-;): Dl D

The defect of this definition is that it already assumes a choice of
input coordinates u. By doing this, it obscures the problem, because the

former definition is easily seen (see end §2) to be equivalent to:

DEFINITION 3.2 (Controlled invariance)

Let © (M,B,f) be a control system. An involutive distribution D on M is
called controlled invariant, if there are fiber respecting coordinates

(x,u) for B, such that for every fixed u

[f(°’u): D] <D

where x = f(x,u) is the coordinate representation of I.
In fact, this last definition can be made totally coordinate free.
For this we need the concept of an (integrable) connection, which will
be treated in the next §. The final formulation will be given in th. 4.10.
In applications the concept of controlled invariance is many times
used to factor out a part of the state space (cf.[4,5]). Def. 3.1 and 3.2
only ensure that locally the controlled invariant distribution can be
factored out, and in fact there may be obstructions to do this globally
(cf£.[5]). Therefore we could also go the other way around and see what
we mean by globally factoring out. Actually we will give a definition

of a quotient system which locally implies controlled invariance.
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‘DEFINITION 3.3. (Quotient system)

Let X (M,B,f) be a control system. A control system E(ﬁ,ﬁ;f) is called a

quotient system of ¥ if there exist surjective submersions & and ¢ such
that the diagram

(3.1)

M commutes

REMARK: compare this with the definition of minimality in [10].

In order to see that this definition locally implies controlled
invariance, we have to make the following observations (cf.also [101]).

Because ® and ¢ are surjective submersions they induce the involutive

distributions

:= {X e TB | ¢ X =0} " resp.
0}

o m
W

~— o~
>

m

-

»
[}

LEMMA 3.4. Let T be a qubtient system of T as in def. 3.3. Let D be defined
as above, then 'D is controlled invariant with respect to L.

Proof: Diagram (3.1) has two commuting subdiagrams which respectively give
i)

m
ii) £

()

E =
*
E

L]
cD
*
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(because it is readily seen that b, induces the distribution D, see

§1). Now, the distribution E in fact defines fiber respecting coordinates
above the leaves of the foliation generated by D, in the following way.
Take a leaf F of the foliation. Restrict the bundle B to this leaf. Denote

this new fiber bundle above F by B_. Because m,E =D and E is involutive,

F
E defines sections in BF which project onto F. (the sections are the maximal
integral manifolds of E). We can define coordinates u for the fibers of

BF’ such that u~l(c), with c constant, are the sections of E in B

P

Assume for a moment that ¢ restricted to the fibers of B is bijective.
Then one can see that, given an arbitrary fiber respecting coordinatiza- -
tion df'i,'the process above generates in a unique way fiber respecting
coordinates for B. When ¢, restricted to the fibers has a nontrivial null
space, then for this part of the fibers we may arbitrarily complete the
coordinates.

Finally, take coordinates Xisseee X

9 3 .
D={z— se0005 =1}, with k < n.

BXI Bxk
Then construct fiber respecting coordinates (x,u) as above. In these

coordinates

E = {5%— seeees 3%;}., and f* EcD implies
1

. tt of . .
Jth component (5;—(x,u)) =0, with i=1,:::.,k
1 j=k+tl,....,n

(where ﬁ = f(x,u) is the representation of % in (x,u)). This is equivalent

with :
[f("u)s DJ cD
REMARK 1.This proof also exactly shows which freedom one has in choosing

coordinates (or in constructing feedback) such that in these coordinates

D is invariant. In fact, loosely speaking, outside of the distribution
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D the coordinates for the fibers are arbitrary. Above the distribution
D the coordinates for the fibers are uniquely determined except for the
part which ¢ _send to zero. This last part consists exactly of the inputs
which are factored out in diagram (3.1) and which do not appear anymore

in the quotientsystem.

REMARK 2.
An interesting special case of controlled invariance is when f*(n;I(D)) c
D. The proof above shows that in this situation D is invariant for all
fiber respecting coordinatizations (x,u) of B. Also, it is easily seen
that the system factored out by D, is autonomous (the inputspace consists
of only one point).

