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ABSTRACT

For the M/G/c queue we present an approximate analysis of the waiting
time distribution. The result is given in the form of a defective renewal
equation. This integral equation can be numerically solved by a simple
recursion procedure. Also, asymptotic results for the waiting times are
presented. Numerical results indicate that the approximations are sufficient-

ly accurate for practical purposes.
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1. INTRODUCTION

In recent years considerable attention has been paid to the develop-
ment of approximations for various operating characteristics of the M/G/c
queue. In particular several good approximations for the mean queue size
have been developed, see BOXMA, COHEN and HUFFELS (1980), COSMETATOS (1976),
TAKAHASHI (1977), TIJMS, VAN HOORN and FEDERGRUEN (1981) amongst others.
Approximations for the state probabilities have been given in HOKSTAD (1978)
and TIJMS et al (1981). The various approximations suggested in TIJMS et al
(1981) are computed by a stable recursive algorithm and include the approx-—
imation of HOKSTAD (1978) as a special case. It turned out from extensive
numerical comparisons that one of the new approximations in TIJMS et al
(1981) was in general superior to the other ones. Using this particular
approximation for the queue size distribution, we shall develop an accurate
approximation for the waiting time distribution under the assumption that
service is in order of arrival. The approximation for the waiting-time dis-
tribution will be given in the form of a defective renewal equation. This
integral equation is very well suited to be solved after discretisation by
a stable forward recursive algorithm for all values of the queueing parame-
ters.

For deterministic service times an exact method has been given in
CROMMELIN (1932), but this method is of practical use only for smaller val-
ues of the number of servers, cf. also KUHN (1976). For phase type service
time an asymptotic formula for the tail of the waiting time distribution
was recently obtained in TAKAHASHI (1980), cf. also NEUTS and TAKAHASHI
(1980). Also, this expression is only to a limited extent useful for prac-
tical purposes since the coefficients of the asymptotic formula require
the solving of the balance equations for the state probabilities in the mul-
tidimensional Markov chain representation of the queueing process. Finally,
for special cases of the M/G/c queue exact methods for the waiting time
distribution have been discussed in AVIS (1976) and COHEN (1980), but these
methods are not very suitable for practical purposes.

In section 2 we shall derive the integral equation to compute the

approximate waiting times and in section 3 we present some numerical results.



2. THE INTEGRAL EQUATION FOR THE APPROXIMATE WAITING TIME DISTRIBUTION.

Consider the M/G/c queue with c¢c2> 1 servers and an infinite waiting
capacity. Customers arrive according to a Poisson process with rate A and
the service time S of a customer has a general probability distribution

function F(t) = Pr {S < t} with F(0)

0. It is assumed that the traffic
intensity p = AES/c is less than 1.
Define the following quantities, assuming that the system is in the

steady state.

P = probability that at an arbitrary epoch j customers are in the system,

L = the number of customers in the queue at an arbitrary epoch (ex-
cluding any customer in service),

W = the amount of time spent in the queue by an arbitrary customer (ex-—
cluding his service time),

Pr{w_ < t}.
q }

W (t
q( )
Observe that by the assumption of Poisson arrivals

pj = probability that an arbitrary customer sees upon arrival j other

customers in the system

i.e. Poisson arrivals see time averages (cf. STIDHAM(1972)). Hence the delay

probability Pw is given by

Pj°

I ~8

P =Pr{w > 0} =
w q

j=c

Further, define the equilibrium distribution Fe of F by
i
Fe (t) = 73 ! (1-F(x)) dx .

In TIJMS et al (1981) the following recursive scheme was derived to compute
approximations ﬁj,‘jz 0 for the state probabilities pj(cf. also TIJMS and
van HOORN (1981))

- _ QES)? -

Pn n! P s, 0<n<ec-1,

_ _ n

P, = A Pol %n-c + A Z P; Bn—j , 0 >c¢,
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In general the numbers o and Bn have to be computed by numerical integra-
tion, but for several special cases of the service time distribution explic-
it expressions can be given. Note that the corresponding approximation for

the delay probability PW is given by

c
3 - (AES) - _ _po o
PW el (1-p) p0 I-p Pep 2

i.e. the widely used Erlang delay probability approximation. Further, using
generating functions and the relation ELq = A.EWQ we obtain for qu the

approximation

EW = {p —— + (l-p)—é%— J (l-Fe(t))c dt} EWq(eXP).

