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Controllability distributions for nonlinear control systems 

by 

Henk Nijmeijer 

ABSTRACT 

The purpose of this paper is to relate the notion of controlled in­

variance to a notion of controllability for nonlinear control systems. 

By means of the 'linear' ideas of a subsystem and a quotientsystem we 

derive a very structured description of nonlinear systems. 

KEY WORDS & PHRASES: nonlinear systems, eontroZZed invariance, eontroZ­

ZabiZity, subsystem, quotientsystem 





1 . INTRODUCTION 

Basic t:o the solution of various synthesis problems in linear systems 

theory is the notion of (A,B) invariance or controlled invariance (cf.[Il]). 

A special class of controlled invariant subspaces, the so called controlla­

bility subspaces, play an important role in the structure-analysis of linear 

systems (cf,,[II]). For example stabilization, decomposition and noninter­

acting control can be investigated by means of controllability subspaces. 

First we will briefly sketch the linear situation. Let 

() 

x = l\:x + Bu X E 

U E 

and A,B matrices of appropriate dimension. 

A subspace V c Xis called (A,B) invariant if AV c V + B (B := Im B), 

which is equivalent with the existence of a feedback F : X ➔ U such that 

(~ := A + BF). 

A subspace V c Xis said to be a controllability subspace if F X + U 

such that n-I 
V = <~ I B n V > : = B n V + ~ (B n V) + .•... + ~ (B n V). 

There is a direct relation between controllability subspaces and the set 

reachable from x(O) = Q, namely the set reachable from O is the smallest 

(A,B)-invariant subspace which contains B, and this is exactly the control­

lability subspace <. Al B>. In a similar way an arbitrary controllability 
0 

subspace V is the set reachable from O of a 'subsystem' ([II]) x = ~Fx+ BGu 

for a matrix G : U + U, i.e. 

(/ = < ~I Im BG>. 

0 

Furthermore we note that the original system x =Ax+ Bu reduces to a new 
() 

linear syste~m x = Ax + Bu on the factorspace (quotientspace) X(mod V) where 

A and Bare the induced maps in X(mod V) by A+ BF resp. B. 

Recently several people introduced the notion of nonlinear controlled 
0 

invariance for systems of the form x = A(x) + B(x)u (cf.[2,3]), 
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which has been elaborated in [4,5,6,7]. The results of [4] and [6] seem to 

be very conclusive for the problem of nonlinear (A,B)-invariance. With the 

aid of this notion of controlled invariance we will set up a similar theory 

for nonlinear controllability distributions. Indeed in the same way as in 

the linear theory we will derive controllability (in the sense of SUSSMANN 

and JURDJEVIC [10]) by means of the smallest controlled invariant distribu­

tion which contains the inputs. We will show that controllability distri­

butions directly lead to the study of subsystems and quotient systems. 

The outline of the paper is as follows. Section 2 contains prelimi­

naries on notation and nonlinear controlled invariance. In section 3 we 

briefly discuss the notion of controllability, while in section 4 we will 

introduce controllability distributions by means of degenerate controlled 

invariance. Finally we terminate with a discussion of the results in sec­

tion 5. 
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2. PRELIMINARIES 

We assume that the reader is familiar with the basic notions of differ­

ential geometry (cf.[9]). Throughout this paper all our objects like mani-
00 

folds, maps etc. are C. We call 8 an affine distribution on a manifold M 

if 8 in every x EM is given by an affine subspace 8(x) c T~ (in a smooth 

way). Given two (affine) distributions D1 and D2, then we define the dis­

tribution 

where [ , ] is the Lie-bracket. 

A distribution Dis said to be involutive, if Dis closed under taking 

Lie-brackets of vector fields in D. The involutive closure of a distribu­

tion D, i.e. the closure of D by taking all iterated Lie-brackets of vector 

fields in D, is denoted by D. (So we have for an involutive distribution 
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D that D = D). For each x E M,I(D,x) will denote the maximal integral sub­

manifold of an involutive distribution D through x (The existence of I(D,x) 

is guaranteed by Frobenius' theorem), where we assume, to avoid technical 

difficulties, that D has fixed dimension. 

For X,Y E V(M), i.e. 

= [X,Y] and 

0 smooth vectorfields on M, we define adX Y = Y, adXY = 

(2. 1) 

k-1 
= [X,adx Y] k = 1,2, ••• 

In this paper we shall consider systems of the form (locally) 

m 
i(t) = A(x(t)) + L 

i=l 
u. (t)B. (x(t)), 

1. 1. 

where x EM, A,B1, ••• ,Bm E V(M). 

