
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

A.M.A. HARIRI & C.N. POTTS

BW 143/81 JUN!

AN ALGORITHM FOR SINGLE MACHINE SEQUENCING WITH RELEASE DATES

TO MINIMISE TOTAL WEIGHTED COMPLETION TIME

Preprint

~
MC

kruislaan 413 1098 SJ amsterdam

IU:IIJOTHEEK MATHEMATISCH CENTRUM
AMSTERDAM

P.tunte.d a.:t :the. Ma.:the.ma..uc.a1. Ce.n.:tll.e., 413 KJr..t.UJ.,laan, Amti:teJLdam.

The. Ma.:the.ma.tic.a..t Ce.n.:tll.e. , oou.nde.d :the. 11-:th oo Fe.blLU.aJty 1946, ,u., a. n.on­
pll.o oU w;t:,i.,tLLUiJ n a,..imin.g a.:t :the. pll.omotio n O O pu.'1.e. ma.:the.ma..tiC6 and m
a.ppLlc.a..uon6. I:t ,u., .6pon6oll.e.d by :the. Ne.:theJri.a.nd6 Gove.Jr.nme.nt :thll.ou.gh :the.
Ne.:theJri.a.ncL~ OJr.ga.nJ.,za..tio n o oil. :the. Adva.nc.e.me.nt o o Pu.Jr.e. Re.-6 e.a.Jr.c.h (Z. W. 0.) •

1980 Mathematics Subject Classification: 90B35

An algorithm for single machine sequencing with release dates
. . . 1 . h d 1 . . *) to IIU.nimise tota weig te comp etion time

by

. . **) A.M.A. Hariri & C.N. Potts

ABSTRACT

Each of n jobs is to be processed without interruption on a single

machine which can handle only one job at a time. Each job becomes available

for processing at its release date, requires a processing time and has a

positive weight. Given a processing order of the jobs, the earliest comple­

tion time for each job can be computed. The objective is to find a proces­

sing order of the jobs which minimizes the sum of weighted completion times.

In this paper a branch and bound algorithm for the problem is derived.

Firstly a heuristic is presented which is used in calculating the lower

bound. Then the lower bound is obtained by performing a Lagrangean relaxation

of the release date constraints; the Lagrange multipliers are chosen so

that the sequence generated by the heuristic is an optimum solution of the

relaxed problem, thus yielding a lower bound. A method to increase the

lower bound by deriving improved constraints to replace the original

release date constraints is given. The algorithm, which includes several

dominance rules, is tested on problems with up to fifty jobs. The computa­

tional results indicate·that the version of the lower bound using improved

constraints is superior to the original version.

KEY WORDS & PHRASES: single machine sequencing, Pelease dates~ total

weighted completion time, bPanch and bound, LagPangean

Pelaxation, dominance, computational expePience

*) This report will be submitted for publication in a journal.
**) . . University of Keele, England

I • INTRODUCTION

The problem considered in this paper may be stated as follows. Each of

n jobs (numbered I, ... ,n) is to be processed without interruption on a single

machine which can handle only one job at a time. Jobi (i = I, ... ,n) becomes

available for processing at its release dater., requires a processing time
l.

p. and has a positive weight w .• Given a processing order cr of the jobs, the
l. l.

(earliest) completion time C.(cr) for each job i can be computed. When no
l.

ambiguity results, we abbreviate C.(cr) to C .. The objective is to find a
l. 1.

processing order of the jobs which minimizes the sum of weighted completion

times I w.C ...
l. l.

When all release dates are equal, the problem can be solved using the

algorithm of SMITH [8] in which jobs are sequenced in non-increasing order

of w./p .• However, LENSTRA et al. [6] have shown that when jobs have arbi-
1. l.

trary release dates and unit weights the problem is NP-hard, which indicates

that the existence of a polynomial bounded algorithm is unlikely. Consequently,

branch and bound algorithms have been proposed for this problem with unit

weights by CHANDRA [I] and DESSOUKY & DEOGUN [3]. For the problem with arbi­

trary weights, RINALDI & SASS.ANO [7] have derived several dominance theorems.