0

This approximation is exact for both p-+0 and p~>1, cf. BOXMA et al (1980),
KOLLERSTROM (1974) and BURMAN and SMITH (1981).

We now turn to the determination of an approximation for the waiting
time distribution. Therefore we assume that customers are served <n order
of arrival, Consider a test customer. The test customer sees upon arrival
Lq, customers in the queue, has waiting time Wq and 1eaves‘upon entering
service L customer behind in the queue. By an up-and down crossing argument
observe th%t L ‘and L have the same distribution, whereas the L_ custom—
ers have been a%rived d%ring Wq. By the assumption of Poisson arriggls L
has the same distribution as Lq' Hence the number of customers arrived du%—
ing Wq has the same distribution as Lq and so we have the known relation

(cf. MARSHALL and WOLFF (1971) and HAJI and NEWELL (1971)),
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Noting that Pr{L = 0} =2 .= 1-P_+ and Pr{L = 3j} =P .. j=21 and
8 q =0 Pj W' Pe {hq =3} = Beyy,d
using the approximations for pj it is straight forward to show

j(l—Fe(t))C_](l—F(t)) AR L
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For clarity of presentation we define the probability distribution functions

ct
G(t) = 1-(1-F_(£))° , H(t) = —ﬁ‘? I (1-F(x))dx, 20
0
By combining (1) and (2), we find for th%’Laplace transform of W
_ Je—St dG(t)
—qu _ _ 0
(3) Ee = 1--Pw + PP._; =

1 -p f e St aH(r)
0

Inversion of (3) gives the Pollaczek-Khintchine like result

- - - = *
W () = 1-By+op  § " (@xH)(D), 20,
n=0

. . * .
where * denotes the convolution operator and H0 (t) 1. Define

V(t) = l—P{Wq >t W >0}, t=0,

i.e. V(t) is the waiting time distribution for the delayed customers. Noting

that V(t) = 1--(1--Wq(t))/Pw and using pﬁc_] = (1-p) §W’ we get the approxi-

mate result



(4) V() = (1-p) T o™ *HEY™)(t), t=0.
n=0

By taking the convolution of (4) with H we get the defective renewal equation

t
V(t) = (1-p)G(t) + p J V(t-x) dH(x), t=0, or
0 t
(5) V(t) = (1-p){1 -(I-Fe(t))c} + A f V(x) (1-F(c(t-x)) dx, t=0.

0

In the appendix we discuss a numerical procedure to solve (5).
REMARK. Asymptotic results for the waiting times

Following the analysis on p. 362 in FELLER (1966), we can reduce the
defective renewal equation (5) to a proper renewal equation and apply the

key renewal theorem to this latter equation. Thus we obtain

o

® K
(w03 [ o (=018, (1) ay
(6) .\—f(t) ~ e »y L >

A f y Y (1-F (cy))dy

where k >0 is the unique solution to

A reKy(l—F(cy))dy =1,

This approximate asymptotic expansion is very close to the exact asymptotic
expansion of P{Wq>t} derived in TAKAHASHI (1980). For the case of a phase-
type service time distribution it was shown in TAKAHASHI (cf. also NEUTS
and TAKAHASHI (1980)),
ET,
(7) P{W >t} ~ e , Lo,
1 2_c-1
A=)t

Eyl/c

where £ >0 is the unique solution to fg e dF(y) = 1+&/x, T = 1 +&/)

. . . n . .
with 11mn+°° pn/pn_1 = T and Ty = 11mh*m T P, It is easily shown that



k = & and hence the asymptotic formulas (6) and (7) are identical except for
a multiplicative constant. We finally remark that using the discrete renewal
theorem it can be readily verified from our recursion relation for the ﬁn

that 11mn_Ho pn/pn_l = 1 and hence is exact.

3. NUMERICAL RESULTS.

- In this section we present some numerical results for the waiting time
diéﬁribﬁtion. We have made the following choices for the distribution of the
service time S.

