
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNE
(DEPARTMENT OF OPERATIONS RESEARCH)

A. W. J • KOLEN

BW 147/81

A POLYNOMIAL-TIME ALGORITHM FOR SOLVING THE SET
COVERING PROBLEM ON A TOTALLY-BALANCED MATRIX

~
MC

SEPTEMBER

kruislaan 413 1098 SJ amsterdam

PJu,nte,d at :t.:he Mathematic.al. Cen.tll.e., 413 Klll.Uf.,.laan, Am6.tvu1.am.

The Mathe.ma:tlc.ai.. Ce.n.tll.e. , f,ounde.d .the. 11-.th of, Febfr..lUVl.y 1946, b.i a. non
p1r..o f,U ,lnt:,,t.i_,tu,tlo n a,.lmi_ng at .the. pll..omoilo n of, pUJr..e. mathe.matic.-6 a.nd ,la
a.pplic.ation6. 1.t b., -6pon6aJr..e.d by .the. Ne..thelr..la.nd6 Gove.Jr..nme.nt .thll..ough .the.
Ne..thelr..la.nd6 01r..ga.n-lzation f,oJr.. .the. Adva.nc.e.me.nt of, PUJr..e. Re.-6e.aJr..c.h (Z.W.O.).

1980 Mathematics subject classification: 68E99, 05B40

A polynomial-time algorithm for solving the set covering problem on a

. totally-balanced matrix

by

Anteon Kolen

ABSTRACT

A (0,1)-matrix is totally-balanced if it does not contain a square

submatrix of size at least three which has no identical columns, and its

row and column sums equal to two. Let A be an nxm totally-balanced matrix.

We give an O((min{m,n}) 2 max {m,n}) algorithm to solve the set covering problem

defined on A; a tree location problem serves as an example of such a set

covering problem. We also give an algorithm which recognizes an nxm totally

balanced matrix (m ~ n) in O (nm2) time.

KEY WORDS & PHRASES: Set aovering problem, baZanaed matriaes, Zoaation

theory

I • INTRODUCTION

A (0,1)-matrix is baZanaed if it does not contain an odd square sub

matrix of size at least three with all row and column sums equal to two.

Balanced matrices have been studied extensively by BERGE [l] and FULKERSON

et al. [3]. We consider a more restrictive class of matrices called totally

balanced (LOVASZ [7]). A (0,1)-matrix is totaZZy-baZanaed if it does not

contain a square submatrix of size at least three which has no identical

columns, and its row and column sums equal to two.

Let A= (a ..) be an nxm totally-balanced matrix and let c.(j=l,2, ••• ,m)
1J J

be nonnegative integers. The set covering problem is given by

m
(P) min I c.x.

j=l J J

m
s.t I a .. x. ;:;:: I

'
i = I, 2, ... ' n,

j=l 1J J

x. € {0,1}, j = I, 2, ... , m.
J

The dual problem 1S given by

n
(D) max- I y.

i=l 1

n
s.t l. y.a .. ~ c. j = I , 2, ... , m,

i=l 1 1J J

y. ;:;:: 0 , i = I , 2, ... , n.
1

For an arbitrary (0,1)-matrix A the optimum value of (D) is less than or

equal to the optimum value of (P). It is well known (FULKERSON et al. [3])

that in case of balanced matrices problems (P) and (D) when solved as linear

programming problems give integral solutions. Due to the result of KHACHIAN

[5] we know that both problems can be solved in polynomial time. For the

case that A is totally-balanced we give an O((min{m,n}) 2max{m,n}) algorithm

to solve both problems and give a constructive proof of strong duality.

As an example of problem (P) we consider the following problem.

2

EXAMPLE 1.1. L,et T = (V,E) be a tree with vertex set V = {v 1,v2 , ... , vn}

and edge set E. Each edge e € E has a positive length l(e), The distance

d(vi,vj) between two vertices vi and vj is defined to be the length of the

unique shortest path from v. to v .. Let Jc{l,2, ... , n}, !JI= m and let
1 J -

r.· (j € J) be nonnegative numbers. Define T. = {v € V !d(v,v.) ~ r.} (j €
J J J J

Let A= (a ..) be the nxm (O,1)-matrix defined by a .. = 1 if and only if
1J 1J

It was first proved by GILES [4] that A is totally-balanced. We V. € T .•
1 J

sider v. as the possible location of a facility, T. as the set of clients
J

J).

con-

J
that can be served by v.