In this paper a branch and bound algorithm for the problem with arbitrary

weights is derived.

In Section 2 a heuristic method for sequencing the jobs is given. A lower

bound, which is computed from this sequence, is derived in Section 3 and its

working is demonstrated with a numerical example. An improvement to the lower

bound is presented in Section 4. Section 5 contains a statement of the branch­

ing rule and gives some dominance rules which help to reduce the size of the

search tree used in the branch and bound algorithm. A complete statement of

the algorithm including details of its implementation 1.s given in Section 6.

Computational experience is presented in Section 7 which is followed by some

concluding remarks in Section 8.

2

2. THE HEURISTIC METHOD

It is well-known that computation can be reduced by using a heuristic

method to find a good solution to act as an upper bound on the sum of weighted

completion times prior to the application of a branch and bound algorithm.

Also, in our algorithm, a sequence generated by the heuristic method is used

at each node of the search tree for calculating a lower bound.

The heuristic that is used has the property that the machine will never

be kept unnecessarily idle. If there is a choice of jobs for the first unfil­

led position in the sequence which preserves this property, one with the

largest w./p. 1.s chosen. A formal statement of the method is given below. 1. 1.

Step 1. Let S be the set of all (unsequenced) jobs, let H = 0 and k = 0 and

find T = min. S{r.}.
J E J

Step 2. Find the set S' = {j I j ES, r. ~ T} and find a job 1. with 1. ES'
J

and with w. / p . = max . S , { w. / p • }.
1. 1. JE J J

Step 3. Set k = k+l, sequence job i in position k, set T =

H = H+w.T and set S = S-{i}.
1.

T+p., set
1.

Step 4. If S = 0, then stop with the sequence generated having Has its sum

of weighted completion times. Otherwise set T = max{T, min. S. {r.}} and go
J E J

to Step 2.

We now derive sufficient conditions for the sequence generated by the

heuristic to be optimum. However, some notation is introduced first. It is

assumed that the jobs have been renumbered so that the sequence generated by

the heuristic is (1, ••. ,n) and the completion times of the jobs have been

computed using c 1 = r 1+p 1, c. = max{r.,c. 1} + p. (i = 2, ••• ,n). The jobs
1. 1. 1.- 1.

may be partitioned into blocks s1, ••• ,sk as follows. Job vj is the Zast

job in a bZock if Cv. ~ r. for i = v.+I, ••• ,n. A set of jobs S. = {u., .•• ,v.}
J 1. J J J J

forms a bZoc·k if the following conditions are satisfied:

(a) u. = I or job u.-1 is the last job in a block;
J J

(b) job i is not the last job in a block for i = u., ••• ,v.-1;
J J

(c) job v. is the last job in a block.
J

Job u. is called the first job in a bZock and, for our heuristic, has the
J

property that ru. ~ r. for i = u.+I, ••• ,n. These definitions concerning
J 1. J

blocks were proposed by LAGEWEG et al. [5].

The sufficient conditions for the sequence generated by the heuristic

to be optimum are as follows.

3

THEOREM 1. The sequence (1, ••• ,n) generated by the heuristia is optirrrum if

the jobs within eaah bioak Sj are sequenaed in non-increasing ordEr of wi/pi.

PROOF. The result is first proved for the modified problem in which the

release date of each job i in Sj is set to the release date of the first

job in block Sj (j = 1, ••• ,k). We first show that all jobs in block Sj should

be sequenced before all jobs in block Sj+l (j = 1, ••• ,k-1) for this problem

with reduced release dates. Consider any sequence and suppose that i E Sj

is chosen so that i is as small as possible and so that job i is sequenced

after a job in block S., where j < j'. Suppose that this sequence is of
J

the form o1o2cr3io4, where o 1 consists of all jobs in blocks s 1, ••• ,sj-l' where

o2 consists of jobs in block Sj and where the first job of o3 is a job in Sj,.