Finally we can also relate controlled invariance in a system I (M,B,f)
with controlled invariance in the extended system Ze(M,B,f) denoted by

(Ae,Ag) (see def 2.3). In local coordinates it is easily proven (see also

[10D):
LEMMA 3.5

f,Ec ﬁ, with n, E =D, 18 equivalent to

e

[AS E] c E + Ag

As is known from recent work ([6,9], see the introduction) the last
expression [Ae,E] c E + AS is equivalent to the controlled invariance
of E with respect to the affine system (1, Ag).;Therefore, combining

conditions i) and ii) (in the proof of lemma 3.4) and lemma 3.5, gives

PROPOSITION 3.6

An involutive distribution D is controlled invariant with respect to

T (M,B,f) Zff there exists an involutive distribution E, with m, E =D,

such that E 18 controlled invariant with respect to A (M,B,f).

2. We have defined controlled invariance by requiring that, after
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applying feedback, the modified dynamics leave the foliation invariant
for qll input functions. Of course, this demand might be too strong
and we could be content if the foliation is invariant for only a part
of the inputs. We will call this degenerate controlled invariance.
Definitions 3.1 - 3.3 can be readily adapted to cover this situation.
For instant we require in def. 3.1 no longer that a is an isomorphism,
and in def. 3.3 we allow & to be a partial map.

However finding necessary and sufficient conditions for degenerate
controlled invariance seems to be harder than for the (full) controlled
invariant case, and we will leave it for the moment.

(Note that in the linear case degenerate controlled invariance implies

full controlled invariance).
§4. CONTROLLED INVARIANCE AND CONNECTIONS

In this section we introduce the concept of a connection on a fiber
bundle and we will relate this to the controlled invariance as introduced
in section 3. For a more detailed treatment of a connection the reader

is referred to the litterature on differential geometry. (See e.g.[3])

DEFINITION 4.1 Let m : B —— M be a smooth (fiber) bundle. A tangent

vector Vv € TﬁB, p € B, is said to be vertical if T, p(v) = 0. V(p) denotes
the set of all vertical tangent vectors in p. A distribution H on B is

said to be horizontal if TPB = H(p) ® V(p) for all p € B.

REMARK: We see that H ¢ V(B) is horizontal implies that for all p € M,

H(p) is a linear subspace of TPB with the following properties:

dim H(p) = dim M
H(p) n V(p) =0

™, maps H(p) isomorphically onto Tn(p)M°

Now the mext definition will be clear:
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DEFINITION 4.2

A curve 0 : R — B is horizontal with respect to a horizontal dis-
tribution B if o'(t) € H(o(t)) for all t ¢ R., i.e. 0 is an integral
curve of a vector field which belongs to the horizontal distribution
H on B.

We are now able to define a connection:

DEFINITION 4.3

Let m : B —> M be a smooth bundle, and let H be a horizontal distribution
on B. H determines a nonlinear connection for m : B —> M which is defined
by the following lZfting procedure:

For every curve 6, R —— M and each point p € 7 _1(01(0)) there

1
is a horizontal curve ¢ : IR —— B such that

T (o(t)) = o () , o (0) =p

REMARKS

(i) We claim that every curve in M can globally be lifted to an
integral curve of H, that is a complete nonlinear connection.
In general a nonlinear connection is not complete; a curve in
M can only locally be lifted to an integral curve of H. For the
results of this paper we do not need the completeness, but
it makes it somewhat easier to handle.

(ii) In the litterature there exists a couple of different defini-
tions of a connection (introduced by different people).

The above definition in fact defines the Ehresmann connection.

The next proposition gives a uniqueness property of the lift o of 9,

in definition 4.3.

PROPOSITION 4.5

Let H be a horizontal distribution on B which defines a nonlinear con-
nection for m:B —> M then the lift c:R — B of a curve o iR — M
defined by definition 4.3 is unique.