We will give a slightly different definition for the control system (2.1), 

which turns out to be very useful in the sequel. 

00 

DEFINITION 2.1. (cf.[5,6,7]). AC m-dimensional affine aontroi system on 

M will be a smooth manifold M together with am-dimensional affine distribu­

tion /J. on M. 

REMARKS. 

(i) It will be clear that locally we can identify /J. with (2.1). The advan­

tage of this definition, besides its compactness, is that it gives a 

feedback invariant definition of a control system. 

(ii) An affine control system /J. induces am-dimensional distribution 

tJ.O := /J. - /J. = {X-Y!X,Y E /J.}, or if /J.(x) = A(x) + Span{B1(x), ••• ,Bm(x)} 

then /J.0 (x) = Span{B1(x), ••• ,Bm(x)}, i.e. the directions in which we 

can steer. 

Next we will briefly describe the results on controlled invariance 

(cf.[2,3,4,5,6]). 

DEFINITION 2.2. An involutive distribution Don Mis (locally) controiied 

invariant for an affine control system /J. on M if (locally) there exist 

A,B 1, ••• Bm E V(M) such that 
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6(x) = A(x) + Span{B1(x), ••. ,Bm(x)} and 

[A,D] CD 

[B.,D]cD 
l. 

i = 1, ••• ,m. 

Whether or not a distribution Dis controlled invariant can directly be 

checked in terms of the control system 6. 

THEOREM 2.3. An involutive distribution Dis controlled invariant iff 

[6,D] c D + 60. 

REMARK. To avoid technical difficulties we suppose that the distribution D 

as well as D n 60 have fixed dimension. 

3. CONTROLLED INVARIANCE AND CONTROLLABILITY 

In this section we want to describe the notion of controllability of 

an affine system as it has been given by SUSSMANN & JURJEVIC [IO]. (In the 

literature there exist several notions of controllability, reachability, 

accessibility, e.g. [1,10]) The notion as introduced in [10] perfectly fits 

in the framework of controlled invariance, although also the notion of 

(local) weak controllability as introduced by HERMANN -& KRENER [ 1 J can 

be related to controlled invariance (See remark (i) after theorem 3.5). 

In what follows we will use the next assumptions: 

Assumption 1: Mis a compact manifold; 

Assumption 2: All distributions we consider have fixed dimension. 

The reachable set from x0 EM at time t, Rt(x0), is given by 

Rt(xO) 
1 Xk (xo) I 1 Xk = {Xt o •••• o X ' •••• , E 6, 

1 tk 
k 

t. > o, l t. = t} 
l. i=l l. 

where Xt(x0) is the time t integral of the vector field X starting at t = 0 

in xo· 



REMARK. Here we used the fact that Mis a compact manifold. If Mis not 

compact then Xt(x0 ) is possibly not defined for all t. In fact we can work 

without assumption 1 by setting 

1 
X , • • • • , 

t. > o, 
l. 

Xk A 
€ u, 

k 
I t. = 

i=l 1 

k 

t and 

5 

xt (xo) 
k 

is well-defined)}. 

It is known that the reachable set is related to the following distribution, 

called the derived distribution, 

L0 = involutive closure of {ad! .B, k e: ]N, A e: l::i, B e: t:i0} 

(by assumption 2 

Then we have 

has fixed dimension). 

LEMMA 3.1. Let X,Y e: l::i, then for all x e: H, t e: JR, 

PROOF. See [10], but for affine control systems the proof can be simplified 

in the following way: 

Let X,Y e: l::i, then Y = X + B for Be: t:i0 for p e: I(L0 ,x) we have 

= lim ( 
n"?<lO 

Therefore 

and by the same argument the converse also holds. D 

This result motivates the following definition. 
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DEFINITION 3.2. Let XE !J., then we define 

(by 3.1 this is independent of XE /J.). 

In [ 10 J the :following crucial result is prbven: 

THEOREM 3.3. Let /J. be an affine controlsystem on M with derived distribution 

I0 , then for aU x E M, for aU t E :JR Rt (x) c It(LO ,x) and with respect to 

the topology of It(L0 ,x),Rt(x) is contained in the closure of its interior. 

REMARKS. 

(i) This re:sult merely_states that, except for its b~undary, Rt(x) 1.s 

submani:Eold of It(LO,x) with dim Rt(x) = dim It(LO,x). 

(ii) For the smooth counterpart of the analytic framework of [10] we need 

the fix1cd dimension-assumption. 

Based on thi:s result we define: 

DEFINITION 3.4. Let /J. be an affine control system on M. Then we will call 

[0 = {~ B, k E 1N, A E !J., B E !J.O} the accessibility distribution of !J.. 

