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ABSTRACT 

We describe a computer program that has been used to maintain a record of the 

known complexity results for a class of 4,536 machine scheduling problems. 

The input of the program consists of a listing of known "easy" problems and 

a listing of known "hard" problems. The program employs the structure of the 

problem class to determine the implications of these results. The output pro

vides a listing of essential results in the form of maximal easy and minimal 

hard problems as well as listings of minimal and maximal open problems, which 

are helpful in indicating the direction of future research. The application 

of the program to a restricted class of 120 single-machine problems is demon

strated. Possible refinements and extensions to other research areas are 

suggested. It is also shown that the problem of determining the minimum number 

of results needed to resolve the status of all remaining open problems in a 

complexity classification such as ours, is itself a hard problem. 

KEY WORDS & PHRASES: combinatorial optimization, single-machine scheduling, 

computational complexity, polynomial algorithm, NP-hardness, computer program. 

NOTE: This report will be submitted for publication in a journal. 
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1. INTRODUCTION 

For several years the authors have been investigating the computational com

plexity of deterministic machine scheduling problems with the objective of 

delineating, as precisely as possible, the erratic boundary between "easy" 

and "hard" problem types. We say that a problem is easy when it can be solved 

in polynomial time; by hard we mean NP-hard. 

There are 4,536 members in the class of combinatorial optimization prob

lems encompassed by our investigation. Simply maintaining a manual record of 

known complexity results is a tedious and time-consuming task. Consequently, 

we developed a computer program, MSPCLASS, for this purpose. Its input con

sists of a listing of known easy problems and a listing of known hard prob

lems. The program systematically employs a certain partial ordering defined 

on the problem class not only to derive the status of each problem (easy, 

open or hard), but also to determine four subclasses of maximal easy, minimal 

open, maximal open and minimal hard problems. The output listings produced 

by the program have proved to be of great benefit. 

We describe the program MSPCLASS in general terms in Section 2. Next, we 

define a class of 120 single-machine scheduling problems in Section 3, and 

demonstrate the application of the program to this restricted class in Section 

4. (The state of the art for the complete class is given in [11]; a prelimi

nary report for a class of 4,158 problems was presented in [10].) We suggest 

possible refinements and extensions to other research areas in Section 5. 

One refinement of a program like MSPCLASS would be for it to determine 

the minimum number of research results that would completely resolve the 

status of all remaining open problems in the class under consideration. In 

the Appendix,, we show that this problem is itself NP-hard. 

2. THE PROGRl~ MSPCLASS 

We assume that the reader is familiar with the basic concepts of computational 

complexity theory and that we can dispense with a discussion of certain well

known definitions. For an excellent survey of the theory of NP-completeness, 

see [ 5]. 
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The program MSPCLASS deals with a well-defined class S of problem types. 

For any two problems P,P' ES, the program is able to determine whether or 

not P + P', where+ is a certain given partial ordering. This relation has 

the property that 

(i) if P + P' and P' is easy, then Pis easy, and 

(ii) if P + P' and Pis hard, then P' is hard. 

For example, P + P' may hold because it is evident from the definitions of P 

and P' that the set of instances of Pis included in the set of instances of 

P'. In general, P + P' implies that Pis reducible to P'. 

The input of the program consists of research results in the form of a 
* ' class 1 of known easy problems and a class 1· of known hard problems. The 

program then partitions the class S into three classes of easy, hard and open 

problems: 

s* = 
I 

s· = 

{PE S 

{PE S 

S - CS * 

* 3 P' E 1 : P + P'}, 

' 3 P' E 1": P' + P}, 

' u s· >. 

* I (Obviously, S ands· are disjoint; if not, either a mistake has been made 

or a very surprising result has been obtained.) The program also determines 

four subclasses of problems that are minimal or maximal with respect to the 

relation+: 

s* {P Es* * p + P'}, = -, 3 P' E S -{P}: max 
? ? ? 

s·. = {P ES" -, 3 P' E S"-{P}: P' + P}, 
min 
? s· = {P 

? 
ES" 

max 
? 

