THE PROBABILISTIC REALIZATION PROBLEM FOR FINITE
DIMENSIONAL GAUSSIAN RANDOM VARIABLES

Preprint
Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
The probabilistic realization problem for finite dimensional Gaussian random variables*)

by

J.H. van Schuppen

ABSTRACT

A classification is given of all \(\sigma \)-algebra's that make two given \(\sigma \)-algebra's conditional independent in the case that the \(\sigma \)-algebra's are generated by finite dimensional Gaussian random variables.

KEY WORDS & PHRASES: Gaussian random variables, realization problem

*) This report will be submitted for publication elsewhere.

1. INTRODUCTION

The purpose of this paper is to present the solution of the problem of realization of finite-dimensional Gaussian random variables.

The stochastic realization problem in stochastic system theory is to construct a stochastic dynamical system representation for stochastic processes. There is a growing literature on this subject [2,6,10], mainly for Gaussian processes. The problem is still not satisfactorily solved. One open question in the Gaussian case is the explicit classification of all minimal stochastic realizations. In a static setting the stochastic realization problem reduces to the probabilistic realization problem to be formulated below. In this note this problem will be resolved. The solution given may provide insight in the classification of minimal Gaussian stochastic realizations.

The main concept in stochastic realization theory, as shown in [1,10], is the conditional independence relation for σ-algebra's. This relation is a key property in many areas of probability theory and stochastic processes. Examples of such areas are sufficient statistics, Markov processes, information theory, random fields, and stochastic system theory.

What is the problem? Assume given two jointly Gaussian random variables and consider the σ-algebra's that they generate. One may ask for all the σ-algebra's that make the given two σ-algebra's conditional independent. To exclude some trivial answers the concept of a minimal σ-algebra must be introduced. The probabilistic realization problem is then to show existence of a σ-algebra's that make two given σ-algebra's minimal conditional independent, to classify all such σ-algebra's, and to develop an algorithm that constructs these σ-algebra's. The contributor of this paper is the solution of this problem.

One may also define a weak probabilistic realization problem, where the underlying probability space may be constructed. This problem is different from the probabilistic realization problem, although they coincide under certain conditions. A still open problem is the probabilistic realization in the case the σ-algebra's are arbitrary, or not necessarily generated by Gaussian random variables.

The approach of the paper is a mixture of probabilistic and geometric analysis. The main objects of the paper are σ-algebra's generated by finite-dimensional Gaussian random variables. From Neveu [8] it is clear that a Hilbert space framework may be used in this case. This approach has been followed in [7]. However this line of work is insufficient for the problem to be considered here. Because of the restriction to σ-algebra's generated by finite-dimensional Gaussian random variables a more explicit classification may be obtained. Yet our approach will be very much in a geometric spirit emphasizing the spaces and working basis free as much as possible. Not all proofs will be given here; they are deferred to a future publication.

A brief summary of the paper follows. The problem formulation is given in the next section, while some preliminaries are presented in Section 3. The probabilistic realization problem is resolved in Section 4.

2. PROBLEM FORMULATION

In this section some notation is introduced and the problem defined.

In this note (Ω, F, P) denotes a complete probability space consisting of a set Ω, a σ-algebra F, and a probability measure P. Let:

$$P = \{G \in F \mid G \text{ a } \sigma\text{-algebra completed with all null sets of } F\},$$

and for $G \in P$:

$$L^2(F) = \{x : x \rightarrow R_+ \mid x \text{ is } P\text{-measurable}\}.$$

If $y : \Omega \rightarrow R^k$ is a random variable then $F^y = G\{y\} \in F$ is the σ-algebra generated by y. If $F_1, F_2 \in F$ then $F_1 \vee F_2$ denotes the smallest σ-algebra that contains both F_1 and F_2. The notation $(F_1, F_2) \subset I$ is used to indicate that F_1, F_2 are independent σ-algebra's.

2.1. DEFINITION. The conditional independence relation for a triple of σ-algebra's $F_1, F_2, G \in F$ is defined by the condition that for all $y_1 \in L^2(F_1)$, $y_2 \in L^2(F_2)$:

$$E y_1 y_2 | G = E y_1 | G E y_2 | G.$$

Equivalently, if for all $y_1 \in L^2(F_1)$

$$E y_1 | F_2 \vee G = E y_1 | G,$$

Then one says that F_1, F_2 are conditional independent given G, or that G splits F_1, F_2. Notation:

$$[F_1, G, F_2] \subset \mathcal{I} \{\}$$

The equivalence follows from [1, I.4.5].