And so we have as a direct consequence



15

PROPOSITION 4.6

Let H be a horizontal distribution on B which defines a nonlinear con-—

nection for mw:B — M. The connection determines a diffeomorphism between
every two fibers of w, i.e. for all m,m, € Mwe have a diffeomorphism
h:n—l(ml) > ﬂ_l(mz)

Next we will define an important class of nonlinear connections.

DEFINITION 4.7

Let m:B —> M be a vector bundle, i.e. for all m € M,ﬂ_l(m)'is a real
vector space. A nonlinear connection defined by a horizontal distribution
is called an affine connection if the fiber diffeomorphisms defined

by the connection are affine isomorphisms between the vector space fibers.
Another useful property isgiven by:

DEFINITION 4.8

Let w:B —> M be a smooth bundle. Let H be a horizontal distribution on B.

which defines a nonlinear connection. The connection is Zntegrable if
[H,H] ¢ H,i.e.H is integrable as a vector field system.

The integrability of a connection of a horizontal distribution H
implies that through each point p € B there passes an unique maximal con-
nected integral submanifold M' of H (according to Frobenius'theorem) and
this submanifold M' is transversal to the fibers of w, i.e. for all q ¢ M'
we have TqB = TqM'& v(q) .

For later use we will investigate the integrability of an affine
connection in detail.

According to definition 4.7 we can choose a (affine) coordinate system
for B:(x,v) = (Xl"""xn’vl""vm) where small (Xl""’xn) is a coordinatiza-

tion of M such that the linear subspace H(x,v) c T(x B (def. 4.1) has

»V)

a basis Xl""’Xn of the following form (See [3]).

= 90 9 P =
(4.1) Xi(x,v) = Bxi + [hi(x) + Ki(X)V]Bv i l,...,n

where:
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hi(x) is a m-vector
K. (x) is a mxmmatrix

3 9 \t

= (EG;’...,.EE; ((...)*% denotes transposed)

glo »

Now [H,H] c H implies

6.2 GG = s () + K G 5;237+ (h; GO+, (V)]

b (x)  oh, (x)

- __ i - : 9
= [ -y o + Kj(x)hi(x) Ki<x)hj(x)]3v +
1 ]
L 5% - 3}‘{_ + Kj (X)Kl x) - Ki (X)Kj (%) ]V‘é;
1 ]

0 (by (4.2)) for all (x,v)

Therefore:

oh. (x) ahi(x)

J — w _' =
4.3) v oy + Kj(x)hi(x) Ki(x)hh(x) 0
1 k|
and
aKj(x) 3K, (x)
(4.4) vy - 3 + Kj(X)Ki(X) - Ki(X)Kj(X) =0
i h]

for i,j =1,...,n.

We can also work out the integrability condition (4.2) in a dual
fashion, dual in the sense that we translate eq. (4.2) to the cotangent
space of B. The integrability of H then guarantees that two 2-forms,
called the torsion tensor and the curvature tensor, vanish (See e.g [3]).
This requirement is exactly equivalent to the equations (4.3) and (4.4),

and thus we will call this the torsion equation resp. the curvature



17

equation. Conversely an integrable affine connection will be defined
by the vector fields given by (4.1) where hi(x) and Ki(x) satisfy the
torsion and curvature equation.

Let D be an involutive distribution of fixed dimension k on M. Let
H be an horizontal distribution on B which induces an integrable affine
connection on m:B —> M. Then this connection defines an unique lifting
procedure for the distribution D (See def 4.3). In fact, choose a
coordinate system (xl,...,xn) for M as in the Frobenius' theorem then D is

spanned by the vectorfields-—a— 5o 2 3

axl ’ 3Xk

_Let H(x,v) ¢ T v)B be spanned by (as in (4.1))

(x,

- 9 9
X, = Bxi + [hi(x) + Ki(x)v] P

1 i=1,...,n

Then the lifting of the distribution D gives a new involutive distribution
D£ which is spanned by