J
(clients are located at vertices) and c. as the cost

J
of establishing a facility at v. (j €

J
J). The set covering problem (P) is

the problem of finding facility locations which can serve all clients at

minimum cost. This problem was solved in O(n2) time by the author [6]. In

the same paper it was shown that totally-balanced matrices also occur in the

simple plant location problem on the tree and an O(n3) algorithm to solve

this problem was given. D

A (O,1)-matrix A= (a ..) is in standard form if a.k = a. 0 = a.k = 1
1J 1 1,{.. J

implies that ajl = 1 for all i,j,k,l with i < j and k < l. Note that if a

matrix A is in standard form its transpose At is also in standard form. In

Section 2 we show how co solve the set covering problem on a nxm matrix in

standard form in O(nm) time. In Section 3 we give an O(nm2) algorithm to

transform an nxm totally-balanced matrix into a matrix in standard form. Due

to the fact that a matrix is in standard form if its transpose is in stan

dard form, this leads to an O((min{m,n}/max{m,n}) algorithm to solve the set

covering problem on a totally-balanced matrix. An algorithm of the same com

plexity for recognizing a totally-balanced matrix is also given in Section 3.

2. THE SET COVERING ALGORITHM

In this section we solve the set covering problem (P), where we assume

that the matrix A= (a ..) is in standard form. We shall construct a dual
1J

feasible solution y and a primal feasible solution x such that if

I = {i IY• > O} and J = {j Ix. = 1 } ' then the following holds: 1 J

n
(2. 1) I y.a .. = c. for all J € J ,

j=l 1 1J J

and

(2.2) for each 1 EI there is at most one J E J such that a .. = 1.
1]

3

Note that since xis a primal feasible solution we can replace at most one

by exactly one in (2.2). It follows from (2.1) and (2.2) that the values of

the primal and dual feasible solutions are equal. Therefore both solutions

are optimal ..

The dual feasible solution 1s found by a greedy approach. The value

of y. is determined according to increasing index and taken to be as large
1

as possible .. This procedure is formulated in the Dual algorithm.

Dual algorithm

for 1 := step ton

i-1
(2.3) do y. := min. =I {c. - l ykakJ.} od.

- 1 J:aij J k=I

EXAMPLE 2.1 .. The matrix and costs of the example as well as the result of

the Dual algorithm are given in Figure 2.2.

0 0 0 0 0 Y1 = 2

0 0 0 0 0 Yz = 0

0 0 0 0 Y3 = 0

0 0 0 0 0 Y4 = 2

0 0 0 0 0 Y5 = 0

0 0 0 0 0 y6 =

10 1 0 0 0 Y7 =

:a 0 0 0 Ya = 0

0 0 0 I 1 Y9 = 0

2 3 2 2 3 2 cost

Io 2 2 3 2 cost after subtracting Y1
0 0 2 2 cost after subtracting Y1+Y4

0 0 0 2 cost after subtracting yl+y4+y6

0 0 0 0 0 cost after subtracting yl+y4+y6+Y7

Figure 2.2. Example of the Dual algorithm.

4

The Primal algorithm has as input the set I= {ily. > O} and the matrix
1

A and as output a subset of columns J which will define a primal optimal so-

lution. A row i is covered by column j in the matrix A= (a ..) if a .. = 1.
1] 1]

Primal algorithm.

Delete all columns which do not correspond to a tight constraint; J := 0;
while there are still columns left

do· add the last column to J;
delete all columns from the matrix that cover a row i EI which is also cov

ered by the chosen last column

od.

EXAMPLE 2.3. Apply the Primal algorithm to Example 2.1. We have I= {1,4,6,7}

The Primal algorithm starts by deleting columns 5 and 6 which do not corre

spond to a tight constraint; J := 0.