-, 3 P' E S"-{P}: p + P'}, 

' I ' s·. = min 
{P Es• -, 3 P' E S 0 -{P}: P' + P}. 

The output of the program provides a count of the membership of s*, S? and S! 

S* , S? . , S? and S ! . . as well as complete listings of * ? , max min max min 
The sizes of S, S" ands· indicate a score by which the progress of the 

* ' research can be judged. The problems in S ands·. might be said to repre-max min 
sent the essential results since all other known results can be deduced from 

them by invoking the relation+; accordingly, the minimum input is given by 
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I*= s* and I! S! 
max min 

The members of S? and S? are suitable targets 
min max 

for further research. 

Remark. For the purpose of defining the classes s*, S? and S!, it is not 

necessary for the relation ➔ to be a partial ordering. However, if ➔ is not 

* ? s? a partial ordE3ring, the above definitions of the subclasses S , S · . , 
max min max I 

and S". 
min 

will not suit our purposes. There may be certain sets of problems 

of equivalent complexity with respect to the relation ➔; they correspond to 

strongly conrn~cted components of the digraph with node set Sand arcs for ➔-

All members of such a set may, for example, be maximal easy problems, and yet 

S* , none belongs to as defined. 
max 

3. A CLASS OF SINGLE-MACHINE PROBLEMS 

Because the class of machine scheduling problems under study is so large and 

unwieldy to describe, we have chosen to demonstrate the application of the 

program MSPCLASS to a restricted class of 120 single-machine problems. Even 

this requires a certain amount of explanation and a number of definitions. 

Generally speaking, each instance of a single-machine problem calls for 

an optimal feasible schedule to be found for a set of n jobs J. (j = 1, ..• ,n). 
J 

A schedule consists of a set of nonoverlapping time intervals and the desig-

nation of the job which the machine is to process in each interval. Feasibil

ity of a schedule is determined by various specified parameter values and 

conditions. Optimality is judged with reference to a given objective function. 

More particularly, each problem instance specifies the following infor

mation, either explicitly or implicitly. 

(1) For each job J. (j = 1, .•. ,n), a nonnegative integer processing require
] 

ment p. is given. In order to be feasible, a schedule must provide an amount 
J 

of processing for each J, equal to 
J 

p .• For any schedule, lets. and C. denote 
J J J 

the start time and completion time of J. respectively, i.e., the time at which 
J 

J. is first (last) processed. 
J 

(2) If the schedule is required to be nonpreemptive, then each J. must be 
J 

processed continuously 

to be preemptive, then 

from s. until C. = s.+p .• If the schedule is allowed 
J J J J 

the processing of any job may arbitrarily often be 

interrupted and resumed at a later time, without penalty. 
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(3) For each J., a nonnegative integer release dater. is given. A feasible 
J J 

schedule must be such that r. ~ S. for each J .• 
J J J 

(4) Precedence constraints between the jobs are given in the form of an 

acyclic digraph G = ({1, ••• ,n},A). A feasible schedule must be such that 

cj ~ sk whenever (j,k) EA. 

(5) With respect to the optimality criterion, a nonnegative integer due date 

d. and/or an integer weight w. may be 
J ' J 

given for each J .• For any schedule, 
J 

let L. = c.-d. denote the lateness of J., T. = max{O,C.-d.} its tardiness, 
J J J J J J J 

and u. = o if c. ~ d., u. = 1 if c. 
J J J J J 

> d. its unit penalty. The objective 
J 

function, which is to be minimized, is specified to be one of the following 

eight types: 

the maximum completion time C max 
= max. {C.}; 

J J 
the maximum lateness L = max.{L.}; 

max J J 
the total completion time I.e.; 

J J 
the total weighted completion time I.w.C.; 

J J J 
the total tardiness I.T.; 

J J 
the total weighted tardiness 

the number of late jobs I.u.; 
J J 

l,W,T.; 
J J J 

the weighted number of late jobs I.w.u .• 
J J J 

In this class of scheduling problems, each problem type is defined by a 

sextuple (TI0 ,TI 1 ,TI2 ,TI3 ,TI4 ,TI5), where each component indicates a property shared 

by all problem instances. The component TIO specifies the machine environment, 

the components TI 1 ,TI2 ,TI3 ,TI4 indicate job characteristics, and the component TIS 

refers to the objective function. These components take on mnemonically 

encoded values as follows. Let O denote the empty symbol. 