Consider now the new sequence o1o2icr3o4• The completion time of job i in this

sequence is not greater than the release date of the first job in o3 which is

in block S., since the jobs in o2i are contained in blocks .• Thus the new
J J

sequence has a smaller sum of weighted completion times. Having established

that, for an optimum sequence, all jobs within a block are sequenced in adja­

cent positions, their ordering is determined by Smith's rule. This proves the

result for the problem with reduced release dates.

We now return to the original problem obtained by increasing the release

dates to their initial values. Since this increase in release dates leaves

the completion times unaltered, the sequence (I, .•. ,n) is also optimum for

the original problem. D

It is seen in the next section that Theorem I is used in deriving our

lower bound.

3. DERIVATION OF THE LOWER BOUND

The method used to obtain a lower bound is similar to the multiplier

adjustment method proposed by VANWASSENHOVE [9] for minimizing l w.C. when
i i

jobs have zero release date and have deadlines. We obtain a lower bound by

4

performing a Lagrangean relaxation of each release date constraint

c. ~ r.+p. (i = l, ••• ,n) after which it is replaced by a weaker constraint
l. l. l. *

c. ~ r~+p. for some r. s r .• This yields the Lagrangean problem
l. l. l. l. l.

(1) = min{}:n1• __ 1 w1.C1• + }:1:1 l 11.. (r. + p. - C.)},
1= · l. l. 1 l.

where 11. = .(11. 1, ••• ,11.n) is a vector of non-negative multipliers; the minimiza­

tion is over all processing orders of the jobs with C. (i = l, ••• ,n) subject
l.

* to machine capacity constraints and to the constraints C. ~ r.+p .• We can
l. l. l.

write (1) as

.· ln * ln L(11.) = min{ . 1 w.c.} + • 1 11..(r.+p.),
· 1= l. l. 1= · l. l. l.

* where w. = w.-11.. (i = l, ••• ,n). Thus, the Lagrangean problem is of the same
l. l. l.

* form as the original problem but each job i has a new release dater. and
l.

a new weight w~. The •Choice of new release dates and of multipliers is dis-
1

cussed next. However, we shall restrict our choice of multipliers to the

range Os 11.. s w. (i = l, ••• ,n) to ensure that L(11.) does not become arbi-
1. 1 .

trarily small. One possible approach is to set r~ = 0 so that the Lagrangean
l.

problem can be solved using Smith's rule. The value of 11. which maximizes

L(11.) can then be found using the subgradient optimization method. However,

this might entail much computation without guarantee of a tight lower bound.

We prefer to retain the original values of the release dates, i.e. to set

* r. = r. (i = 1, ••• ,n), but restrict the choice of multipliers so that the
l. . l.

Lagrangean problem can be solved easily. This can be achieved by maximizing

1(11.) subject to the condition that the sequence generated by the heuristic

solves the Lagrangean •problem by yielding weights w~ (i = 1, ••• ,n) which
l.

satisfy the conditions of Theorem 1. Thus we require for each block S. that
J

for i = u.+l, ••• ,v .•
J J

It is clear that L(11.) is maximized by choosing

5

(2)

if l.

if i

= uj' }(j = 1, ... ,k).

= u.+1, ... ,v.
J J

Having found C. (i = I, ••• ,n) using the sequence generated by the heuristic
l.

and A. (i = 1, ••• ,n) using (2), our lower bound can be written as
l.

(3) LB = \:1 l w. C. + \:1 I A. (r. + p. - C.) • l1.= 1. 1. l1.=. 1. 1. 1. 1.

EXAMPLE. The data for the example is sunnnarized in the first three rows of

Table 1. The jobs have already been renumbered so that the sequence generated

by the heuristic method is (I, •.• , IO).

Table

Data for the example.

]_ 2 3 4 5 6 7 8 9 10

r. 0 6 9 15 21 22 23 25 22 22
l.

P· 5 4 4 3 6 2 IO 5 8 9
l.

w. 10 3 8 8 3 6 10 4 6 6
l.

c. 5 10 14 18 27 29 39 44 52 61
l.

A, 0 0 5 0
l.

0 5 5 3/2 2 3/2

A • (C • -r . -p .) 0 0 5 0 0 25 30 21 44 45
l. l. l. l.