Iteration 1 : J := {7}; delete column 4 (columns 4 and 7 cover row

6 EI) and column 2(columns 2 and 7 cover row 7 EI).

Iteration 2

Iteration 3

J := {7,3}

J := {7,3,1}.

The value of the primal feasible solution defined by x. = 1 if and only if
J

j E J is equal to the valu~ of the dual feasible solution, namely 6. D

With respect to the set I constructed by the Dual algorithm we call a

column k a blocking aoZurrm for row i if row i is covered by column k and for

all rows j(j > i) which are covered by column k we have j i I. If we let j(i)

denote the index of a constraint for which the minimum is attained in (2.3)

during iteration i of the Dual algorithm, then we note that constraint j(i)

is a tight constraint and column j(i) is a blocking column for row i.

THEOREM 2.4. The (0,1)-solution defined by x. = 1 if and only if j E J is a
J

prlmal optimal solution.

PROOF. It is clear that the dual feasible solution y and primal solution x

satisfy (2.1) and (2.2). So in order to show that xis a primal optimal so

.lution we have to show that it is a feasible solution, i.e., that the set

of columns J covers all rows of the matrix. We shall prove this using

induction on the number of columns. The induction hypothesis is that all rows

for which the:re is a blocking column are covered by the set of columns con

structed by the Primal algorithm. Note that at the beginning of the while

statement each row is covered by a blocking column. Let l be the last column

and delete all columns that cover a row i EI which is also covered by column

l. We shall prove that for a row j which is not covered by column l none of

the deleted columns is a blocking column for row j. Then by the induction

hypothesis this proves that J covers all rows. Suppose row j is covered by

column k but :not by column land columns k and l both cover a row i EI. If

j > i, then since the matrix is in standard form this would imply that row

J 1.s covered by column l. Therefore j < i. Since i E I it follows that column

k is not a blocking column for row j. D

3. THE STANDARD FORM TRANSFORMATION

In this section we give an O(nm2) algorithm which transforms an nxm

totally-balanced matrix into a matrix in standard form as well as an ·O(nm2)

algorithm which recognizes an nxm totally-balanced matrix.

Let A= (a ..) be an nxm totally-balanced matrix. We consider column j
l.J

(j=l,2, ... ,m) of A as a subset of rows, namely those rows which are covered

by column j. Let us denote.column j by E .. Then E. = {ila .. = I}. Let the
J J l.J

matrix A be given by its columns E1,E2 ... ,Em. The algorithm produces a 1-1

mapping a: {1,2, ... ,n} + {1,2, ... ,n} corresponding to a transformation of

the rows of A(o(i) = j indicates that row i becomes row j in the transformed

matrix) and a 1-1 mapping T:{E 1,E2 ... ,Em} + {1,2 ..• ,m} corresponding to a

transformation of the columns of A(T(E.) = j indicates that column i becomes
l.

column j in the transformed matrix). We present the algorithm in an informal

way and give an example to demonstrate it.

The algorithm consists of m iterations. In iteration i we determine

the column E for which T (E) = m-i + I (I~ i ~ m) • At the beginning of each

iteration the rows are partitioned into a number of groups, say Gr•···,G1.

If i < j, then for all k E G. and l E G. we have cr(k) < o(l), i.e., rows
l. J

belonging to G. precede rows belonging to G. in the transformed matrix.
l. J

.Rows band c occur in the same group G at the beginning of iteration i if

and only if for all columns Ewe have determined so far, i.e., all columns

6

E for which T(E) ~ m-i+2, we cannot distinguish between the rows band c, i.e.,

b EE if and only if c EE. At be beginning of iteration I all rows occur in

the same group. Let Gr, •.• ,G1 be the partitioning into groups at the begin

ning of iteration i (I~i~m). For each column E not yet determined we calculate

the vector dE of length r, where dE(j) = IGr-j+IflEI (j=I,2, ••• ,r). A column

E for which dE is a l~xicographically largest vector is the column determined

in iteration i with T(E) = m-i+I. After we have determined Ewe can distin

guish between some elements in the same group G if I~ I G nE I< I GI. If

this is the case we shall take rows in G\E to precede rows in GOE in the

transformed matrix. This can be expressed by adjusting the partitioning into

groups in the following way. For j = r,r-1, •.• ,I respectively we check if the

intersection of G. and Eis not empty and not equal
J

case we increase the index of all groups with index

and partition the group G. into two groups called G.
J J

and G. = G.\E. The algorithm ends after m iterations
J J

to G .• If this is the
J

greater than j by one

and G j + I ' G j + I = G j n E

with a partitioning into

groups, say G , ••• ,G1• The permutation a is defined by o(k)< a (l) if k E G. r . • 1