: single-machine. 

(1) {p.=1,o}, where 
J 

Til = p.=1: all p. 
J J 

= 1 (j = 1, ... ,n); 

Til = o the pj are arbitrary nonnegative integers. 

(2) { 0 , pmtn} , where 

TI 2 = 0 preemption is not allowed; 

TI 2 = pmtn: preemption is permitted. 

( 3) TI 3 E { 0 , r j } , where 

all r . = 0 ( j = 1 , .•• , n) ; 
J 

the r. are arbitrary nonnegative integers. 
J 



(4) Tr4 E { 0 ,tree,prec}, where 

(5) 

G has no arcs (the jobs are independent); 

Tr 4 tree: G has either indegree at most one for each vertex or 

outdegree at most one for each vertex; 

Tr 4 == prec: G is an arbitrary acyclic digraph. 

{c ,L ,LC,,Lw,c.,LT,,Lw,T.,LU,,Lw,U.}. 
max max J J J J J J J J J 

There are thus 1x2x2x2x3xs = 192 problem types. For human consumption, they 

are written in the form 1jTr4 ,Tr 3 ,Tr2 ,Tr 1 jTr 5 (cf. [6]). 

5 

Several of the properties defined by the components of the sextuple are 

simple generalizations of others. For example, prec is a generalization of 

tree, and LWjCj and LTj are generalizations of Icj. This suggests an approach 

to the construction of the relation ➔• 

The possible values of the component Tr. correspond to the vertices of 
1. 

the digraph G. shown in Figure 1 (i = 1, ... ,5). There is an arc from Tr to Tr' 
1. 

if Tr' is a direct generalization of Tr. For two problems P = 1jTr4 ,TI 3 ,Tr 2 ,Tr 1 jTr 5 

and P' = 1jTI4,Tr3,Tr2,Tr1jTr5, we have P ➔ P' if either Tri= Tri or Gi contains a 

directed path from Tr. to Tr'., for i = 1, ... ,5. 
1. 1. 

The relation ➔ can be augmented to take into account relationships be-

tween problem types that are subtler than simple generalization. The dashed 

arcs in G5 from L to LT, and LU, can be added, by the following argument. 
max J J 

For any instance of a problem with the L objective function, the minimum 
max 

value of L is equal to the minimum value of L for which there exists a 
max 

schedule with LT'.= LU'.= 0, where T' and U'. are defined with respect to due 
J J j J 

dates d'. = d.+L. The minimum L can be found by a bisection search, requiring 
J J 

a polynomially bounded number of applications .of any algorithm capable of 

solving the problem with L replaced by LT, or LU,. This establishes the 
max J J 

(Turing) reducibility from any L problem to the corresponding LT, and LU, 
max J J 

problems. 

A further augmentation of the relation ➔ is provided by some observations 

about preemption. First, in preemptive single-machine scheduling there is no 

reason to interrupt the processing of a job other than at an integer point in 

time. Secondly, there is no advantage to preemption if all release dates are 

equal. It follows that, if Trl = pj=1 or Tr 3 = o, we may as well assume Tr 2 = 0 

This leaves only five relevant combinations of values for the components TI 1 , 

1T 2 and Tr 3 . They correspond to the vertices Tr6 of the digraph G6 shown in 
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pll.e.c. 

p.=1 
J [] lpmtnl cmax 

G1 G2 G3 G4 GS 

Figure 1. The graphs G. (i = 1, ••. ,5). 
l. 