Having applied the heuristic method, the completion times of the jobs are

computed. These are shown the row 4 of Table I. The sum of weighted comple­

tion times is 1835. The blocks obtained from this sequence are s 1 = {1},

s2 = {2,3}, s3 =· {4} and s4 =· {5,6,7,8,9,10}. The multipliers, obtained

from (2) are: shown in row 5 of Table 1. The value of the lower bound is

computed frcim (3) using the bottom row of Table I. This gives

LB= 1835 - 170 = 1665.

6

4. THE IMPROVED LOWER BOUND

We assume that the multipliers defined in the previous section have been

computed using (2). Suppose that the jobs are ordered within each block in

non-decreasing order of multipliers to give a permutation 1r = (,r (1), ••• , ,r (n))

with the property that S. =· {,r(u.), ••• ,ir(v.)} and that A () s ... s A ()
J J J 1T Uj 1T Vj

(j = 1, ••• ,k). It is clear from (2) that. A,r(uj) = 0 since tfie first job

in a block always yields a zero multiplier. We now define

S~h)= S~h-l) - {,r(u.+h-1)} (h=l, ••• ,v.-u., j=J, ••• ,k),
J J J J J

where S~O) = S. and
J J

(h)
µj = A1r(uj+h) - A1r(u.+h-l) (h=I, ••• ,vj-uj, j=I, ••• ,k).

The set S~h) is obtained from theJ set S~h-I) by deleting a job

having th; smallest multiplier and µ~h)Jis the difference in value between the
J

multiplier of the job deleted and the smallest multiplier of the remaining

jobs. From these definitions, we can rewrite (3) as

\n \k ,v·-u· (h) (h) \
(4) LB= li=l wici + lj=I lh;l J µj (bj - li€S~h) Ci)'

J

where b~h) = l· slh) (r.+p.) (h = I, ••• ,v.-u., j = l, ••• ,k). (It is assumed
J l.€ l . 1. 1. J J

that any sun:unation is zero when its lower limit exceeds its upper limit.)

Clearly b~h) is a lower bound on l· s(h) c •• However, if a better lower bound
J l.€ • l.

can be found, it is possible to increise LB. To obtain the best possible bound

on the sum of completion times of jobs having release dates would require

the solution of an NP-hard problem [6]. Since this is computationally expen­

sive, we prefer to obtain a lower bound on l, (h)C. by solving the corre-
l.€S l.

sponding preemptive scheduling problem in whichJthe processing of any job

can be interrupted and resumed at a later time. The preemptive problem is

solved by the following algorithm of CONWAY et al. [2]. At any time when a

job is completed or when a new job becomes avaliable for processing, the job

which is processed next is one with the shortest remaining processing time.

If S~h) denotes the sum of completion times for the jobs in S~h) when they
J J

are sequenced using this shortest remaining processing time rule, we have

the following improved lower bound:

Since 8~h) ~ b~h), it is clear that LB'~ LB.
J J

EXAMPLE. We consider again the example given in the previous section.

We haven= (1,2,3,4,5,8,10,9,6,7) with the ordering between job 8 and

job 10 and between job 5 and job 7 being arbitrary due to equality of

multipliers. We now compute

S (O) = { l}
1

S (O) = {2,3}, s (1) = {3} (1)
= 5 2 2 µ2

S (O) = {4} 3
S(O) {5,8, 10,9,6,7}, (1) µ~1) = 1.5 = s4 = {8,l0,9,6,7} 4
s (2)

4 = {10,9,6,7} (2)
µ4 = o, s~3) = {9,6,7} (3)

µ4 = 0.5

s (4) = {6,7} (4) = 3, s (5) = {7} µ~5) = o.
4 µ4 4

7

Clearly, we have b~l) = 8~l) = 13. Solving the preemptive scheduling problem

for jobs in S~l) yields 8£1) = 193 compared with b~l) = 148. Similarly,

8~2) = 148 with b£2) = 118, 8~3) = 98 with b~3) = 87, 8~4) = 58

with b(4) = 57, 8(5) = 33 with b(5) = 33. (For this particular problem
(2) 4 (5) 4 4 (2) (5) 84 and e4 need not have been computed since µ4 = µ4 = 0.) Thus

LB'= LB+ 76 = 1741.