and l E G.,i<j. Within a group G. we assign the values~~ 11 IG-l+I, •.• ,.f11G-I
J 1 J= J J= J

in an arbitrary way to the elements in this group. The number of computations

we have to do at each iteration is o(mn). Therefore the time complexity of

this algorithm is O(nm2).

EXAMPLE 3.1. The 9x7 (0,1)-matrix A is given by its columns

E1 = {I,2,3}, E2 = {I,2,3,51 E3 = {4,5}, E4 = {3,4,5,9}, E5 = {5,8,9},

E6 = {6,7,8,9}, E7 = {6,7,8}.

Iteration I : G1 = (1,2,3,4,5,6,7,8,9).

Iteration 2

dE.= (!Ei), choose E4 , T(E4) = 7.
1

G2 = (3,4,5,9),G1 = (I,2,6,7,8).

E EI E2 E3 Ee;

dE (I ,2) (2,2) (2,0) (2, 1)

, choose E2 , T (E 2) = 6.

E6 E7

(1 ,3) (0,3)

7

Iteration 3 G4 = (3,5), G3 = (4,9), G2 = (I , 2), G1 = (6,7,8).

E El E3 E5 E6 E7

dE (1,0,2,0) (1, 1 ,O,O) (1,1,0,1) (0,1,0,3) (0,0,0,3)

choose E5, ,(E5) = 5.

Iteration 4 G7 = (5),G6 = (3),G5 = (9) ,G4 = (4) ,G3 = (1,2),G2 = (8),

E

(0,1,0,0,2,0,0)

(I ,0,0, 1,0,0,0)

(0,0,1,0,0,1,2)

(0,0,0,0,0,1,2)

From now on the groups do not change. Therefore ,(E1) = 3, ,(E6) = 2, ,(E7)=1.

A mapping cr is given by cr: (6,7,8,1,2,4,9,3,5) ➔ (1,2,3,4,5,6,7,8,9). The

mapping. is given by.: (E7,E6 ,E 1,E3 ,E5 ,E2,E4) ➔ (1,2,3,4,5,6,7). The trans

formed matrix is the one used in Example 2.1. D

A mapping cr: {1,2, ••• ,n} ➔ ·{1,2, ••• ,n} is a nest ordering with respect to

E1, ••• ,Em if all columns covering the row j defined by cr(j) = i can be to

tally ordered by inclusion when restricted to the rows k of the matrix with

cr (k) ~ i (i = 1 , 2, ••• , n) • In a previous paper (BROUWER & KOLEN [2 7) it was shown

that there is a row of a totally-balanced matrix such that all columns cov

ering this row can be totally ordered by inclusion. By inspection we can find

this row in O(nm2) time. Give this row number 1 and delete the row from the

matrix. Let A. be the matrix we get from A by deleting the rows with numbers
l.

1,2, .•• ,i. Then since A. is still totally-balanced there is a row with the
l.

property that all columns of A. covering this row can be totally ordered by
l.

inclusion. Give this row number i+l (i=l,2, ••• ,n-1). In this way we find a

number for each row in O(n2m2)time. Clearly the mapping defined above is a

nest ordering.

We shall show that a mapping cr produced by the transformation algorithm

is a nest ordering with respect to E1 •••·,Em. Since the algorithm takes O(nm2)

8

time this a more efficient way of finding a nest ordering as well as a con

structive proof of the fact that there is a row in a totally-balanced matrix

with the property that all columns covering this row can be totally ordered

by inclusion. By a lexicographical ordering of subsets E1,E2, ..• ,Em of

{ I ~2, ... ,n} the following is meant. With each set E we associate a vector

bE of length !El. The first component of bE is the largest element of E, the

second component is the second largest element, and so on. E. is lexica-
l.

graphically smaller than or equal to Ej if bEi is lexicographically smaller

than or equal to bE.· Ties, which only occur when two subsets contain the
J

same elements, are oroken arbitrarily. Let E1,E 2 be two columns. We call

E1 and E2 comparable if E1 .=. E2 or E2 .=. E1. E1 and E2 are incomparable if

they are not comparable.