Some notation is introduced. Let
\[\mathbb{Z}_+ = \{1, 2, \ldots\}, \quad \mathbb{N} = \{0, 1, 2, \ldots\}, \]

and for \(n \in \mathbb{Z}_+ \), let

\[\mathbb{Z}_n = \{1, 2, \ldots, n\}, \quad \mathbb{N}_n = \{0, 1, 2, \ldots, n\}. \]

If \(\mathbb{Q} \subseteq \mathbb{R}^{\mathbb{N} \times \mathbb{N}} \) then \(\mathbb{Q}^T \) denotes the transposed of \(\mathbb{Q} \).

\(\mathbb{Q} \geq 0 \) that \(\mathbb{Q} \) is positive definite, and \(\mathbb{Q} > 0 \) that \(\mathbb{Q} \) is strictly positive definite.

A finite dimensional Gaussian random variable with parameters \(n \in \mathbb{Z}_+, \quad u \in \mathbb{R}^n, \quad \mathbb{Q} \in \mathbb{R}^{n \times n} \) satisfying \(u \in \mathbb{Q}^T \geq 0 \), is a random variable \(x : \mathbb{N} \to \mathbb{R}^n \) such that for all \(u \in \mathbb{R}^n \)

\[\mathbb{E}(\exp(\mathbb{i} u^T x)) = \exp(\mathbb{i} u^T \frac{1}{2} \mathbb{Q} u). \]

Notation: \(x \in \mathbb{G}(u, \mathbb{Q}) : (x_1, \ldots, x_n) \in \mathbb{G}(u, \mathbb{Q}) \) denotes that \(x^T = (x_1^T, \ldots, x_n^T) \), \(x \in \mathbb{G}(u, \mathbb{Q}) \). If \(\mathbb{Q} \in \mathbb{R}^+ \), then \(\mathbb{G}(x) \) denote its covariance matrix.

2.2. DEFINITION. The Gaussian conditional independence relation for a triple of \(\sigma \)-algebras' \(\mathbb{P}_1, \mathbb{P}_2, \mathbb{P}_3 \in \mathbb{G} \), generated by

\[y_1 : \mathbb{N} \to \mathbb{R}^{k_1}, \quad y_2 : \mathbb{N} \to \mathbb{R}^{k_2}, \quad x : \mathbb{N} \to \mathbb{R}^n \]

is defined by the conditions

1. \(g^{y_1, x, y_2} \in \mathbb{C} \);
2. \(g^{y_1, x, y_2} \in \mathbb{G} \).

Notation: \((g^{y_1, x, y_2}) \subseteq \mathbb{C}^G \).

Given \(y_1, y_2 \) \(\epsilon \mathbb{G} \) there exists random variables \(x \) such that \((g^{y_1, x, y_2}) \in \mathbb{C}^G \). For example \(x = y_1, \) or \(x = y_2 \) are such random variables. From many viewpoints it is of interest to ask for a minimal \(\sigma \)-algebra.

2.3. DEFINITION. The minimal Gaussian conditional independence triple is generated by \(\mathbb{P}_1, \mathbb{P}_2, \mathbb{P}_3 \) \(\in \mathbb{G} \) independent.

\[y_1 : \mathbb{N} \to \mathbb{R}^{k_1}, \quad y_2 : \mathbb{N} \to \mathbb{R}^{k_2}, \quad x : \mathbb{N} \to \mathbb{R}^n \]

is defined by the conditions

1. \((g^{y_1, x, y_2}) \subseteq \mathbb{C} \);
2. \((g^{y_1, x, y_2}) \subseteq \mathbb{C} \).

Then one says that \(\mathbb{P} \) makes \(y_1, y_2 \) minimal conditionally independent, or that \(\mathbb{P} \) is a minimal splitter of \(y_1, y_2, \mathbb{P}_3 \).

Notation: \((g^{y_1, x, y_2}) \subseteq \mathbb{C}^\min \).