5. DOMINANCE RULES

If it can be shown that an optimum solution can always be generated

without branching from a particular node of the search tree, then that

node is dominated and can be eliminated. Dominance rules usually specify

whether a node can be elminated before its lower bound is calculated.

Clearly, dominance rules are particularly useful when a node can be eliminated

which has a lower bound that is less than the optimum solution.

In our search tree, nodes at level i represent initial partial sequences

in which jobs in the first i positions have been fixed. The merits of this

branching rule are discussed in the next section. The following results will

8

show when any of the immediate successors of the node corresponding to an

initial partial sequence o are dominated. We assume that a =-a 1h, whenever

o is not empty. Also we define o to be the set of jobs not sequenced in o

and we define the earli~st start time of these unsequenced jobs as

T = max{C. (o), min. ~{r.}}. (The obvious generalized notation that C. (o) -h 1€0 1 -h

denotes the (earliest) completion time of job h in the partial sequence o

is adopted.)

The first of our dominance theorems is a result of RINALDI & SASSANO

[6] • For completeness the proof is outlined.

THEOREM 2 (RINALDI & SASSANO). If job i is ahosen with i € o and with

w./p. = max. -{w./p.} and if max{r.,T} s max{r.,T} for any j € cr, where
1 1 J€0 J J 1 J

j # i, then oj is dominated.

PROOF. Consider any sequence ojo'io" having oj as initial partial sequence.

Jobi can be interchanged with the job sequenced immediately before it

without increasing the sum of weighted completion times. After the repeated

application of this process, the sequence oijo'o" will result which does

not have oj as an initial partial sequence. D

If in Theorem 2 we haver. s T, then the node corresponding too will
1

have only one immediate successor oi. The lower bound for this successor is

identical with that of its parent node and need not be computed again.

The next result is due to DESSOUKY & DEOGUN [3]. It states that the

machine should not be kept idle throughout a time interval within which

another job can be completely processed. Again, the proof is outlined.

THEOREM 3 (DESSOUKY & DEOGUN). If rj ~ Ci(oi) for any i,j € cr, then oj is

dominated.

PROOF. Given any sequence ojo'io" having oj as an initial partial sequence,

a new sequence oijo'o" can be formed in which job i has a smaller completion

time and in which the jobs in o' and o" do not have a larger completion time.

This new sequence does not have oj as an initial partial sequence. D

It is apparent that the conditions of Theorem 3 are most likely to be

satisfied when job i is chosen with C.(oi) as small as possible. It is
1

expected that Theorem 3 will be most effective at reducing the size of the

search tree when release dates have a large range.

Our final result is a consequence of dynamic programming. If the final

two jobs of a partial seque~ce can be interchanged without increasing the

9

sum of weighted completion times of jobs in the partial sequence and without

increasing the time at which the machine becomes available to process the

next unsequenced job, then this partial sequence is dominated. The importance

of this type of dominance rule is often overlooked in single machine sequenc­

ing. Recalling that a= cr 1h, our dominance theorem is as follows.

THEOREM 4. If Ch(cr1jh) $ Cj(cr1hj) an~ if wjCj(cr1jh) + whCh(cr 1jh) $

whCh(cr 1hj) + wjCj(cr 1hj) for any j E cr, then cr 1hj is dominated.

Care must be taken when both of the conditions of Theorem 4 hold with

equality that only one of the partial sequences cr 1hj and cr 1jh is discarded.

It is possible to derive other dynamic programming dominance conditions

involving the interchange of another pair of jobs or involving a larger

group of jobs, but they are unlikely to be very effective once the three

other theorems have been applied.