LEMMA 3.2. Let A be a matrix such that the ordering of the rows form a nest

ordering with respect to the columns, and the columns are ordered in lexico

graphically increasing order. Then the matrix A is in standard form.

PROOF. Suppose a.k = ail= a.k = I , i < j, k<l. Since i E Ek_ nE 0 it follows
i i l. "i . J i . . ,{_,

that Ek..'.:_ El or El .=.Ek, where Ek= Ek\{1, ..• ,1.-I} and El = E..e_\{l, ... ,i-1}.

Since Ek is lexicographically smaller than or equal to El it follows that

E{ ..'.:_ E{. Hence ajk = I implies that ajl = I. D

LEMMA 3.3. Let E1 ,E2 be incomparable columns such that -r(E 1) < -r(E2), let

i E E1 \ E2 and let j be the largest element with respect to cr in E2 \E 1, i.e.,

there is no k E E2 \E I such that a (k) > cr (j) . Then a (i) < cr (j) •

PROOF. Consider the iteration in which E2 was determined. Let Gr, .•. ,G 1 be

the partitioning into groups at the beginning of this iteration. Let k be

the largest index for which Gk nE 1 / Gk D E2 . Then j E Gk. If i E Gf with

f < k, then cr(i) < cr(j). If i E Gk, then after E2 1.s determined the group

Gk is partitioned into two groups Gk n E2 and Gk\ E2 , where rows in Gk\E 2

precede rows in Gk n E2 in the transformed matrix. Since i E Gk\E2 and

j E Gk n E2 we'. have cr(i) < cr(j). □

COROLLARY 3.4. Let a and -r be the mappings constructed by the algorithm for

·a matrix A. First recorder the rows according to a. Then Tis a lexicographic

ordering of the columns.

PROOF. Let E 1 , E2 be two columns such that ,: (E 1) < ,: (E2). If E 1 and E2 are

· comparable, then E1 E.. E2• If E1 and E2 are incomparable, then it follows

9,

from Lemma 3.3. that the largest element in E2\E 1 with respect to a is greater

than any element in E1\E2 and hence bE is lexicographically smaller than
1

D

Let a and,: be the mapping constructed by the algorithm applied on a

totally balanced matrix A. If cr is a nest ordering with respect to the columns

of A, then it follows from Lemma 3.2 and Corollary 3.4 that if the matrix

A is transformed according to a and i:, then it is in standard form. We shall

prove that the mapping cr constructed by the algorithm applied on a totally

balanced matrix is a nest ordering with respect to the columns of the matrix

using induction on the number of rows. If the number of rows is equal to 1,

then the statement is true. Suppose the statement is true for all matrices

with less than n rows, and let A be a nxm totally-balanced matrix given by

its columns E1, ••• ,Em. Let a be the mapping constructed by the algorithm and

let i O be the row of A such that a(iO) = 1. Define A1 to be the matrix we

get from A by deleting row i O . Apply the algorithm on A1 . We shall prove

in Lemma 3.5. that there exists a mapping a1 constructed by the algorithm

applied on A1 such that cr 1(i) = cr(i)-1 for all i # i O . By the induction hy

pothesis it follows that cr 1 is a nest ordering with respect to the columns

of A1 . In order to prove that a is a nest ordering with respect to the

columns of A we have to show that all columns covering row i O can be totally

ordered by inclusion. This will be proved in Theorem 3.7. After giving this

outline of the correctness proof of the algorithm let us turn to the details.

