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ABSTRACT 

Surrogate duality bounds for the job shop scheduling problem are obtained by 

replacing certain constraints by their weighted sum and strengthening the 

aggregate constraint by iterating over all possible weights. The constraints 

successively considered for this purpose are the capacity constraints on the 

machines and the precedence constraints determining the machine order for 

each job. The resulting relaxations are investigated from a theoretical and 

a computational point of view. 

KEY WORDS & PHRASES: job shop scheduling, branch-and-bound, surrogate duality 

relaxation, computational experience. 

NOTE: This report has been submitted for publication in a journal. 





1 

1. INTRODUCTION 

In the general job shop problem, n jobs have to be scheduled on m machines, 

subject to both capacity constraints expressing that each machine can handle 

at most one job at a time, and precedence constraints reflecting a specified 

processing order through the machines for the operations of each job. The 

objective is to find a schedule that minimizes the maximum of the job comple

tion times. 

This problem is well known to pose a formidable computational challenge. 

As shown in Table 1, only two very special cases are solvable in polynomial 

time and their immediate generalizations are NP-hard. This implies that 

optimization algorithms have probably to be based on some form of implicit 

enumeration. We refer to [Lageweg et al. 1977] for a review of such attempts 

and in particular for a systematic survey of the lower bounds proposed for 

use in branch-and-bound algorithms. 

The purpose of this paper is to investigate various surrogate duality 

relaxations [Glover 1968, 1975; Dyer 1980] of the job shop problem. Such a 

relaxation is obtained by starting from a mathematical programming formula

tion of the problem and replacing certain constraints by a weighted linear 

combination of them. This procedure should be carried out in.such a way that 

the relaxed problem is easily solvable and yields a strong lower bound on 

the optimum solution value for an appropriate choice of weights. 

number of number of processing complexity reference 

machines operations time per 

per job operation 

2 :,; 2 arbitrary O(n log n) [Jackson 1956] 

2 arbitrary arbitrary unary NP-hard [Garey et al. 1976] 

2 :,; 3 arbitrary binary NP-hard } [Lenstra et al. 1977; 

3 :,; 2 arbitrary binary NP-hard Gonzalez & Sahni 1978] 

2 arbitrary 1 O(n log n) [Hefetz & Adiri 1979] 

2 arbitrary 1 or 2 unary NP-hard [Lenstra & Rinnooy Kan 1~79] 

3 arbitrary 1 unary NP-hard [Lenstra & Rinnooy Kan 1979] 

Table 1. Sunnnary of complexity results. 
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SurrogatE3 duality relaxation is closely related to Lagrangean relaxation 

[Geoffrion 1974; Fisher et al. 1975; Fisher 1981], in which the weighted and 

aggregated constraints are removed and added to the objective function. This 

approach has been applied with great success to several notorious combinato

rial optimization problems, such as the traveling salesman problem [Held & 

Karp 1971], a job shop problem with min-sum objective [Fisher 1973], the 

generalized assignment problem [Ross & Soland 1975], a single machine sched

uling problem [Fisher 1976], and the plant location problem [Cornuejols et al. 

1977]. It is E3asily verified, however, that for fixed weights the surrogate 

duality bound is .at least as strong as the Lagrangean bound. Fortunately, in 

the job shop case the former bound is also as easy to calculate. 

Two mathE3matical programming formulations of the job shop problem are 

given in Section 2. Surrogate duality relaxations of the capacity constraints 

and of the prE3cedence constraints are considered in Sections 3 and 4 respec

tively. Computational experience is presented in Section 5 and some concluding 

remarks are contained in Section 6. 
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2. MATHEMATICAL PROGRAMMING MODELS 

We shall denote then jobs by J 1 , ..• ,Jn and them machines by M1 , ..• ,Mm. Job 

J. consists of a chain of operations (O 1 , .•• ,0 ) (j = 1, ••• ,n), where 
J mj-1 + mj 

0 = m0 < m1 < ••• < mn. Operation Ou requires a given uninterrupted processing 

time of p time units on a given machine M (u = 1, ... ,m ); O has to be com-
u µu n u 

pleted on M before O 1 can start on M (u = m. 1+1, •.. ,m.-1; j = 1, ••. ,n). 
µu u+ µu+l J- J 

Machine M. can handle no more than one operation at a time (i = 1, ••• ,m). 
l. 

