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ABSTRACT 

This is an expository survey of the theory of precedence constrained 

scheduling problems. Such problems ask for an optimal allocation of machines 

to jobs subject to a number of constraints, including a partial ordering of 

the jobs. After a brief introduction to computational complexity theory, we 

review several problem classes for which polynomial-time algorithms exist 

and complement these results by indicating related problems that are known 

to be NP-hard. 
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1. INTRODUCTION 

Machine scheduling theory is concerned with the allocation 
over time of scarce resources in the form of machines or processors 
to activities known as jobs or tasks. If the jobs can be performed 
in any order, they are said to be independent. However, this is 
often not the case; technological or other constraints may dictate 
that of two given jobs one must be performed before the other. Such 
precedence constraints of course impose a partial ordering on the 
job set. 

Machine scheduling problems occur in many different situations. 
Suppose a conference organizer has to sequence n lectures, some of 
which are based on material presented in other lectures. If each 
lecturer has specified the times of his arrival and departure, the 
organizer is faced with the task of finding a feasible schedule 
for n jobs on a single machine subject to precedence constraints, 
release dates and deadlines (see Section 3). Suppose the conference 
participants are simultaneously arriving inn airplanes, which are 
waiting for permission to land on a single runway. If the objective 
is to keep total gasoline usage as low as possible, the air con­
troller has to minimize the weighted sum of n job completion times 
on a single machine (see Section 4). A third example is the Chinese 
Cook Problem [Lawler et al. 1976]. Suppose the conference dinner 
consists of n courses and is to be prepared on a stove with m burn­
ers. In order to start as late as possible, the cook has to minimize 
maximum completion time for n jobs on m parallel machines; it is 
easily imagined that in this situation precedence constraints be­
tween the jobs are specified (see Section 5). 

A variety of techniques has been developed for the solution 
of machine scheduling problems [Graham et al. 1979]. Such algo­
rithmic results are often complemented by results stating that 
satisfactory solution techniques for related problems will probably 
never be found. The theory of computational complexity provides the 
tools to make a formal distinction between ~ell-solved problems, 
which are solvable by an algorithm whose running time is bounded 
by a polynomial function of problem size, and NP-hard problems, 
for which the existence of such an algorithm is highly unlikely. 
In Section 2 we give a brief introduction to this theory. 

There appear to be only three classes of precedence constrained 
scheduling problems for which polynomial-time algorithms exist: 
single machine problems in the case of min-max optirrrization, c~rtain 
problems with series-parallel precedence constraints, and certain 
parallel machine problems. In Sections 3, 4 and 5 we describe these 
problem classes, indicate the nature of the algorithmic techniques 
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that have been used to successfully cope with precedence constraints 
in each of them, and present the relevant NP-hardness results. In 
Section 6 we make some concluding remarks. 

2. COMPUTATIONAL COMPLEXITY THEORY 

For many combinatorial optimization problems, highly efficient 
solution techniques exist. For many other such problems, there is 
little hope of obtaining an optimal solution in a reasonable amount 
of time, and one has to choose between the use of fast heuristics, 
which yield only an approximate solution, or of enumerative methods, 
which produce an optimal solution only after an often time consuming 
search through the set of feasible solutions. A distinction between 
these problem classes can be made by means of concepts from the 
theory of computational complexity. An informal exposition of these 
concepts is given below. The reader is referred to [Karp 1975; 
Lenstra & Rinnooy Kan 1979] for a more extensive introduction and 
to [Garey & Johnson 1979] for a comprehensive treatment of the 
theory. 

Let us define the size of a problem as the number of bits 
needed to encode its data, and the running time of an algorithm as 
the number of elementary operations (such as additions and compar­
isons) required for its solution. 

If a problem of sizes can be solved by an algorithm with 
running time O(p(s)) where pis a polynomial function, then the 
problem is considered to be well solved. The justifications of this 
notion are the following: machine independence (theoretical comput­
ing devices like Turing machines and ordinary computers are all 
polynomially related), asymptotic behavior (any polynomial-time 
algorithm is faster than any superpolynomial one for sufficiently 
large problems), accordance with experience (polynomial-time algo­
rithms tend to be efficient in practice), and susceptability to 
theoretical analysis (the subject of this section). Polynomial-time 
algorithms exist for a wide variety of combinatorial optimization 
problems, such as finding shortest paths, maximum flows and maximum 
matchings in graphs [Lawler 1976]. 