1 ' 2 -
(4.5) X, = o, + Lhi(x) + Ki(X)V] v i=1,...,k

REMARK :
The basis Xl""’Xk for Dp defined by (4.5) satisfies

th(x) Bhi(x)

- 3xi - "ij + Kj(x)hi(x) - Ki(x)hj(x)

I
o

(4.6)

- + K. (®K. (x) - K. @)K. )
Bxi ij J t * J

0

for i,j = 1,...,k

Now assume we have given an affine control system (A;AO) as in
1
definition 2.2 . We will denote the extended system (See def. 2.3) by
A€ with 'input space’ AS.

After these preparations we state

THEOREM 4.9

D is a controlled invariant distribution for an affine system (A,Ao) iff



18

there exists an integrable affine connection for mw:B —> M such that
e e
LA ,DKJ © Dp + Aq

PROOF

(<) Suppose there exists an integrable affine connection for m:B — M with
[A? Dﬂj c D£ + Ag . The horizontal system on B which defines the affine

- connection is according to (4.1) given by:
(4.1) X (x,v) =2 +[h,(x) +K, (®)v] i=1,...,n

: it ax i i v o
where (x,v) is an affine coordinate system for B. By the integrability

it follows that hi and Ki satisfy the curvature and torsion equation (4.6).

Let the control system om M be given by

%.7) x(t) = A(x(t)) + ;ml v; (£)B; (x(£)) = AGx(t)) + B(x(£))v(t)
l=

where B(x) a (n,m) - matrix with columns Bi(x) and v(t) =

= (vl(t),...,vm(t))t. So the extended system has the form

A(x(t)) + B(x(t))v(t)
u(t)

(4.8) x (t)
{G(t)

From (4.5) we know that D, is spanned by
X, (x,v) =2+ [h, (x) + K, (x)v]— i=1 K
i 9 axi 1 l av 9° 000y

So from [Ae, DZ] <Dy * Ag we deduce for all i

(]
ks

[(A(x)+B(x)v)§%~+-u3%;~¥§%7 NCHOTS HESMERE
1

(4.9)
ERE

v v i=1,....,k}

Span {a—% + (h; (x)+K; (x)V)
1



Computing the Lie bracket of (4.9) leads to

1,...,k}

dA(x) , 93B(x) 3
[axi + axi v o+ B(x)hi(x) + B(X)Ki(x)v]aX €
9 3 3 .
Span {5y + (0 GO (OV)gy s 5y B -

for all i=1,...,k

Therefore

(3A(x) ):1€9)
\Bx. 9X.
1 1

(4.10) vjth component of

for all (x,v)

Thus we have

4.11) jth'component of (%£f§2-+ B(x)hi(x)> =0
(4.12) jth component of (%g%ﬁ) + B(X)Ki(x)> =0
i .

where hi(x) and Ki(x) satisfy (4.3) and (4.4).

e
]

.
I

k+l,...,0

I,..

v + B(x)hi(x) + B(x)Ki(x)v>

Lk

0

Now equation (4.11) together with the curvature equation (4.4) is an

old friend (cf. Nijmeijer [9]1, Isidori et al [6]). We deduce from [6] and

[9] that there exists a nonsingular (m,m) - matrix M(x) such that

(4.13) jth component of (S%T-[B(x).M(x)]> =0
i
Let
(4.14) B(x) := B(x)M(x)

Furthermore we see

j = k+l,...,n

i=1,...,0

19
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jth component of (5%—‘[B(x)hi(x)]) =
s

oh. (x)

jth component of (%gﬁE) hi(x) + B(x) ;x ) (4.12)
. s - s -
oh. (x)
jth component of (—B(X)Ks(x)hi(x) + B(x) 3;3———)

and by the torsion equation (4.3), the last expression equals

th 5 i, s = 1,...,k
j  component of (———{B(x)h (x)])
X, s .
1 J=k+1,o.c,n

It follows, combining (4.11) and HIRSCHORN [4] - in fact Frobenius' theorem

- that there exists an m vector v(x) such that:

(4.15) jth component of <5§-m[A(x) + B(x)v(x)]) =0
i

j k+l,...,0

i=1i,...,5k
Thus if we use a feedback v(t) = M(x)v(t) + ;(x) for the system (4.7) we get
(4.16) x(£) = A(x) + B(x)v(x) + B(x)v(t)

and so by using (4.13) and (4.15) we see that the distribution D is
controlled invariant for the system (4.16)

(=) Let D be a controlled invariant distribution for the system given by

52—3...,52—-. For the
% K

construction of an integrable affine connection we need matrices hi(x) and

(4.7), where D is spanned by the vector fields

Ki(x) which satisfy the torsion and the curvature equation (4.3) and (4.4).
From Isidori et al [6] and Nijmeijer [9] we know there exist (m,m)-matrices

Ki(x) such that

9B (x)

90X,
i

= B(x) Ki(x) mod D i=1,...,k



21

and these matrices Ki(x) satisfy

BK. (x) 9K, (x)
J - + Kj(x)Ki(x) - Ki(x)Kj(x) =0 1,5 = 1,000,k

9X. 9X.
1 J

According to [6] (see also Remark 1 after lemma 3.4) we can also define

matrices Kk+1(x),...,Kn(x) such that

BKj(x) oK. (%)

i L.
(4.4) Bxi - ij + Kj(x)Ki(X) - Ki(x)Kj(X) =0 i,j=1,...,0

i.e. the curvature equation (4.4)!
Furthermore it follows from the fact that D is controlled invariant

that

JA(x)

9 X.
1

= B(x)hi(x) (mod D) i=1,...,k
where the vectors hi(x) satisfy

3h.(x) 9h. (x)
r - + Ki(x)hj(x) - Kj(x)hi(x) =0 1,5 = 1,000,k

9X. 9X.,
3 i

In the same way as in [6] we can define vectors hk+l(x)""’hn(x) such that

Bhi(x) oh. (x)

_ _ _ . oa
(4.3) BXj Bxi + Ki(x)hj(x) Kj(x)hi(x) 0 i,] 1,000,

Thus the matrices hi(x) and Ki(x) define an integrable affine connection []

Next we want to investigate the situation for a general control system
(M,B,f) as defined in definition 2.1.

First we will formulate the integrability of a nonlinear connection
in the same way as we have done for an affine connection. Following the
notation as used after definition 4.8 we have that the nonlinear connection

is spanned by vector fields Xl""’xn of the following form

. ) 9 .
(4.17) Xi(x,v) = Bxi + hi(x,v)av i=1,...,n
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where hi(x,v) is a m-vector

From the integrability we derive that

9 9 9 94 _
[Bxi * hi(x’v)av’ axj * hj(x’v)av] -
th ahi th 3hi : 5
[sgz(x,v) —'§§T(X’V) + ssr{x,v).hi(x,v)-7;;{x,v).hj(x,v)]5; =0
ahi oh,
Remark: v (x,v) is an (m,m)-matrix consisting of the columns s—i(x,v).
v,
Therefore: _
oh. oh. oh. dh.
i : i
(4.18) -5;il<x,v> B Fo (V) by (65 9) = 2 (,v) Ly (x,v) = 0

Now the following theorem will be the direct generalization of theorem 4.9:

THEOREM 4.10.

D Zs a controlled invariant distribution for a contrcl system I(M,B,f)
1ff there exists an integrable nonlinear connection for w:B > M such that

e
[A%,D] < Dy + A

PROOF. (=) Suppose there exists an integrable nonlinear connection for

. e e
m:B * M with [A ’D£] c DK + AO

the connection is according to (4.17) given by

. The horizontal system on B which defines

9 9 .
Xi(x,v) = §§I-+ hi(x,v)sg- i=1,...,n

where the hi(x,v) satisfy (4.18).