Figure 2. The graph G6 • 

Figure 2, with arcs derived from G1 , G2 and G3 • The total number of distin

guishable problem types is now reduced from 192 to 120, each being written 

in the form 11~4 ,~6 1~5 • 

4. APPLICATION OF MSPCLASS TO THE CLASS OF SINGLE-MACHINE PROBLEMS 

The program MSPCLASS has been implemented in PASCAL on the Control Data Cyber 

170-750 of the SARA Computing Centre in Amsterdam. Its application to the 

class of single-machine scheduling problems defined in the previous section 

is demonstrated below. 
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We note that separate runs are made for two different inputs, corre

sponding to different assumptions about the encoding of problem instances 

containing nwnerical data. Under a standard binary encoding, the easy problems 

are solvable in strictly polynomial time and the hard problems are NP-hard 

in the ordina.ry sense. Under a unary encoding, the easy problems are solvable 

in pseudopolynomial time and the hard problems are NP-hard in the strong 

sense (cf. [4;18]). 

The output of the latest runs is shown in Figures 3 and 4.. The listings 

present useful additional information in the form of references to the liter

ature where the results in question can be found, an indication of general 

algorithmic techniques applicable to some easy problems, the symbol# for 

open problems that are both minimal and maximal, and acronyms of convenient 

"starting problems" for transformations in the case of hard problems. 

Combining the results for binary and unary encodings, we get six classes 

of problems: 

unary and binary easy ( 51 problems) ; 

unary and binary open (4 problems, all involving the LT, criterion); 
J 

unary and binary hard (62 problems); 

unary easy, binary open ( 1 problem: 1 1lIT.); 
J 

unary easy, binary hard ( 2 problems: 1 I I Iw .u. and 1 I r . , pmtn I l w . U . ) ; 
J J J J J 

unary open, binary hard (0 problems). 

We shall be happy to award a suitable prize to the first person resolving 

the status of any one of the open problems: a bottle of California champagne 

in case of a polynomial algorithm, a Dutch cheese in case of an NP-hardness 

proof. 

5. CONCLUDING REMARKS 

We have found the program MSPCLASS of great help in recording the state of 

the art in machine scheduling theory, an area of very rapid development in 

recent years .. The program has been useful in interpreting the implications 

of new results and also in guiding our research efforts. 

The system lends itself to many refinements, such as the elaboration of 

the relation ➔ suggested in Section 2 and a further analysis of the class of 
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SINGLE MACHINE SCHEDULING, BINARY ENCODING 

DATE: 81:03:05 

NUMBER OF PROBLEMS 

EASY 
OPEN 
HARD 

TOTAL 

MAXIMAL EASY PROBLEMS 

1/RJ,PJ=1/SUMWJTJ 
1/RJ,PJ=1/SUMWJUJ 
1/RJ,PMTN/SUMCJ 
1 /RJ ,PMTN/SUMUJ 
1/TREE/SUMWJCJ 
1/PREC,RJ,PJ=1/SUMCJ 
1/PREC,RJ,PMTN/LM!U{ 
1/PREC, RJ/CMAX 

MINIMAL OPEN PROBLEMS 

1//SUMTJ 
1/TREE,PJ=1/SUMTJ 

MINIMAL HARD PROBLEMS 

MINIMAL 'IDTAL MAXIMAL 

2 
12 

51 8 
5 3 

64 

120 

LAGEWEG (TRANSPORTATION PROBLEM) 
LAGEWEG (TRANSPORTATION PROBLEM) 
BAKER 1974 
LAWLER 1981 (DYNAMIC PROGRAMMING) 
HORN 1972; SIDNEY 1.975 
LAWLER: COFFMAN GRAHAM 1972 
BLAZEWICZ 1976 
LAWLER 1973 

MAXIMAL OPEN PROBLEMS 

1/RJ,PMTN/SUMTJ 
1/TREE,RJ,PJ=1/SUMTJ 
1 /TREE/SUMTJ 

1//SUMWJTJ 
1//SUMWJUJ 

3PT LAWLER 1977; LENSTRA RINNOOY KAN BRUCKER 1977 

1/RJ ,PMTN/SUMWJCJ 
1/RJ/LMAX 
1/RJ/SUMCJ 
1/TREE,PJ=1/SUMWJTJ 
1/TREE,PJ=1/SUMUJ 
1/TREE,RJ,PJ=1/SUMWJCJ 
1/TREE,RJ,PMTN/SUMCJ 
1/PREC,PJ=1/SUMWJCJ 
1/PREC,PJ=1/SUMTJ 
1/PREC/SUMCJ 

Figure 3. 