2.4. PROBLEM. The Gaussian probabilistic realisation problem for a triple of Gaussian random variables \((y_1, y_2, x) \) is:

(a) to show existence of triples \(\mathbb{P}_1, \mathbb{P}_2, \mathbb{P}_3 \), where \(x : \mathbb{N} \to \mathbb{R}^n \), such that

1. \((g^{y_1, x, y_2}) \subseteq \mathbb{C}^\min \);
2. \(x \in \mathbb{P}_1 \lor y_2 \in \mathbb{P}_3 \);
3. \((y_1, y_2, x) \in \mathbb{C} \);

such a triple will then be called a minimal probabilistic realisation;

(b) to classify all minimal probabilistic realisations;

(c) to develop an algorithm that constructs all minimal probabilistic realisations.

Finally some additional notation for matrices is introduced. Let

\[D = \{A \in \mathbb{R}^m | A \text{ diagonal matrix}\}, \]

\[D_n = \{\mathbb{R}^n | A \geq 0\}, \]

\[\mathcal{O}_n = \{A \in \mathbb{R}^n \to \mathbb{R}^n | S^T A = S A\}, \]

the set of orthogonal matrices. For \(A \in \mathbb{R}^n \) let

\[\mathcal{O}(A) = \{ (S_1, S_2) \in \mathcal{O} \times \mathcal{O} | S_2 S_1 A = A S_1 S_2 \}. \]

It is easily verified that \(\mathcal{O}(A) \) is a equivalence relation, with \(S_1 \sim S_2 \iff (S_1, S_2) \in \mathcal{O}(A) \). The quotient space \(\mathcal{O}(A) / \mathcal{O}(A) \) is thus well-defined. The class of matrices that commute with a given matrix is described in [2, 1.8.11.12].

3. PRELIMINARIES

This section the canonical variable representation for Gaussian random variables is introduced. Furthermore an equivalent condition for \(\mathcal{C}^\min \) is derived.

To describe the relationship between two random variables since (4) has introduced the concept of a canonical variable representation. For Gaussian random variables this representation has a very explicit structure that is described below.

3.1. DEFINITION. Given \(y_1 : \mathbb{N} \to \mathbb{R}^{k_1}, \quad y_2 : \mathbb{N} \to \mathbb{R}^{k_2}, \quad (y_1, y_2) \in \mathbb{G}(0, K) \). These random variables are said to be in canonical variable form if

\[K = \begin{pmatrix} I & 0 & 0 & \cdots & 0 \\ 0 & I & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & I & 0 \\ 0 & 0 & \cdots & 0 & I \end{pmatrix} \in \mathbb{R}^{k_1 \times k_2}, \]

where \(\Lambda \in \mathbb{R}^{k_2 \times k_2}, \quad \Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_{k_2}) \) with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{k_1} \). Compatible with this decomposition let

\[y_1 = (y_1^{(T)}, \cdots, y_{k_2}^{(T)}), \quad y_1^{(T)} : \mathbb{N} \to \mathbb{R}^{k_1}, \quad y_{k_2}^{(T)} : \mathbb{N} \to \mathbb{R}^{k_2}, \]

and similarly

\[y_2 = (y_2^{(T)}, \cdots, y_{k_2}^{(T)}). \]

Furthermore let

\[W = \begin{pmatrix} I \\ \Lambda \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^{k_1 \times k_2}, \quad E = \begin{pmatrix} I & 0 \\ \Lambda & I \end{pmatrix} \in \mathbb{R}^{k_1, k_2}, \]

Note that \(y_1^{(T)} = y_2^{(T)} \) a.s., and \(k_{12} = k_{22} \).

It is a classical result [8] that for any pair \((s_1, s_2) \in \mathbb{G}(0, K) \) there exists a basis transformation \((s_1, s_2) = (s_1^{(T)}, s_2^{(T)}) \) such that \(s_1^{(T)}, s_2^{(T)} \) is in canonical form. Such a transformation is unique up to the equivalence relation \((s_1, s_2) \sim (y_1, y_2) \) defined by \(\mathbb{V}^{s_2} = \mathbb{W}^{y_2} \). On the basis of the canonical variable representation one may formulate a canonical form for Gaussian measures.