The problem is to minimize the maximum completion time z subject to 

(a) the requirement that all operations are performed in the interval [O,z], 

the precedence constraints among the operations of each job, and 

the capacity constraints on the machines. 

(b) 

(c) 

Let x denote the starting time of operation O in a given schedule, and let 
u u 

X = (x1 , ... ,x~). Conditions (a) and (b) can now be formulated as 

XE X(z) 

where X(z) is the set of all vectors x for which 

X +p -x :5: 0 (u = m. 1+1, .•• ,m.-1; j = 1, ... ,n), 
u u u+l J- J 

( 1) 

X +p -z :5: 0 (u = 1, •.. ,m ), 
u u n 

X ;c: 0 (u = 1, ••. ,m ). 
u n 

Condition (c) allows several mathematical formulations. The traditional way 

[Manne 1960] is as follows. Let T be a given upper bound on the length of an 

optimal schedule, and for each ordered pair (0 ,o) such thatµ = µ let 
U V U V 

y be a 0-1 variable with 
UV . 

if O precedes O, 
U V 

if O precedes o. 
V U 

Condition (c) can now be formulated as 

X +p -x -Ty 
U U V UV 

y +y = 1 
UV VU 

y E {0,1} 
UV 

for all (u,v) with µu = µv. 

(2) 
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In an alternative approach [Fisher 1973], let nit(x) denote the number of 

operations performed on machine M, at time t for a vector x of starting times: 
1 

n.t(x) = l{o Iµ = i, t-p < x ~ t}J. 
1 U U U U 

Condition (c) now amounts to 

nit(x)-1 ~ 0 (i = 1, ••• ,m~ t = 1, ••• ,T). (3) 

The aggregation of capacity constraints (2) and (3) will be investigated 

in Section 3 and the aggregation of precedence constraints (1) in Section 4. 

We will treat the left-hand side of the aggregate constraint as a new objec

tive function and ask for the smallest z such that its minimum subject to the 

other constraints is nonpositive. This is obviously equivalent to minimizing 

z subject to the condition that the relaxed constraints allow a feasible 

solution. 



3. RELAXATION OF THE CAPACITY CONSTRAINTS 

We start by considering the first formulation of the capacity constraints. 

We assign nonnegative weights a to the constraints (2) and aggregate them 
UV 

to a single linear constraint. The relaxed problem is then to minimize z 

subject to 

X E X (z) , 

5 

L{ } [a (x +p -x )+a (x +p -x )-a. Ty -a Ty ] :s; 0, (2') 
u,v :µu=µv UV u u V vu V V u UV UV vu vu 

y +y = 1} UV VU 
for all (u,v) withµ = µ. 

U V 
y E {0,1} 

UV 

For given weights a and a given objective value z, let A(a,z) denote the 
UV 

minimum value of the left-hand side of (2') subject to the other constraints. 

The relaxed problem is then equivalent to finding the smallest z such that 

A(a,z) :s; 0. 

Consider any pair {u,v} withµ =µ,and suppose that a 
U V UV 

assumption implies that there is an optimal solution with y = 
UV 

The contribution of {u,v} to A(a,z) can now be rewritten as 

(a -a ) (x -x )+a p +a p -a T. 
UV VU U V UV""U VU V UV 

2:: a . This 
vu 

1 and y = O. 
vu 

Since x -x :s; T-p and p :s; T-p, this contribution is at most equal to 
U V U V U 

(a -a ) (T-p )+a (T-p )-a. (T-p) 0. 
UV VU U VU U UV U 

A similar argument applies if a < a . It follows that A(a,z) :s; 0. 
UV VU 

The smallest z such that A(a,z) :s; 0 is therefore equal to the smallest 

z for which X(z) #¢,i.e., 

z = max . { Lm.2. + 1 p } . 
J u-m. 1 u 

J-

This is a familiar [Charlton & Death 1970; Schrage 1970] and extremely weak 

lower bound on the length of an optimal schedule. 