Now we are able to show that the accessibility disbtribution L0 plays the 

same role as in the linear case (see the Introduction, also [8]). 

THEOREM 3.5. Let l be an affine control system on M. The smallest controlled 

invariant di.stribution Don M which contains !J.0 equals the accessibility 

distribution I0 • 

PROOF. Let as before !J.0 = /J. - /J. and define /J.k = [!J.,/J.k-l] k = 1,2, ... (see 

[5]). Let D := lim /J.k = /J.n_2 . 
k-+<x> 

By using the Jacobi-identity ot follows that Dis involutive. Furthermore, 

it is easy to see that D = IO. The algorithm given here produces the small­

est controlled invariant distribution which contains !J.O• D 
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REMARKS. 

(i) In a similar way (see [3]) we get the (local weak controllability 

distribution of [1] as the smallest controlled invariant distribution 

which contains 6, namely you start with the smallest distribution which 

contains the affine distribution 6. In this case it is also allowed to 

travel backwards in time. 

(ii) Suppose that N := M(mod I0) is a manifold then the affine control sys­

tem 6 on M reduces to a unique vectorfield on N; the system reduces 

to an autonomous system on N (no inputs). See the definition of a 

quotientsystem in [7]. 

4. DEGENERATE CONTROLLED INVARIANCE AND CONTROLLABILITY DISTRIBUTIONS 

Instead of the notion of controlled invariance as given in 2.2, also 

called controlled invariance with full control [3], there is also a defini­

tion of controlled invariance with partial control [3] or what we shall 

call, following [7], degenerate controlled invariance. The difference is 

that for controlled invariance we have that there is a basis {B1, ••• ,Bm} 

for 60 such that the distribution D satisfies [D,Bi] c Di= 1, ••• ,m, 

where Dis the controlled invariant distribution, while for degenerate con­

trolled invariance there is only a subbasis {B1, ••• ,\} k < m, such that 

[D,B.] c Di= 1, ••• ,k. We will formalize this in the following way. 
]. 

DEFINITION 4.1. Let 6 be.an m-dimensional affine control system on M. Let 

k. < m. An k-dimensional affine control system t:,. on M is a subsystem of 6 

if 'K C 6, 

REMARKS. 

(i) Suppose 6 is given by 6(x) = A(x) + Span{B1(x), ••• Bm(x)}~for smooth 

vectorfields A,B1, ••• ,Bm then a k-dimensional subsystem 6 can be 

written by 

where 
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m 
A (x) = A(x) + l 

j=I 

m 

a.(x)B.(x) 
J J 

B. Cx) = 
l. I 

j=I 

i 
8. (x)B. (x), 

J J 
i = 

and the matrix (S7(x)) .. has rank k. 
J l.J 

This means that we get the subsystem 

I, ... ,k, 

k 
;(t) = '.AcxCt)) + I 

i=l 
V. ( t) B. (x ( t)) 

l. l. 

from thE! system 

m 
;(t) = A(x(t)) + l 

i=I 
u. ( t) B. (x ( t)) 

l. l. 

by applying a state feedback and a change of the inputfields and then 

setting some of the new inputs equal to zero. The new input vector­

fields belong to the distribution i 0 = A - A. Note that A0 c A0 . 

(ii) In the 'category' of linear systems (see the introduction) we end up 

with the following. A is given by system matrices (A,B) and then a 

subsystem A is given by matrices (A+ BF, BG) for an arbitrary feed­

back matrix F and arbitrary G. 

DEFINITION 4.2. Let A be an .m-dimensional control system on M. An involu­

tive distribution Dis said to be degenerate aontroUed invariant (of dim k) 

if there exists a k-dimensional subsystem i c A such that ci,D] c D + A0 . 

From this definition we see that a degenerate controlled invariant 

distribution D for A is a controlled invariant distribution for the sub­

system t:,. Under the usual regularity conditions - D and D n A0 have fixed 

dimension - we know by theorem 2.3 that this is equivalent with: 

there exist A,B, ... ,Bk E V(M) such that 

ti' (x) = A (x) + Span {1\ (x) , ... , Bk (x) } 2nd 

[i\,D] C D 

[13.,D]cD 
l. 

1. = I, ... ,k. 
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REMARKS. 