The problem posed in 2.4 is the construction and classification of \([\sigma]\)-algebra's that make two given \([\sigma]\)-algebra's minimal Gaussian conditional independent. This problem is analogous to the construction of
realizations in linear system theory. There is a dynamical system with a state space of minimal dimension if the dynamical system is observable and controllable. Furthermore all minimal realizations are equivalent in a well-defined sense. What remains of this picture in probabilistic realization? The concept of probabilistic observability will be defined first.

3.2. DEFINITION. Given \((p^{y_1}, p^x, p^{y_2}) \in \text{CIG}\). This triple will be called probabilistic observable if the map

\[x \mapsto E(\exp(iu^T y_1) \mid p^x) \]

is injective on the support of \(x\). It will be called probabilistic reconstructible iff the map

\[x \mapsto E(\exp(iu^T y_2) \mid p^x) \]

is injective on the support of \(x\). ⊥

Suppose that through multiple experiments one is able to obtain an estimate of the measure of \(y_1\) for a fixed value of \(x\). Then probabilistic observability implies that from this measure one can determine the value of the state \(x\) uniquely. This property hopefully motivates the above definition of probabilistic observability.

With \((y_1, x, y_2) \in G(0, X)\) and a basis for \(x\) such that \(Q_{xx} \succ 0\) one has

\[E(\exp(iu^T y_1) \mid p^x) = \exp(\frac{i}{2} u^T Q_{xx} u) \]

Thus \((p^{y_1}, p^x, p^{y_2}) \in \text{CIG}\) is probabilistic observable iff \(\text{rank}(Q_{xx}) = \text{rank}(Q_{yy})\). The following result is now motivated.

3.3. THEOREM. Given

\(y_1: \Omega \rightarrow R^{k_1}, y_2: \Omega \rightarrow R^{k_2}, x: \Omega \rightarrow R^n\).

The following are equivalent:

(a) \((p^{y_1}, p^x, p^{y_2}) \in \text{CIG}_{\text{min}}\)

(b) \((y_1, x, y_2) \in G\):

1. \(Q_{yy} = Q_{yx} X_y X_x^{-1} Q_{xy}\)

2. \(\text{rank}(Q_{yx}) = \text{rank}(Q_{xx}) = \text{rank}(Q_{yy})\).

Here it has been assumed that a basis has been chosen such that \(Q_{xx} \succ 0\). ⊥

The proof of 3.3 is based on the following intermediate results.

3.4. PROPOSITION. Given

\(y_1: \Omega \rightarrow R^{k_1}, y_2: \Omega \rightarrow R^{k_2}, x: \Omega \rightarrow R^n\)

\((y_1, y_2, x) \in G\). Suppose that a basis for \(x\) has been chosen such that \(Q_{xx} \succ 0\). Then the following are equivalent:

(a) \((p^{y_1}, p^x, p^{y_2}) \in \text{CIG}\);

(b) \(Q_{yy} = Q_{yx} X_y X_x^{-1} Q_{xy}\).

PROOF. This is a calculation via the conditional characteristic function. ⊥

3.5. PROPOSITION. Given

\(y_1: \Omega \rightarrow R^{k_1}, y_2: \Omega \rightarrow R^{k_2}, x: \Omega \rightarrow R^n\)

with \((y_1, y_2, x) \in G\). If \((p^{y_1}, p^x, p^{y_2}) \in \text{CIG}\)

\(x_1: \Omega \rightarrow R^{k_1}, x_2: \Omega \rightarrow R^{k_2}\), then \((p^{y_1}, p^{y_2}, p^{y_2}) \in \text{CIG}\),

\(\text{rank}(Q_{yx}, p^{k_2}) = \text{rank}(Q_{xy}, p^{k_1}) = \text{rank}(Q_{yy}, p^{k_2})\).

PROOF. Not given here. ⊥

3.6. PROPOSITION. Given

\(y_1: \Omega \rightarrow R^{k_1}, y_2: \Omega \rightarrow R^{k_2}\) with \(x\) as given in 3.1. The notation of 3.1 is adopted. Then \((p^{y_1}, p^x, p^{y_2}) \in \text{CIG}_{\text{min}}\) if there exists a basis for \(x\) such that

\(x = (x_1, x_2)\), \(x_1: \Omega \rightarrow R^{k_1}, x_2: \Omega \rightarrow R^{k_2}\),

\((p^{y_1}, p^{x_1}, p^{y_2}) \in \text{CIG}_{\text{min}}\) and \((p^{y_1}, p^{x_2}, p^{y_2}) \in \text{CIG}_{\text{min}}\).