We therefore turn to the second formulation of the capacity constraints. We 

assign nonnegative weights Sit to the constraints (3) and aggregate them to 
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obtain 

(3 I) 

For given Sand z, let B(S,z) denote the minimum value of the left-hand side 

of (3') subject to x € X(z). As before, we ask for the smallest integer z 

such that B(S,z) ~ O. 
-Since X(z),::. X(z+l), B(S,z) is nonincreasing in z. For z < z, we have 

X(z) =~and hence B(S,z) = 00 • 

Calculation of B(S,z) for fixed Sand all z E {z, ••• ,T} is carried out 

by means of dynamic programming, as in [Fisher 1976]. Since the contribution 

of an operation to B(S,z) is equal to the sum of the weights as~ociated with 

its machine over all time units of its execution, B(S,z) can be rewritten as 

where 

B.(S,z) = min {tmj rxu+Pu S }. 
J XEX(z) lu=m. 1+1 lt=x +1 µ t 

J- u u 

Consider a fixed job J .• For all u € {m. 1+1, ••• ,m.}, let b (z) denote the 
J J- J u 

minimum cost of performing the operations O 1 , ••• ,0 in tl;le interval [O,z]. 
mj_ 1+ u 

Due to constraint (1), 0 has to be performed in the interval [r ,T-q ], where 
u . u ~ 

Hence, b (z) can be calculated by the following recursion: 
u 

b (z) = 0 
m. 1 J-· 

b (z) 
u = (in{b (z-1),b 1 Cz-p} 

u u- u 

(u = m. 1+1, .•• ,m.} • 
J- J 

We now have 

B. (S,z} = b (z). 
J m. 

J 

+ tZ S } 
lt=z-p +1 µ t 

u u 

(z 

(z 

(z 

(4) 

= 0, ••• ,T-4m > i 
j-1 

= o, ... ,r +p -1} } u u 

= r +p , ••• ,T-4u} u u 

It follows that B(S,z), ••. ,B(S,T) can be calculated in O(m T) time. 
n 
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For fixed 6, the smallest z such that B(6,z) ~ 0 yields a valid lower 

bound z with an associated vector x of starting times. By maximizing over 

all possible choices of 6, we may improve on this bound. That is, we try to 

find new weights 6' for which B(6',z) > 0, calculate a new lower bound z' as 

the smallest z such that B(6',z) ~ 0, and repeat. 

There are various procedures to obtain 6' from 8, similar to the sub

gradient optimization techniques that are used in the context of Lagrangean 

relaxation. Here, however, we are only concerned with the sign of B(8,z) and 

hence the lower bound is invariant under scalar multiplication of 8. Under 

these circumstances, it can be proved [Minsky & Papert 1969] that the 

iteration scheme defined by 

for any constant step size A> 0 will converge to a 8' for which B(8',z) > 0, 

if such a 8' exists. Other iteration procedures are possible as well; we 

refer to [Lageweg 1982] for details. 

We note that 8 can be initiated in such a way that z closely approximates 

the job shop bound proposed in [Bratley et al. 1973], reputedly the best one 

currently available. More precisely, the latter bound is equal to the maximum 

solution value over m single machine problems, and when these problems are 

relaxed by allowing preemption, the resulting bound will be no larger than z 

for a certain choice of 8. Again, we refer to [Lageweg 1982] for details. 
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4. RELAXATION OF THE PRECEDENCE CONSTRAINTS 

We next investigate the relaxation of the precedence constraints. We assign 

nonnegative weights y to the constraints (1) and aggregate them. The result
u 

ing problem is to minimize z subject to 

I;=1 
Imj-1 y (x +p -x 1) :$; o, ( 1 I ) 

u=m. 1+1 u u u u+ 
J-

0 :$; X :$; z-p 
u u 

(u = 1, ••• ,m ) , 
n 

(5) 

the capacity constraint on Mi (i = 1 , ••• , m) • (6) 

For given y and z, let C(y,z) denote the minimum value of the left-hand side 

of (1') subject to (5) and (6). The relaxed problem is again equivalent to 

finding the smallest integer z such that C(y,z) :s; O. 

It is easily verified that C(y,z) is nonincreasing in z and that 
= C(y,z) = 00 for z < z, where 

= Calculation of C(y,z) for fixed y and z ~ z requires the solution of m 

separate single machine problems: 

lm ln lm·-1 C(y,z) = . 1 C. (y,z) + . 1 J 1 yupu 1= 1 J= u=m. + 
J-1 

where 

with 

ru 
(u = m. 1 +1; j = 1, ••• ,n), 

J-
y' = -y (u = mj; j = 1, ••• ,n), 

u u-1 

yu-yu-1 (otherwise). 

c. (y,z) can be calculated by a simple generalization of Smith's rule [Smith 
1 

1956]: schedule the operations in order of nonincreasing ratios y~/pu, with 

the positively weighted operations assigned to an interval starting at time 0 

and the negatively weighted ones assigned to an interval finishing at time z. 