6. THE ALGORITHM

The branching rule is discussed first. As was stated in the previous

section, a node at level t of the search tree corresponds to an initial

partial sequence in which jobs in the first t positions are fixed. This

procedure has the advantage that once a job has been sequenced, its comple­

tion time is immediately computed and it can be discarded from consideration

in all successor nodes·. Alternatively, if nodes correspond to final partial

sequences, completion times of sequenced jobs depend on the processing order

of unsequenced jobs. Before any new node is created, the dominance rules of

the previous section are checked. If job i can be found satisfying the con­

ditions of Theorem 2 with ri ~ T, then a single successor node is created

whose lower bound is the same as that of its parent. In other cases as

many nodes as possible are eliminated using Theorem 2. Then a job i is

found with Ci(cri) as small as possible and the remaining nodes are checked

for dominance using Theorem 3. Theorem 4 is applied to all nodes which have

10

not been eliminated.

For each node of the search tree which cannot be eliminated by dominance

rules, a lower bound is calculated. Firstly, the release date of each

unsequenced job i is adjusted by setting r. = max(r.,T), where T denotes
1 1

the earliest start time of unsequenced jobs. Then the heuristic method

described in Section 2 and the lower bounding methods described in Section 3

and Section 4 are applied to the unsequenced jobs and the contributions of

sequenced jobs are added. At level i of the search tree where there are

i = n-t unsequenced jobs, the heuristic requires O(i log i) steps. A

further i steps are required to compute LB. If LB exceeds the value of a

solution already computed, then this node is discarded. Otherwise, the

lower bound LB' is computed. Since the solution of a preemptive scheduling
- - - -2 -problem with t jobs requires 0(i log i) steps, a further 0(i log t) steps

are required to solve the O(i) preemptive scheduling problems. To summarise,

LB requires O(i log i) steps and LB' requires O(i2 log i) steps.

Finally, our search strategy is given. A newest active node search is

used which selects a node from which to branch which has the smallest lower

bound amongst nodes in the most recently created subset.

7. COMPUTATIONAL EXPERIENCE

The algorithm described in the previous section which uses both LB and

LB' and a similar algorithm which uses only LB were tested on problems with

20, 30, 40 and 50 jobs. For each job i, an integer processing time p. from
1

the uniform distribution [1,100] and an integer weight w. from the uniform
1

distribution [1,10] were generated. Since the range of release dates is

likely to influence the effectiveness of the algorithms, an integer release

date for each job i was generated from the uniform distribution [0,50.5nR],

where R controls the range of the distribution. The value 50.5n measures

the expected total processing time. For each selected value of n, five

problems were generated for each of the R values 0.2, 0.4, 0.6, 0.8, 1.0,

1.25, 1.5, 1.75, 2.0 and 3.0 producing fifty problems for each value of n.

The algorithms were coded in FORTRAN IV and run on a CDC 7600 computer.

Average computation times and average numbers of nodes are given in Table 2.

Whenever a problem was not solved within the time limit of 60 seconds,

1 1

computation was abandoned for that problem. Thus in some cases the figures

given in Table 2 will be lower bounds on the average computation times and

the average numbers of nodes. Numbers of unsolved problems for the different

values of Rare listed .in Table 3.

Table 2

Average computation times and average numbers of nodes

Lower bound LB Lower bound LB'

n Average Average Average Average
computation number of computation number of
timea nodes timea nodes

20 0.08 351 0.06 170

30 3.23b 10439b 1. 4 7 2203

40 17.30b 40991b 14.89b 24651b

50 33.09b 6588l 30.5i 41255b

a Times are in CPU seconds
b Lower bounds because of unsolved problems

Table 3

Numbers of unsolved problems

R
n

0.2 0.4 0.6 0.8 1.0 I. 25 1.5 I. 75 2.0 3.0

20 0 0 0 0 0 0 0 0 0 0
30 0 0 1 0 0 0 0 0 0 0

LB 40 0 0 3 4 1 2 0 0 0 0
50 0 4 5 5 5 3 I 0 0 0

20 0 0 0 0 0 0 0 0 0 0

LB' 30 0 0 0 0 0 0 0 0 0 0
40 0 0 2 3 I I 0 0 0 0
50 0 3 5 5 5 2 1 0 0 0

It is clear from the average computation times that LB' is superior to

LB. The difference in performance is most apparent for the thirty job problems.

12

For n = 40 and n = 50 the true difference between LB and LB' in Table 2 is

disguised by the unsolved problems. It can also .be seen from Table 2 that

the average computation time per node is considerably less for LB as is

expected.