1) deterministic (D),

2) Erlang-2 (EZ)’ density uzte_ut, U= 2, cv2 = 0.5,

3) mixture of Erlang-1 and Erlang-3 (E1’3), density pue_ut+(l—p)%u3t2e_ut,

p = 0.225708, yu =3-2p, cv® = 0.5,
4) hyperexponential (H2), dgnsity pule—ult + (l—p)uze_uzt, p = 0.810087,

M, = 2p, My = 2(1-p), cv_ = 2.25, )
The mean service time is taken to be 1 and cv™ denotes the squared coefficient
of variation of S, i.e. cv2 = ESZ/(ES)2 - 1.
We have solved the integral equation for the approximate waiting time
distribution by using the numerical procedure given in the appendix. In
case 1) we have compared the approximate results (app.) with the exact
results (ex) of Kuhn (1976). In the other cases we compare our approximate
results with the asymptotic results (asy) of Takahashi (1980) and with
simulation results (sim). The difficulty in computing the asymptotic
results is the determination of the constant ™ in (7). Therefore the
exact values of the state probabilities P, have to be computed and this
is only computationally feasible for smaller values of c. For our numerical
examples we have used the decomposition method of Takahashi and Takami(1976)
to compute the exact values of the state probabilities. For each example
we have simulated one million customers. In the tables the notation
.77(1) means that the 957 confidence interval of the simulated value is
.76-.78. The tables 1 and 2 indicate that the approximate results are
accurate enough for practical purposes and are at least as accurate as
the results obtained by time—consuming computer simulation. The computation
time for the approximate results was about 1 second CPU time for each example
and was practically independent of the values of ¢, p and cvz. The asymptotic
results required per example between 1 and 15 seconds CPU time whereas the
simulation of one example with one million customers took on the average

180 seconds CPU time.



Table 1. P{W > T qu >0}, p=0.8

T 0.1
c= 3

app-. .9385
ex. .9277
app. .9390
asy. .9697
sim. 94(1)
app. . 9403
asy. .9832
sim. .93(1)
app. .9429
asy. .8204
sim. .95(1)
c= 5

app. .8979
ex. .8769
app. .8996
asy. .9347
sim. .89(1)
app. .9019
asy. .9514
sim. .90(1)
app. .9071
asy. . 7597
sim. .91(1)
c=10

app. .7881
ex. .7599
app. .8041
asy. .8459
sim. .81(1)
app. .8084
asy. .8683
sim. .81(1)
app. .8263
asy. .6392
sim. .85(1)

0.25

.8371
.8123

.8461
.8574
.85(1)

.8511
.8685
.84(1)

.8677
.7796
.88(1)

.7190
.6917

.7521
.7614

.75(1)

.7589
.7738
.75(1)

.7935
.6979
.80(1)

.4590
.4553

.5493
.5614
.56(1)

.5557
.5744
.56(1)

.6510
.5393
.68(1)

0.5

.6422
.6146

.6996
.6985
.70(1)

.7076
. 7064
.69(1)

.7656
.7162
.79(1)

<4428
4204

.5422
.5410
.54(1)

.5495
.5484
.54(1)

.6554
.6058
.67(1)

. 1606
. 1578

.2793
.2835
.29(1)

.2821
.2885
.30(1)

<4732
4064
C47(1)

0.75

.4696
.4396

.5729
.5690
.57(1)

.5801
.5746
.56(1)

. 6849
.6578
L71(1)

.2597
.2409

.3864
. 3844
.38(1)

.3912
.3887
.39(1)

.5558
.5258
.56(1)

.0547
.0533

1411
<1431
. 149(7)

L1418
. 1449
L15(1)

.3542
.3062
.34(1)

1.0

.3399
.3172

4675
.4636
C47(1)

.4730
4673
46 (1)

.6188
.6043
.64(1)

.1516
.1413

.2747
.2732
.27(1)

.2775
.2755
.27(1)

L4775
4564
L48(1)

.0186
.0180

.0712
.0723
.076(6)

.0712
.0728
.077(7)

.2666
.2307
.25(1)

1.5 2.0
.1781 .0933
. 1666 .0874
.3105 .2061
.3076 .2042
J31(1)  .21(1)
.3132 .2072
.3092 . 2045
.30(1) .20(1)
.5139 <4311
.5099 .4302
.53(1)  .44(1)
.0516 .0176
. 0481 .0164
. 1387 .0701
. 1379 .0696
.137(6) .069(5)
. 1394 .0700
.1384 .0695
.137(7) .068(5)
.3575 .2691
.3439 .2591
.35(1) .26(1)
.0022
.0021
.0182 .0046
.0184 . 0047
.020(4) -
.0180 .0045
.0184 .0046
.019¢4) -
.1513 .0859
. 1309 .0743

.137(8) .076(7)

3.0

.0256
.0240

.0907
.0899
.095(6)

.0907
.0895
.083(5)

.3061
.3063
31(1)

.0179
.0178

.0177
.0175

. 1527
<1471
L14(1)

.0277
.0239
.023(5)