It follows that C(y,z) can be calculated in O('~ 1 n.log n.) time, where n. li= 1 1 1 
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is the number of operations performed on M. (i = 1, ••• ,m). 
J. 

It also follows that, for z ~ z, C(y,z) is a linear function of z: 

C(y,z) = c+c'z (7) 

for some constant c and with c' equal to the sum of the negative weights y'. 
u 

Hence, the smallest integer z such that C(y,z) ~ 0 is given by z = r-c/c'l• 

This observation allows a comparison between the above approach and 

Lagrangean relaxation, in which constraint (1') is removed from the problem 

and its left-hand side is added to the objective function. The Lag.rangean 

bound is given by rmin {c+(l+c')z}l. This value is no larger than z, and z 
both bounds are equal if the weights are normalized such that c' = -1. 

We may improve on the lower bound z by applying standard subgradient 

optimization techniques to the Lagrangean problem subject to the normaliza

tion constraint on the weights, or by using one of the iteration schemes 

referred to in the previous section. In both cases, we can make use of the 

property that the optimal scheduling order determined by Smith's rule does 

not change as long as the ordering of the ratios y'/p remains the same. The 
u u 

latter condit-ion defines linear constraints in weight space demarcating 

regions that can be traversed in a single step. Unfortunately, serious 

degeneracy occurs at the border of these regions and a BOXSTEP-like iteration 

[Marsten et al. 1975] would be required to continue from there. 

Initial computational experiments indicated that the resulting lower bound 

would be very weak. This is not surprising, since the precedence constraints 

(1) are poorly represented by the aggregate constraint (1'). We can obtain a 

better b9und by taking certain implications of (1) explicitly into account 

in the calculation of C(y,z). In particular, (1) implies that each operation 

Ou has to be performed between a release date ru and a deadline z-4u (cf. 

(4)), so that (5) can be replaced by 

(u = 1, ... ,m ) • 
n 

(5 I) 

To analyze the complexity of the improved lower bound computation, let 

us distinguish between two types of single machine problems: 

the feasibility problem: determine whether C. (y,z) is finite; 
J. 

the minimization problem: calculate C. (y,z). 
J. 
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If we impose the additional constraints (5'), then the feasibility problem 

and a fortiori the minimization problem become unary NP-hard [Lenstra et al. 

1977]. If, in addition, we allow preemption (job splitting), then the feasi

bility problem can be solved in O(n log n) time [Lageweg et al. 1976], but 

the minimization problem is still unary NP-hard [Labetoulle et al. 1979]. In 

both cases, the linearity property expressed by (7) is lost. It is worth 

observing that these statements are still true if the release dates are 

respected only for the positively weighted operations and the deadlines only 

for the negatively weighted operations. 

The strongest possible bound arising from this discussion, incorporating 

release dates and deadlines and not allowing preemption, dominates the bound 

due to [Bratley et al. 1973] mentioned in the previous section. In fact, the 

latter bound is equal to the smallest z such that C(y,z) is finite. The com

putation of either bound requires the solution of several instances of an 

NP-hard single machine problem, but in view of their small size that is not 

necessarily disastrous. 
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5. COMPUTATIONAL EXPERIENCE 

We shall restrict ourselves to reviewing several attempts to solve the noto

rious 10-job 10-machine 100-operation problem from [Fisher & Thompson 1963]. 

This benchmark problem is not known to have been solved to optimality. We 

feel that, in spite of this limitation, the results as summarized in Table 2 

give a fair representation of the qualities of the four algorithms in ques

tion. Below, we briefly describe these algorithms and comment on the results 

obtained. 

All four algorithms are branch-and-bound methods and use a branching 

scheme that generates all active schedules [Brooks & White 1965; Florian et 

al. 1971]. 

Algorithm 1 is the best job shop algorithm published so far. The lower 

bound is given by the maximum solution value over m single machine problems; 

each of these problems is based on the relaxation of the capacity constraints 

on all machines but one and is equivalent to minimizing maximum lateness sub

ject to release dates. This bound was proposed in [Bratley et al. 1973]; a 

very efficient method for its computation was given in _[Merta.hon & Florian 1975]. 