Table 3 shows that there are a total of 34 unsolved problems for LB

compared with a total of 28 for LB' which again demonstrates the superiority

of LB'. For both bounds, the problems with small Rand large Rare easiest.

This is expected because for small R the release dates become unimportant

once a few jobs have been sequenced enabling Theorem 2 to restrict the

numbers of ilIDllediate successor nodes to one. However, when R is large the

release dates become more important than the processing times and weights

allowing Theorem 3 to successfully limit the size of the search tree. The

hardest problems occur when R = 0.6, R = 0.8 and R = 1.0.

8. CONCLUDING REMARKS

The algorithm using the lower bound LB' is satisfactory for solving

small and medium sized problems. However, a sharper lower bound is needed to

cut down the size of the search tree when the number of jobs exceeds thirty.

One way in which the algorithm might be improved is to use the partition­

ing idea proposed by RINALDI & SASSANO [7]. This states that if an optimum

sequence cr of a subset of the original jobs can be found such that the

release dates of all jobs not sequenced in cr are not less than the completion

times of jobs in cr, then an optimum sequence to the complete problem exists

which has cr as an initial partial sequence. When such a subsequence cr can be

found, the remaining problem involving all jobs not sequenced in cr can be

solved independently. However, the best way to find the necessary subset of

jobs requires investigation.

The lower bounds LB and LB' are also valid lower bounds for the

preemptive version of our problem. They could, with a suitable branching rule

and with dominance rules, be used in a branch and bound algorithm for this

preemptive scheduling problem which is NP-hard [4]. Our bounds can also be

applied to the possibly more realistic non-preemptive problem in which un­

forced machine idle time is not allowed.

As well of being of interest in its own right, the solution of the

13

problem considered in this paper might prove useful in obtaining lower

bounds for flow-shop and job-shop problems based on Lagrangean relaxation.

This seems to be worthy of future research.

ACKNOWLEDGEMENTS

The authors are grateful to J.K. Lenstra for his comments on a prelimi­

nary version of this paper. The second author is grateful to the Mathematisch

Centrum, Amsterdam, for helping to finance a visit to the Mathematisch

Centrum where this research was completed.

REFERENCES

[1] CHANDRA, R., On n/1/F di}namic d,eterministic systems, Naval Res. Logist.

Quart. 1§_ (1979) 537-544.

[2] CONWAY, R.W., MAXWELL W.L. & L.W. MILLER, Theory of scheduling,

Addison-Wesley, Reading, MA (1967).

[3] DESSOUKY, M.I. & J.S. DEOGUN, Sequencing jobs with unequal readif times

to minimize mean flow time, SIAM J. Comput. _!Q (1981) 192-202.

[4] LABETOULLE, J., LAWLER, E.L., LENSTRA, J.K. & A.H.G. RINNOOY KAN,

Preemptive scheduling of uniform processors subject to release

dates, Report BW 99, Mathematisch Centrum, Amsterdam (1979).

[5] LAGEWEG, B.J., LENSTRA, J.K. & A.H.G. RINNOOY KAN, Minimizing ma:x:irrrum

lateness on one machine: computational e:x:perience and some

applications, Statistica Neerlandica 30 (1976) 25-41.

[6] LENSTRA, J .K., RINNOOY KAN, A.H.G. & P. BRUCKER, Complexity of machine

scheduling problems, Ann. Discrete Math._!_ (1977) 343-362.

[7] RINALDI, G. & A. SASSANO, On a job scheduling problem with different

ready time: some properties and a new algorithm to d,etermine

the optimal solution, Report R 7724, Istit, di Automatica,

Universita di Roma (1977).

14

[8] SMITH, W.E., Various optimizers for single-stage produetion, Naval

Res. Logist. Quart. ;! (1956) 59-66.

[9] VAN WASSENHOVE, L., Special-puFpose algorithms for one machine

sequencing problems with single and composite objectives,

Ph.D. Thesis, Industrieel Beleid, Katholieke Universiteit Leuven

(I 979).