PROOF. Not given here. ⊥

4. THE PROBABILISTIC REALIZATION PROBLEM

In this section the probabilistic realization problem is resolved.

4.1. DEFINITION. Given a complete probability space \((O, F, P)\) and three Gaussian random variables defined on it

\(y_1: \Omega \rightarrow R^{k_1}, y_2: \Omega \rightarrow R^{k_2}, v: \Omega \rightarrow R^n\) with \((y_1, y_2, v) \in G(0, L)\). Let the set of probabilistic realizations be

\[PR(\mathbb{R}^{k_1}, R^{k_2}, \mathbb{R}^{k_3}, G(0, L)) \]

\[= \{(f^x, f^y) \mid x: \Omega \rightarrow R^n, f^x = f(x), \]

\[(p^{y_1}, p^{x_1}, p^{y_2}) \in \text{CIG}_{\text{min}}, (y_1, y_2, v, x) \in G, f^x \in p^{y_1} \cup p^{y_2} \cup f^y\} \]

In the above definition \(v\) represents additional information on which the minimal \(o\)-algebra may be based. It is clear that for an arbitrary Gaussian random variable \(v\), representing the additional information, one may construct a Gaussian random variable \(v\) such that \(F^v \subset F^w\) and \((F^v, p^{y_1} \cup p^{y_2}) \in I\).

4.2. THEOREM. Given a complete probability space \((O, F, P)\) with three Gaussian random variables defined on it

\(y_1: \Omega \rightarrow R^{k_1}, y_2: \Omega \rightarrow R^{k_2}, v: \Omega \rightarrow R^n\) with \(K\) as given in 3.1; the notation of 3.1 is adopted.

\(L = (K \cup \{0\})\)

\(K\) and \(\{0\}\) are ordered sets.

\[L = (K \cup \{0\}) \]

\(w\) and \(v\) are random variables.

\[L = (L \cup \{0\}) \]

\(L\) and \(\{0\}\) are ordered sets.

\[P_A = \{(n_1, n_2) \in N^3, b \in (0, 1)^N, S \in K_{12}, h \in R^3 \mid \]

\[\text{if } B = \text{diag}(b_1, \ldots, b_N),\text{ decreasingly ordered,} \quad \]

\[h_{12} = (n_1, n_2, n_3), u = \text{blockdiag}(L_1, B, L_2) \in \]

\[R^{n+1}, \text{ then } S \in K_{12} \cup C_{21}(U), H_{12}^{-1} \].
Define the map
\[r: PA \rightarrow Pr\left(\mathbb{R}^{k+k+y+3m}\cdot k_{1}^{y+k_{2}+3m}G(0,1)\right) \]
as \((n_{1}, n_{2}, n_{3}, b, e, H) \in PA, U \in \mathbb{R}^{k_{12}xk_{12}}\) as constructed in the definition of PA, \(k = k_{1} + k_{2}\).
\[A = (\Lambda^{-1} - \Lambda)^{-1}, A^b \in \mathbb{C}xk_{12}, \]
\[P_{1} = A^{b}Z(I - U^{2})^b, \]
\[P_{2} = A^{b}Z(U - U^{2})^b, \]
\[P_{3} = A^{b}(U - U^{2})^b, \]
x: \(X = \mathbb{R}^{k}, x = (P_{1}x_{12}+P_{2}x_{2}+P_{3}x_{3}), P_{x} = \sigma(|x|), \)
\[(r_{1}, r_{2}, r_{3}) \in PR. \]

Then, with respect to the given basis for \((Q_{1}, Q_{2}, Q_{3})\), \(r_{1}\) is well defined and a bijection.

The reader is reminded of the fact that the transformation to the canonical variable representation is nonunique. Hence the bijection part of 4.2 is valid only with respect to the given basis.