Table 2. P{Wq > T lwq >0} ,e=5
T 0.1 0.25 0.5 0.75 1.0 1.5 2.0 3.0
p=0.5

app. .7653  .4475  .1311  .0293  .0061

ex. .7366 .4231 .1192 .0215 .0046
app. .7682 .4927 .2160 .0902 .0370 .0062
asy. .9668 .5638  .2294 .0934 .0380 .0063

sim. J77(1) .49(1) .216(7) .092(5) .038(4) -

app. .7730  .5043  .2240 .0928 .0374  .0060
asy. 1.060 .6096 .2425 .0965 .0384  .0061
sim.  .76(1) .49(1) .22(1) .096(5) .040(3) -

app. .7834 .5586 .3450  .2308 .1619 . 0847 .0454
asy. .3351 .2788 .2052 .1511 L1112 .0602 .0326
sim. .80(1) .58(2) .36(1) .23(1) .15(1) .073(7) .037(5)

p=0.7

app. .8511 .6115 .2932 .1277 .0549 .0101 .0019

eX. .8244 .5809 .2722 L1122 .0489 .0090 .0017

app. .8534 .6527 .3988 .2387 1421 .0502 .0177 .0022
asy. .9213 .6743 .4008 .2383 .1416 .0500 .0177 .0022
sim. .85(1) .65(1) .40(1) .24(1) .144(7) .052(4) .019(2) -
app. .8566 .6616 .4069 .2429 .1438 .0502 .0175 .0021
asy. . 9526 .6946 4102 2423 . 1431 .0499 .0174 .0021
sim. .85(1) .65(1) .40(1) .242(5) .143(4) .050(3) .017(2) -
app. .8639 .7063 .5302 .4153 .3327 .2190 . 1456 .0646
asy. .6164 .5457 .4456 .3638 .2970 .1979 .1319 .0586

sim. .87(1) .73(1) .55(1) .42(1) .33(1) .21(1) .14(1) .059(7)

p=0.9

app. . 9475 .8474 .6673  .5159 .3982 .2372 1413 .0063
ex. .9354 .8297 . 6498 .4985 .3854 .2297 .1369 .0061
app. . 9484 .8671 .7368 .6231 .5265 .3758 .2682 .1366
asy. .9621 .8695 .7346 .6206 . 5243 .3742 .2671 .1360
sim. .94(1) .86(1) .73(1) .62(1). .52(2) .37(2) .26(1) .13(1)
app. .9496 .8709  .7417 .6272 .5297 .3776 .2692 .1368
asy. .9690 .8754  .7391 .6240  .5269 .3756 .2678 .1361

sim. L95(1) .87(1) .74(1) .63(1) .53(1) .38(1) .27(1) .14(1)

app. .9525 .8909 .8096 ;7446 .6888 .5927 .5111 .3803
asy. .8893 .8507  .7901 .7339 .6816 .5879 .5071 .3774
sim. .95(1) .89(1) .81(1) .74(1) .68(2) .58(2) .49(2) .36(2)



APPENDIX

For the numerical solution of the integral equation (5) we propose the fol-
lowing procedure, which can be found in detail in DELVES and WALSH (1974).
Consider the integral equation

t

£(t) = g(t) + J f(x) k(t-x)dx , £t 20

0
to be solved for f(t), where g(t) and k(t) are known differentiable functionms.
Choose a step length h and let fn denote f(nh),vetc. Beside f0(= go) a second
initial value f, can be obtained using Day's starting procedure. Letting
g%=g(h/2)-and k%=k(h/2), define -
a, = g] + hgolﬂ

[\
]

1
2 = 8 * 2h(gok; +aky)

a, = g, +

-

h(gok% +1 gOkO +1 azko)

Nl

then
_ 1
fl = g]-+E-h(g0k]-+4a3k%-+a2ko)

For the integration we use repeated Simpson's rule. We need to distinguish

between n even and n odd.

n
_ 1

n even: fn =8,+3 h'Zo dn,J f kn—J s

J

B3 3

n odd : fn =&ty h Z dn—3,j j n-j T3 h(fn—B k3 +3fn—2k2 *

i=0

* 3 fn—lkl'anko)’
= -— - j 3 — = = 1

where dn,j 3-(-1)Y , 1 £j<n-1, dn,O dn,n 1 are the weights of the

integration rule. We remark that for the M/D/c case only slight modifications

in the above procedure are required since the functions g(t) and h(t) are

then only piece-wise differentiable.
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