LEMMA 3.5. ThePe exists a mapping a 1 const:r>Ucted by the algoPithm applied on ·

A1 such that a 1 (i) = cr(i)-1 foP aU i # i O •

PROOF. It is sufficient to prove that at each iteration of the algorithm

applied on A1 we can choose the same column as at the corresponding iteration

of the algorithm applied on A. Consider the partitioning into groups,

say Gr, ••• ,G2 ,G1 at the beginning of iteration i of the algorithm applied

on A and assume that in the algorithm applied on A1 we have chosen the same

column in the first i-1 iterations (I ~ i ~ m) as in the corresponding it

erations of the algorithm applied on A. If lc11> I, then the partitioning

10

belonging to the algorithm applied on A1 is given by Gr, ••• ,G2 ,G1\{i0}, else

the partitioning is given by Gr, ••• ,G2• Let E1 be the column chosen in it

eration i of the algorithm applied on A. In order to prove that we can also

choose E1 in iteration i of the algorithm applied an A1 it is sufficient to

prove 1Gl nEl ,~ I GlnE21 implies that l(Gl\{io})nEll ~1(Gl\{io})nE21 for

all columns E2 which have not yet been determined. Note that if i 0E E1 , then

G1 E. E1• If this was not the case, then after this iteration we would have

io E G2 which contradicts cr(io) = 1. If io E El and !Gl n El I = IGl n E2 I,
then G1 n E1 = G1 n E2 = G1 and therefore I (G 1 \{i0}) n El I= J (G 1 \{i0}) n E2 f.
If io E Et and IGlnEll ~,GtnE2l+l, then l(Gl\{io})nEll = IGlnEl l-1 ~

t G1 n E2 I ~ I (G 1 \ U 0 }) n E2 I.

If io I. El' then l(Gl\{io}nE1)1= IGl nEll~I GlnE2 ,~l(Gl\{io})(\E21 □

According to the previous outline of the proo~ we have to show that all

columns of A covering row i 0 can be totally ordered by inclusion. Suppose

that there are two incomparable columns E1 and E2 covering row i 0 . Without

loss of generality assume ,(E 1) < ,(E2). Let i 1 be the largest element with

respect to cr in E1\E2, and let i 2 be the largest element with respect to cr

in E2\E 1 • It follows from Lemma 3.3. that cr(i 2) > O' (i 1). We call

(i0,i 1,i2,E 1,E2) a 2-ahain. We generalise the definition of an 2-chain to an

m-chain using the following_ definition. A column E1 sepa;roates i from j if

i E E1 , j I. E1 and for all columns E2 with ,(E2) > ,(E 1) we have i E E2 if

and only if j E E2• Note that if cr(i) > cr(j) and i and j are not covered by

the same columns, then there is a column E which separates i from j.

We call (i0,i 1 ,i2 , ••• ,im,El,E2, ••• ,Em) an m-chain (m~2) if

I.

2.

3

ij E Ek~ j = k or j = k-2. (k=l,2, ••• ,m), where i_ 1 = i 0 ,

cr(ij+l) > ~cr(ij) (j=0,1, ••• ,m-1) ,

,(Ej+l) > ,(Ej) (j=l,2, ... ,m-1) ,

4 E. separates i. 2 from i. 3 (j=3, ••• ,m),
J J- J-

5 i, is the largest row with respect to cr in E. which is not contained
J J

in Ej-l (j =1,2, •.• ,m), where E0 = E2 .

THEOREM 3. 6. An m-chain can be extended to an m+ 1-cha1'.n (m ~ 2) •

I I

PROOF. Since cr(i 1) > cr(i 2) and i 2 and i I are not covered by the same m- m- m- m-
columns (i I i E) it follows that there is a column E I which separates m- m m+
i I from i z . Note that by definition i z i E I and T(E 1) > T(E). m- m- m- m+ m+ m
E separates i 2 from i 3 . Since i 2 i E I and T(E 1) > T(E) it fol-m. m- m- m- m+ m+ m

lows that im_3 i Em+l. Repeating this argument for Em_ 1, ••• ,E3 respectively

shows that i 0 , ... ,im~Z i Em+I . If im E Em+I' then the rows i 0 , ... ,im and