The result 4.2 resolves the probabilistic realization problem 2.4 in that it classifies all minimal realizations and provides an algorithm to construct these realizations.

The proof of 4.2 is based on the following lemma, which is treated in special case of 4.2. This special case is motivated by 3.6.

4.3. LEMMA. Given three Gaussian random variables \(Y_{1} \in \mathbb{R}^{k}, Y_{2} \in \mathbb{R}^{k}, Y_{3} \in \mathbb{R}^{m}, \) \((Y_{1}, Y_{2}, Y_{3}) \in G(0,1)\)
\[L = \begin{pmatrix} L & 0 \\ 0 & 1 \end{pmatrix} \]
with \(L\) as defined in 3.1. Let
\[PA_{1} = \{Q \in \mathbb{R}^{k+k}, P_{1} \in \mathbb{R}^{k+m} | (A^{-1} - \Lambda)^{-1}Q = 0 + 0, \]
\[Q + QA + AQA - AQA - A = P_{3}P_{1}^{T} \} \]
Define the map \(r_{1}: PA_{1} \rightarrow Pr\left(\mathbb{R}^{k+k+y+3m}\cdot k_{1}^{y+k_{2}+3m}G(0,1)\right)\) as
\((Q, P_{1}) \in PA_{1}, \)
\[P_{1} = (-Q(L))^{b}(L^{-1} - L)^{-1}, \]
\[P_{2} = (Q(L))^{b}(L^{-1} - L)^{-1}, \]
x: \(X = \mathbb{R}^{k}, x = P_{1}x_{1} + P_{2}x_{2} + P_{3}x_{3}, P_{X} = \sigma(|x|), \)
\[(r_{1}, r_{2}, r_{3}) \in PR. \]

Then, with respect to the given basis for \((Y_{1}, Y_{2}, Y_{3})\), the map \(r_{1}\) is well defined and a bijection.

Some calculations used in the proof are summarized below.

4.4. PROPOSITION. Given the matrix \(A \in \mathbb{R}^{k+k+y+3m}, \) of the form as presented in 3.1, \(Q \in \mathbb{R}^{k+k+y+3m}, \)
\[L = \begin{pmatrix} L_{1} & I & L_{2} \\ L_{3} & L_{4} & L_{5} \end{pmatrix} \in \mathbb{R}^{m+k+k+y+3m}, \]
Assume that \(Q = Q^{T}\). The following are equivalent:
\(a.\) \(L \geq 0;\)
\(b.\) \(Q \in \mathbb{Q} \subseteq \{Q \in \mathbb{R}^{k+k+y+3m} | Q = Q^{T} \geq 0, A^{-1} = (A^{-1} - \Lambda)^{-1}, \}
\[Q + QA + AQA - AQA - A = P_{3}P_{1}^{T} \} \]
\(c.\) \(L \leq 0 \leq L^{-1};\)

PROOF. With \(L\) as defined in 3.1,
Let
\[x_1 = p_{11}^T + p_{12}^T y_2 + p_{13}^T y_3, \]
\[x_2 = p_{21}^T y_1 + p_{22}^T y_2 + p_{23}^T y_3. \]
Then
\[p_{21}^T + p_{22}^T y_2 + p_{23}^T y_3 = s_{11}^T + s_{22}^T y_2 + s_{23}^T y_3, \]
\[(s_{11}^T - p_{21}^T)A = -(s_{12}^T - p_{22}^T)A, \]
\[(s_{11}^T - p_{21}^T) = (s_{12}^T - p_{22}^T), \]
\[x_2 = s_{23}^T y_3. \]
Using the expressions for \(p_{11}, p_{12}, p_{21}, p_{22} \) and performing some calculations one obtains
\[s_{11}^T + p_{21}^T = [(s_{11} - s_{22})/2]^T (I - A^T)^{-1}, \]
\[s_{12}^T - p_{22}^T = [(s_{11} - s_{22})/2] (I - A^T)^{-1}, \]
\[(s_{11} - s_{22})/2 = 0 \text{ or } s_{12} = 1, \]
\[(s_{11} - s_{22})/2 = 0 \text{ or } s_{14} = 0, s_{23} = 1. \]

PROOF OF 4.2. 1. That \(r \) is well defined follows from 3 and 3.3.