The search strategy selects a node with minimum lower bound for further exam

ination. Algorithm 1 was able to solve the 20-job 5-machine 100-operation 

problem from [Fisher & Thompson 1963] to optimality; it generated 2259 nodes 

and required 152 CPU seconds. Table 2 gives the results for the 1ox10 problem. 

Algorithm 2 is an improved implementation of Algorithm 1. Noteworthy 

points of difference are the following: 

Algorithm 1 2 3 4 

Reference 
[McMahon & [Lageweg 1982] Section 3 Section 4 Florian 1975] 

First lower bound 808 808 813 808 

Best solution 972 935 1084 1084 

Number of nodes 26692 119344 1 1 

CPU seconds 698 512 700 1024 

Language FORTRAN PASCAL PASCAL PASCAL 

Computer Cyber 74 Cyber 170-750 Cyber 73-28 Cyber 73-28 

Table 2. Results for 1ox10 problem. 
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lower bound: The single machine algorithm from [McMahon & Florian 1975] 

has been modified as described in [Lageweg et al. 1976] and is applied 

only to a limited number of promising machines, for which a weaker 

single machine bound takes on the highest values. 

search strategy: A recursive search strategy is employed, which is 

adaptive in the sense that, when a good solution is prespecified or a 

better one obtained, it starts looking around for improvements in the 

neighborhood of that solution. 

upper bound: A heuristic from [Lageweg et al. 1977] tries to find a 

better solution at four equidistant levels of the search tree. 

Further details will be provided in [Lageweg 1982]. Algorithm 2 solved the 

20x5 problem after generating 1696 nodes in 26 CPU seconds. Table 2 reports 

on an application to the 1ox10 problem given a solution of value 936; the 

latter solution was obtained by an alternating sequence of improvements by 

computer and adjustments by hand. 

After this, the results obtained with Algorithms 3 and 4 incorporating 

the bounds developed in Sections 3 and 4 are somewhat disappointing. Both 

algorithms apply a weight iteration scheme proposed in [Shor 1968] to increase 

the lower bound and use the heuristic method mentioned above to decrease the 

global upper bound. Table 2 gives the results for the 1Qx10 problem with 

respect to the root node of the search tree. 

Algorithm 3 implements the second relaxation of the capacity constraints. 

After 84 ascents, we obtained a lower bound of value 813, which represents at 

least an improvement over the McMahon-Florian bound. However, the investments 

in computer time involved did not encourage us to carry on the search beyond 

the root. In an effort to speed up the computations, we tried to decrease the 

problem size by scaling the processing times or by allowing nonzero multipliers 

S. onlv for certain equidistant values oft, to incorporate second order it -
information in the weight iteration scheme, and to use the final weights from 

the root node at some or all levels of the tree. None of these attempts was 

very successful. Another idea might be to use a fully polynomial approximation 

scheme in solving the relaxed problem during the initial iterations. 

Algorithm 4 implements the strongest possible bound resulting from the 

relaxation of the precedence constraints. For a given choice of weights, this 

requires the solution of m instances of an NP-hard single machine problem, 
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viz. minimizing total weighted completion time subject to release dates and 

deadlines. In the absence of an efficient-method to solve this problem, we 

resorted to brute force techniques and, for the initial choice of weights, 

obtained a lower bound of value 808. Previous experiments indicated that the 

other bounds of this type, disregarding release dates or deadlines or allow

ing preemption, are rather weak. 
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6. CONCLUDING REMARKS 

The results presented in this paper are so far primarily of theoretical 

interest. Although our bounds dominate those proposed before, the time 

required for their computation prohibits the solution of problems of a 

reasonable size. This confirms once more the inherent intractability of the 

job shop scheduling problem, and we repeat the all too familiar words of 

[Conway et al. 1967]: "Many proficient people have considered this problem, 

and all have come away essentially empty-handed. Since this frustration is 

not reported in the literature, the problem continues to attract investiga

tors who just cannot believe that a problem so simply structured can be so 

difficult until they have tried it." At least the latter sentence of this 

quotation has lost some of its validity. 

It should be mentioned that the applicability of surrogate duality 

relaxation to combinatorial optimization problems is of interest by itself. 

The property that the resulting bounds are superior to those obtained by 

Lagrangean relaxation might render surrogate duality a promising approach to 

other problems in the area as well. 
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