KS 
3PT 
3PT 
3PT 
3PT 
S3P 
3PT 
3PT 
LA 
CL 
LA 

KARP 1972 
LABE'IDULLE LAWLER LENSTRA RINNOOY KAN 1979 
LENSTRA RINNOOY KAN BRUCKER 1977 
LENSTRA RINNOOY KAN BRUCKER 1977 
LENSTRA RINNOOY KAN 1980 
LENSTRA RINNOOY KAN 1980 
LENSTRA RINNOOY KAN 1980 
LENSTRA 1980 
LAWLER 1978; LENSTRA RINNOOY KAN 1978 
LENSTRA RINNOOY KAN 1978 
LAWLER 1978; LENSTRA RINNOOY KAN 1978 

open problems. For example, one might like the program to determine the 

minimum number of research results that would completely resolve the status 

of all remaining open problems. This refinement is likely to be difficult to 

implement, since the problem to be solved is itself NP-hard, as we show in 



SINGLE MACHINE SCHEDULING, UNARY ENCODING 

DATE: 81:03:0S 

NUMBER OF PROBLEMS 

EASY 

OPEN 

HARD 

TOTAL 

MAXIMAL EASY PROBLEMS 

1/RJ ,PJ=1/SUMWJTJ 

1//SUMTJ 

1/RJ ,PMTN/SUMCJ 
1/RJ,PMTN/SU~NJUJ 

1/TREE/SUMWJC,J 

1/PREC,RJ,PJ=1/SUMCJ 
1/PREC,RJ,PMTN/LMAX 

1/PREC,RJ/CMAX 

MINIMAL OPEN PROBLEMS 

1/RJ ,PMTN/SUM'rJ 
1/ TREE , PJ= 1/ SUMTJ 

MINIMAL HARD PROBLEMS 

MINIMAL TOTAL MAXIMAL 

2 
11 

54 

4 
62 

120 

8 
3 

LAGEWEG (TRANSPORTATION PROBLEM) 

LAWLER 1977 

BAKER 1974 
LAWLER 1981 (DYNAMIC PROGRAMMING) 

HORN 1972; SIDNEY 1975 

LAWLER: COFFMAN GRAHAM 1972 
BLAZEWICZ 1976 

LAWLER 1973 

MAXIMAL OPEN PROBLEMS 

# 1/RJ,PMTN/SUMTJ 
1/TREE,RJ,PJ=1/SUMTJ 

1 /TREE/SUMTJ 
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1//SUMWJTJ 3PT LAWLER 1977; LENSTRA RINNOOY KAN BRUCKER 1977 
1/RJ ,PMTN/SUMWJCJ 

1/RJ/LMAX 
1/RJ/SUMCJ 
1/TREE ,PJ=1/SUMWJTJ 

1 /TREE ,PJ=1/SUMUJ 

1/TREE,RJ,PJ=1/SUMWJCJ 
1/TREE ,RJ ,PMTN/SUMCJ 

1/PREC,PJ=1/SUMWJCJ 

1/PREC, PJ= 1/ SUMTJ 

1/PREC/SUMCJ 

Figure 4. 

3PT 

3PT 
3PT 
3PT 

S3P 

3PT 
3PT 

LA 

CL 
LA 

LABETOULLE LAWLER LENSTRA RINNOOY KAN 1979 
LENSTRA RINNOOY KAN BRUCKER 1977 
LENSTRA RINNOOY KAN BRUCKER 1977 
LENSTRA RINNOOY KAN 1980 
LENSTRA RINNOOY KAN 1980 
LENSTRA RINNOOY KAN 1980 
LENSTRA 1980 
LAWLER 1978; LENSTRA RINNOOY KAN 1978 
LENSTRA RINNOOY KAN 1978 
LAWLER 1978; LENSTRA RINNOOY KAN 1978 

the Appendix. This complexity result can be interpreted as a ~heorem concern

ing the difficulty of determining the minimum cost of completing a research 

project. 