Let the control system on M be given by
(4.19) x(t) = £(x(t),v(t))
So the extended system has the form

f(x(t), v(t))
u(t)

{ x(t)

(4.20) o)
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As in (4.5) the distribution DK is spanned by

9 9 .
Xi(x,v) = 5k, + hi(x,v)'av i=1,...,k
So from [AS, KJ c D£‘+ Ag we deduce that:
.th (E(X:V) E(Xav) =
(4.21) j component of \Bxi + e . hi(x,v) =0
= 1,0k

j = k+l,...,n

where the hi(x,v) satisfy (4.18).

Now consider the set of partial differential equations

o ~ ~ .

— (%x,v) = h.(x,0(x,Vv)) i=1,...,n
(4.22) { 9%y 1

a(0,0) = Im.m (See [111])

From Frobenius' theorem (See [11]) we know that there exists a unique
solution a(x,;) of (4.22) iff the integrability condition (4.18) is satisfied.
Hence if we apply a feedback v(t) = u(x,;(t)) to the system (4.19) we get

(4.23) x(t) = £(x,a(x,v(t)))

and by using (4.21) we see that the distribution D is controlled invariant
for (4.23).

(=) Let D be a controlled invariant distribution for the system given by

(4.19) where D is spanned by Bi ,...,33 . For the construction of an

1
integrable nonlinear connection we need matrices hi(x,v) which satisfy

(4.18). By the fact that D is controlled invariant we know that there exists
a(m,m)-matrix a(x,;) with %%ﬁx,v) nonsingular - i.e. the map

v B v:= a(x,v) is invertible. We will denote - abuse of notation! - the
inverse of this map by a_l(x,v).

Define

(4.24) hi(X,V):; (%;xz. (X’;))l.\;

i v=o0 (x,v) i=1,...,n
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Now from (4.24) we see that
4.22) 2% (x,3) = b (x,0(x,9))
e Bxi ? i\ 5

and therefore:

ahj Bhi th ahi
(4.18) §§;(X,V) - 5§E(X,V) + 5;—(x,v).hi(x,v) - 3;—(x,v),hj(x,v) =0
i, = 1, s

i.e. the integrability condition for a nonlinear connection defined by

? d .
(4.17) Xi(x,v) = Bxi + hi(x,v)av i=1,...,n O
To conclude this section we want to give conditions under which a
distribution D is controlled invariant for a control system Z(M,B,f). First

we will solve this problem in a local fashion (coordinate dependent) and
afterwards we give the main theorem 4.13. Let, as before, the control system
be given (locally) by x = f(x,v) and let

2 9 4 _
S]pan{ax y o } =D

..’
1 0%

Suppose that there exist m-vectors mi(x,v) (i=1,...,k) such that

th (3f f _
(4.25) s component of \axi(x,v) + e (x,v).mi(x,v)) =0
i=1,...,k
s = kt+tl,...,n

Then it follows

th 5 (of of _
s component of ij (axi(x,v) + v (x,v).mi(x,v)>) =

(22 (x,v) + %é(x,v).mj(x,v)>)

sth component of <§§—- %
i 3

X
1

i,j=1,...,k

s = k+l,...,n.
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Hence

2 2
sth component of (§%T§§1(x’v) + 8x?8$ (x,v)mi(x,v) +
i

am \
+ (x v)., — (%, v)}
J

2 2

th o f o £
s component of <3xi3x.(x’v) + 5§I§;(x,v)mj(x,v) +

dm
(x V). J(x V)>
l

Therefore
/ 3m.
s component of \3x (x v).m (x,v) + ——(x v) (x v))
(4.26) J 5
om. .
sth component of ( (x v). m (x,v) + 8‘fl(x,v).-g—'l(x,v))
i
i,j = 1,...,k
s = ktl,...,n
Now
32f 9 of
s component of / (x v).m (%, v)) 3v (3;;(x v)).mi(x,v)
(4.25) 25) (x v).m; (x, v)) o my (%, V)
‘ 2_s
= - n/(x,v) —5—(x,v)m. (x,v) -
J
v
(4.27) £ .