2. To show that \(r \) is surjective let \((u_1, u_2, u_3) \in \mathbb{R}^3\). From 1.6 it follows that there exists a basis for \(x \) such that
\[x = (x_1, x_2, x_3), \]
\[x_1 = 0 + x_{11}, x_2 = 0 + x_{12}, \]
\[(y_{11}^T, x_1, x_2) \in \text{CIG min}, \]
\[(y_{12}^T, x_1, x_2) \in \text{CIG min}, \]
\[(y_{12}^T, x_1, x_2) = x_1^T 0 + x_2^T 0. \]
It is an exercise to show that
\[(y_{11}^T, x_1, x_2) \in \text{CIG min} \]
implies that with respect to some basis \(x_1 = y_{11} \), \(y_{11} = y_{12} \) a.s. From
\[(y_{12}^T, x_1, x_2) \in \text{CIG min} \]
and 4.3 one obtains that there exists a \((p_3) \in \mathbb{P}_1^T \) such that
\[r_1^T (Q_{12}) = \left(\begin{array}{c} k_{12}^T y_{12} \end{array}\right) \text{.} \]
\(Q + QA + AQ = Q - A = P_{12} \) using the transformation
\[M = A^T (Q_{12})^T A = P_{12} M^T \geq 0, M = M^T \geq 0, \text{ or } M^T = M \]
\[M = M^T = M. \]

Hence there exists \(U \in O_{k_{12}^T} \) such that
\(k_{12} = O_{k_{12}^T} \). By convention the diagonal elements of \(U \) are chosen in decreasing order. Let \(s_{12} = O_{k_{12}^T} \). Let the basis corresponding to \(s_{12} = O_{k_{12}^T} \). Let
\[n_{11}, n_{12}, n_{22} \in \mathbb{N} \text{ be the number of diagonal elements of } U \text{ in } (1, 0, 1, 0). \]
Let \(B \in D_{k_{12}^T} \) be the diagonal matrix corresponding to the elements in
\[(0, 1) \text{ in } U \text{. let } \]
\[V_1 = \mathbb{N}_{n_{11}^T}, V_2 = \mathbb{R}_{n_{11}^T}, V_3 = \mathbb{R}_{n_{22}^T}, \]
\[(V_1^T, V_2^T, V_3^T). \]
Then
\[P_{12}^T = A^T (M_{11}^T A)^{-1} = A^T (O_{k_{12}^T} O_{k_{12}^T} (O_{k_{12}^T})^T \text{ implies that } \]
\[V_1 = 0, V_3 = 0, \text{ and } V_3^2 = (B - B^T)^2. \]
Let \(B - B^T \in D_{k_{12}^T}, \) \(H = (B - B^T)^2 \), then
\[H_{11} = 1. \]

3. Finally it will be shown that \(r \) is injective. Let
\[(r_1, r_{12}, r_{13}) \neq (r_{12}, r_{12}, r_{13}) \in \mathbb{R}^3. \]
As proven in 2 above \(r \) is surjective so there exist \((n_{11}, n_{12}, n_{13}), (n_{12}, n_{12}, n_{13}), (n_{12}, n_{12}, n_{13}) \in \mathbb{P}_1^T \) corresponding to these elements. As mentioned in 2 above these exist \((m_{11}, m_{12}), (m_{12}, m_{12}) \in \mathbb{P}_1^T \) equal to 4.3. Note that
\[A_{11}^T S_{11} A_{11}^T + A_{12} = \text{Q}_{12} = A_{11}^T S_{11} A_{11}^T + A_{12}, \]
\[S_{12}^T S_{12}^T = S_{12}^T S_{12}^T, \]
Because of the ordering of the diagonal elements of \(U_1, U_2 \) one obtains that \(U_1 = U_2 \). Then
\[S_{22}^{-1} U_{12} = S_{22}^{-1} U_{12}, \]
implies that \(S_1 = S_2 \). Finally
\[A_{11}^T (U_{12} - U_{12})^T = A_{11}^T S_{12}^{-1} (U_{12} - U_{12}) = 0, \]
implies that \(H_1 = H_2 \).

REFERENCES

[10] Williams, J.C., "System theoretic models for the analysis of physical systems", Ricerche di Automatica,