Even without such refinements, we believe than an extension of our 
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approach to other large classes of combinatorial optimization problems could 

yield comparable benefits. Resource constrained scheduling, vehicle routing, 

location and allocation, and network design are possible areas that come to 

mind. 

APPENDIX. DETERMINING A MINIMUM COMPLETE RESEARCH PROGRAM 

Suppose we are given the state of the art in the form of an acyclic digraph 

G = (S,+) whose nodes are labeled easy, open and hard in such a way that 

(i) if P + P' and P' is labeled easy, then Pis labeled easy, and 

(ii) if P' + P and P' is labeled hard, then Pis labeled hard. 

A complete research program (CRP) for G is defined as a subset of open nodes 

with the property that it is possible to relabel each of them either easy or 

hard in such a way that application of (i) and (ii) allows us to relabel each 

other open node either easy or hard as well. We are interested in determining 

a CRP of minimum cardinality. 

At first glance, this problem seems to be closely related to a known 

easy problem. If we are asking for the minimum number of open nodes that must 

be relabeled solved such that for each other open node P there exists a solved 

node P' with P + P' or P' + P, then Menger's Theorem could be applied to the 

transitive reduction of G to answer the question in polynomial time. However, 

we are asking for the minimum number of open nodes that must be relabeled 

either easy or hard such that for each other open node P there exists either 

an easy node P' with P + P' or a hard node P' with P' + P. This is, in fact, 

an NP-hard problem. 

We will prove this assertion by means of a transformation from the fol-

lowing NP-complete problem: 

VERTEX COVER [5,[GT1]]: Given a graph G = (V,E) and an integer k, does 

V include a subset U of size at most k such that every edge in Eis 

incident with at least one vertex in U? 

Lett= lvl+k. Given any instance of VERI'EX COVER, we construct a digraph 

G = (S,+) as follows (cf. Figure 5): 
- = for each vertex v EV, there are t+2 nodes v1 , ••• ,vt 1 v,v ES and t+l 

= arcs v 1 + v, ••• , vt + v, v + v; 



VERTEX COVER 
Instance: G = (V,E): 

~~a -A---=-e -g 
k = 2. 

Solution: U = {2,4}. 

CRP PROBLEM 
Instance: <§ = ~g',➔) (all arcs are directed upwards; 

arcs implied by transitivity are not shown): 
a b c d e 

e.: 
l 

v: 

-v: 

V.: 
l 

l = 7. 

1 2 3 4 

Solution: CRP = {@),(!)}; o: e.a.1.,y; •: haftd. 

Figure 5. Illustration of the transformation. 
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for each edge e = {v,w} EE, there are t nodes e 1, ••• ,et ES and 2t arcs 
= = = = v + e 1, ••• , v + et' w + e 1 , ••• , w + et; 

all other arcs are implied by transitivity; 

all nodes in Sare labeled open. 

We claim that VERTEX COVER has a solution if and only if there exists a CRP 

of size at most t. 

Suppose that G has a vertex cover u ~ V of size at most k. A CRP of size 

at most tis then obtained by relabeling each v (v EU) hard and relabeling 

each v (v E V-U) and each v (v EU) easy; application of (i) and (ii) allows 

us to relabel each ei (i = 1, ... ,t; e EE) hard and each v (v E V-U) and vi 

(i = 1, ••. ,t; v EV) easy. 
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Conversely, suppose that G has a CRP c S of size at most t. It is easily 

argued that, due to the choice oft, the nodes v. and e. (i = 1, ••• ,t) can 
1 1 

only be relabeled easy and hard respectively, and, moreover, that none of 

these nodes is contained in the CRP. For each v Ev, the CRP contains either 

one node from{~,~} or both. In the former case, this has to be v, labeled 

easy. In the latter case, vis labeled easy and vis labeled hard. The hard 

nodes~ ES, of which there can be no more than t-lvl = k, allow us to relabel 

each e. (i = 1, ••• ,t; e EE) hard as well. It follows that the corresponding 
1 

vertices v EV constitute a vertex cover of size at most k. This completes 

the proof. 
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