- %——(x v). J(x v).m (x,v)

Substituting (4.27), and a similar expression for the left hand side of
(4.26), in (4.26) leads to
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So

(4.28)

3¢S ami ¢ 2_s

( ( - -
Y= \x,v).ax.\x,v) mi(x,v)8V2 (x,v)mj(x,v)
3¢S om.

Y (X’V)‘avJ (x,V)-mi(x,V)

s om. 2.8

3f t
Py (x,V),axJ (x,v) - m, (x,V)—T(x,V)mi(x,V) -
i v
s om.
of 1
ﬁ—(x,V)g;—(x,V)-mj (x,v) =0

5£S Bmi Bnﬁ

( ( - -—
v \X’V)EBX- \X’V) v (X,V)mi(X,V)
amj Bmi
a—X_].:—(X’V) + BV_(X’V) .mj (X,V)] =0

i,j=1,...,k

s,k+l,...,n

Suppose that the matrix

(4.29)

9f°
(5;_(X’v)>s=k+1,....,n has full rank

then (4.28) leads to

(4.30)

Bmi ij ami

'&'j—(xsv) - ggz(x’v) gy ®Vm (x,v) -

Bnnj

5;—(x,v)mi(x,v) =0 i,j =1,...,k

i.e. a partial integrability condition as in (4.18)!

We need the following simple but crucial lemma
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LEMMA 4.11. The set of partial differential equations

) ~ ~ .

ggz(x,v) = mi(x,a(x,v)) i=1,...,k
(4.31) i

0(0,0) =1

m,m

has a solution.

REMARK. This set of partial differential equations (4.31) is nearly the same
as in (4.22). We cannot immediately apply Frobenius' theorem, while not all

partial derivatives of o are specified (Compare [9]).

PROOF. There exist mk+1(x,v),...,mn(x,v) such that

Bmi 3nﬁ ami

'B_Xj‘(X’V) = S;i__.(X’V) + W(X’V) 'mj (X,V) -
(4.18)

Buﬁ

5;—(x,v). mi(x,v) =0 i,j=1,...,0

(See [9], See also equation (4.4); this follows from the fact that the
distribution D = TM is controlled invariant).

Finally apply Frobenius' theorem. ° O

COROLLARY 4.12. If there exist mi(x,v) (i=1,...,k) which satisfy (4.2) and
condition (4.29) Zs fulfilled then the distribution D is controlled
imvariant for the system x(t) = f£(x(t),a(x(t),¥(t))), where a(x,v) s
defined by lemma 4.11.

Finally we will give in a coordinate-free way the analogue of [6]and [9].
for a nonlinear control system XZ(M,B,f). Recall the definition of D for

a given distribution D (See Notation §1).

THEOREM 4.13. Let I(M,B,f) be a nonlinear control system and let D be an
involutive distribution of fixed dimension on M. If f*(Ag) n D has flaxed

dimension then we have the following equivalence:

D Zs locally controlled-invariant i1ff

*

4.31)  £,(r, (@) D+ £ (4%
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PROOF. (=) Direct

(<) Work out in local coordinates, and suppose f*(Ag)rwﬁ==0. The the result
is given by Corollary 4.12. In a similar way as in ISIDORI et al [6] and
NIJMEIJER [9] we derive the same result in the case that f*(Ag) n D has

fixed dimension. O

§5. CONCLUSION

The main result of this paper is theorem 4.13 which gives necessary
and sufficient conditions for controlled invariance in general nonlinear
systems. With the aid of this theorem the Disturbance Decoupling Problem
(see [13]) for instance can be readily solved, analogous to [4,5]. Very
surprising results are theorems 4.9 and 4.10 where the concept of controlled
invariance is directly related to the well known differential geometric
notion of an integrable connection.

It would be interesting to look for similar results in the case of

degenerate controlled invariance, as sketched in 83, section 2.
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