columns E1, ••• ,Em+I define a square submatrix of size m+I ~ 3 with no iden

tical columns and all its row and column sums equal to two. This contradicts

the fact that A is totally-balanced. Hence i i E 1 • Since i i E 1 and m m+ m m+
i m-1
gest

i E it follows that E m m and Em+I are incomparable. Let im+I be the lar-

row with respect to cr in E 1 which is not contained in E . It follows m+ m
from Lemma 3.3 that cr(i 1) > cr(i) • In order to prove that them-chain ex-m+ m
tended with im+I and Em+I is an m+l-chain we have to prove that im+l i Ek

fork= l, ••• ,m. We already saw that i 1 i E • Suppose i 1 E Ek for some m+ m m+
k (1 5: k ~ m-1) • Let k be the index such that i I E Ek and i I i Ek I . Note · m+ m+ +
that under the assumption made such an index exists. Since ik is the largest

row with respect to a in Ek which is not contained in Ek-I and cr(im+I) > o(ik)

it follows that im+I E Ek-I . If k = I, then this contradicts the fact that

im+I i E2 = EO • If k >I, then we have im+I E Ek-I \ Ek+l and ik+l E Ek+I \Ek-I

which contradicts the fact that since ik-l E Ek-I nEk+I Ek-I and Ek+I are com

parable with respect to all rows i with cr(i) ~ cr (ik_ 1) > I. We conclude that

im+I i Ek for all k = I, ••• ,m • 0

THEOREM 3.7. All columns cove-.r>ing r01.u 1 0 can be totally ordered by inclusion.

PROOF. If there are two incomparable columns covering row i 0 , then there

exists an 2-chain. It follows from Theorem 3.6 that we can extend this chain

infinitely many times. This contradicts the fact that the number of rows of

A is finite. D

This completes the correctness proof of the algorithm. The following

theorem shows how we can recognize an nxm totally-balanced matrix in O(nm2)

time using the mapping cr constructed by the transformation algorithm •

. THEOREM 3.8. A (0,1)-matrix A is totally-balanced if and only if the ma:pping

cr constructed by the transfor>mation algorithm a:pplied on A is a nest ordering.

12

PROOF. If A is totally-balanced, then we proved that cr is a nest ordering.

If A is not totally-balanced, then there is a square submatrix A1 of size

at least three with no identical columns, and all its row and columns sums

equal to two. Let row i 1 be the smallest row with respect to cr of A1, and

let Ej and Ek be the two columns of A1 covering this row. Let i 2 and i 3 be

the other rows of A1 covered by Ej and Ek respectively. It follows that

i 2 E Ej\Ek and i 3 e: Ek\ Ej, i.e. Ej and Ek are not comparable with respect

to all rows i with cr(i) ~ cr(i 1). Hence cr is not a nest ordering. D

We can find cr in O(nm2) time. Checking whether cr is a nest ordering

can be done by comparing all columns covering the row j defined by cr(j) = i

for i = 1,2, ... ,n respectively. Columns which have been compared because they

cover a row j with cr(j) = i do not have to be compared in any other iteration

k with k >i. So we only have to check each pair of columns at most ones. This

can be done in O(nm2) time. Hence the recognition also requires O(nm2) time.

REFERENCES

[1] BERGE, c., BaZanaed matrices, Mathematical Progrannning 2 (1972) 19-31.

[2] BROUWER, A.E. & A. -KOLEN, A super-baZanced hypergraph has a nest point,

Report ZW I 46/8_0, Mathematisch Centrum, Amsterdam.

[3] FULKERSON, D.R., A,J. HOFFMAN & R. OPPENHEIM, On. balanced matrices,

Mathematical Programming Study I (1974) 120-132.

[4] GILES, R., A balanced hypergraph defined by certain subtrees of a tree,

Ars Combinatoria 6 (1978) 179-183.

[5] KHACHIAN, L.G., A poZynomiaZ aZgorithm in Unear programming, Doklady

Akademie Nauk USSR 5 (1979) 244.

[6] KOLEN, A., Minimum cost tree Zocation probZems, Annals of Discrete

Mathematics, to appear •
.,.

[7] LOVASZ, L., CombinatoriaZ probZems and exercises, Akademiai Kiad6,

Budapest (1979) 528.