(i) Here we have in terms of [6] degenerate input-insensitivity with re­

spect to the basis {Bi, ••• ,Bk} of 60 • It seems to be a very hard prob­

lem to find out whether or not an involutive distribution Dis degener­

ate controlled invariant for a control system 6. In practice this could 

be a very interesting problem; if we are only concerned with closed 

loop controlled invariance ([6]) - i.e. there exists a vectorfield 

Ac 6 with [A,D] c D - then degenerate controlled invariance will play 

an important role. On the other hand for a given subsystem 6 of 6 con­

trolled invariance of a distribution Dis easily verified by theorem 

2.3 and so we can innnediately see that if Dis controlled invariant 

for 6 then Dis degenerated controlled invariant for 6. 

(ii) For linear systems degenerate controlled invariance automatically im­

plies full controlled invariance (cf.[2,7]). 

Now we are able to give the definition of controllability distributions 

for an affine control system 6 (motivated by the structure of linear systems). 

DEFINITION 4.3. An involutive distribution D on, M is a controUability dis­

tribution of an affine control system 6 if there is a subsystem 6 c 6 such 

that Dis the accessibility distribution of 6. 

REMARKS. 

(i) It automatically follows that the accessibility distribution of 6 is 

a controllability distribution of 6. 

(ii) Applying this procedure to linear systems we precisely get the controll­

ability subspaces (cf. [II]). 

As a direct consequence of section 3 we have: 

THEOREM 4.4. Let D be a controZZability distribution for an affine controi 

system 6 on M. Then Dis a degenerate controZZed invariant distribution 

for 6, i.e. there exists a subsystem 6 such that [6,D] c D + 60. Moreover 

Dis the smaZZest controiied invariant distribution for 6 which contains 



As a drawback of the notion of controllability distribution we note 

that in general it is not true that the involutive sum D1 + D2 of two con­

trollability distributions is again a controllability distribution. (As we 

know this is true for linear systems.) Although this set up probably will 

play an important role in the analysis of the structure of nonlinear control 

systems, we will introduce here a special class of controllability distrib­

utions which is far more structured. 

DEFINITION 4.5. Let~ be an affine control system on M. An involutive dis­

tribution Don Mis called a regular controZZabiZity distribution if Dis 

a controllability distribution for 6 and Dis a controlled invariant distri­

bution for~- This means that there exist a subsystem~ of~ such that Dis 

the smallest distribution on M such that: 

D :::, ~O 

[l,DJ c D and 

By using theorem 2.3 we see that there exist A,B 1, ••• ,Bm E V(M) such that 

~(x) = A(x) + Span{B 1, ••• ,Bm} 

~(x) = A(x) + Span{B 1 , ••• ,Bk} 

J 
D = {adA Bi 

[D,B.] CD 
1. 

j E lN, i = 1, ... ,k} 

i = I , ••• ,m, 

and automatically 

[D,A] CD. 

For the quotientspace N := M(mod D) - we assume for a moment that this is 

a manifold - this leads to the following appealing representation: 

There exist 

- - -
A,Bk+t'··•,Bm E V(N) 

such that if 
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m 
0 

A(x(t)) + I u. (t)B. <x<t)) x(t) = 
i=I l. 1 

and 

x(t) = x(t) mod D 

then 
0 m 
x(t) = A(x(t)) + I u. (t) B. (x(t)). 

i=k+I 
1 1, 

REMARK. Some of the B. i = k+I, ••• ,m can be annihilated by D, i.e. B. ED 
1 1 

then the corresponding B. is the zero section from N ➔ TN (so on N the input 
1 

u. has no effect). 
1 

We conclude this section with two nice 'linear' theorems. 

THEOREM 4.6. Let DI,D2 be regular controllability distributions for~. Then 

DI+ D2 is a regular controllability distribution for~-

PROOF. This follows from the fact that the sum of two controlled invariant 

distributions is again controlled invariant (cf.[2,3]). The corresponding 

subsystem has as its 'input' space the sum of the 'input' spaces of the 

controllability distributions DI and D2• D 

THEOREM 4.7. Let~ be an affine control system on Mand let K be an invo­

lutive distribution on M. Then there exist a unique maximal regular con­

-trollability distribution on M which is contained in K. 

PROOF. This follows from theorem 4.6 and [2,3,6]. D 

5. DISCUSSION 

The results of this paper directly relate the concept of controlled 

invariance to the results on controllability of nonlinear systems. Probably 

the whole set up given here, can be extended, by using [7], to nonlinear 
0 

systems of the form x = f(x,u). The concept of degenerate controlled invari-

ance as well as controllability distributions are probably of some practical 

interest. The regular controllability distributions play a very nice role 

in the study of nonlinear control systems and can probably be used for 
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developing nonlinear analogues of lineat systems theory (e.g. Noninter­

acting control [11], which also is studied without the notion of controlla­

bility distribution in [3]). 
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