Computational complexity theory deals primarily with decision 
problems, which require a yes/no answer, rather than with optimiza­
tion problems. Three decision problems that will recur below are: 

SATISFIABILITY 
Instance: A conjunctive normal form expression, i.e., a conjunc­
tion of clauses, each of which is a disjunction of literals x1,x1, 
... ,Xt,Xt, where x1,••·,Xt are boolean variables and x1,••·,xt 
denote their complements. 
Question: Does there exist a truth assignment to the variables 
such that the expression assumes the value tl"Ue? 



CLIQUE 
Instance: A graph G = (V,E) and an integer c. 
Question: Does there exist a subset Cc V of cardinality c such 
that {j,k} EE if {j,k} c C? 

PARTITION 
Instance: 
Question: 
'tjES aj 

Positive integers a1,·· .,at,b with a1+ ... +at = 2b. 
Does there exist a subset Sc {1 , ... ,t} such that 
b? 
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An instance of a decision problem is said to be feasible if 
the question can be answered affirmatively. Feasibility is usually 
characterized by the existence of an associated structure which 
satisfies a certain property. E.g., in the case of CLIQUE the 
structure is a set of c pairwise adjacent vertices. 

We now define two important problem classes. A decision prob­
lem is in the class P if, for any instance, one can determine its 
feasibility or infeasibility in polynomial time. It is in the class 
NP if, for any instance, one can determine in polynomial time 
whether a given structure affirms its feasibility. E.g., CLIQUE is 
a member of NP, since for any clique Cone can verify that all its 
vertices are pairwise adjacent in O(c 2 ) time. Also SATISFIABILITY 
and PARTITION belong to NP. 

It is clear that P ~ NP. The question if this inclusion is a 
proper one or if equality holds is probably the foremost open prob­
lem in theoretical computer science. However, it is very unlikely 
that P = NP, since NP contains many notorious combinatorial prob­
lems for which, in spite of considerable research efforts, no 
polynomial-time algorithms have been found so far. 

Cook [Cook 1971] proved that SATISFIABILITY is the most diffi­
cult problem in NP by showing that every other problem in NP is 
reducible to it. That is, for any instance of any problem PE NP a 
corresponding instance of SATISFIABILITY can be constructed in 
polynomial time such that solving the latter instance will solve 
the instance of Pas well. He also proved that CLIQUE is as hard 
as SATISFIABILITY, simply by giving a reduction of SATISFIABILITY 
to CLIQUE. Both problems are said to be NP-complete in the sense 
that (i) they belong to NP, and (ii) every other problem in NP is 
reducible to them. 

Karp [Karp 1972] elaborated on these ideas and identified a 
large number of NP-complete problems P (including PARTITION) by 
verifying that PE NP and specifying a reduction of a known NP­
complete problem to P. Since then, hundreds of combinatorial prob­
lems have been shown to be NP-complete; we refer to [Garey & John­
son 1979] for an impressive compilation of these results. 

A polynomial-time algorithm for an NP-complete problem P could 
be used to solve any problem in NP in polynomial time by first 
reducing it to P and then applying the algorithm for P, and the 
existence of such an algorithm would thus imply that P = NP. Hence, 
it is very unlikely that PE P for any NP-complete P. This observa-
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tion justifies the use of heuristic or enumerative methods for its 
solution. 

In dealing with the computational complexity of optimization 
problems, one usually reformulates the problem of finding a feasible 
solution of, say, minimum value as the problem of deciding whether 
there exists a feasible solution with value at most equal to a 
given threshold. If this decision problem is NP-complete, then the 
optimization problem is said to be NP-hard in the sense that the 
existence of a polynomial-time algorithm for its solution would 
imply that P = NP. 

3. SINGLE MACHINE SCHEDULING TO MINIMIZE MAXIMUM COST 

Suppose n jobs are to be processed on a single machine which 
can execute at most one job at a time. Each job j requires an un­
interrupted processing time Pj· Moreover, precedence constraints 
between the jobs are specified in the form of a partial order+; 
if j + k, then job j has to be completed before job k can start. 
Associated with each job j is a monotone nondecreasing cost function 
fj; if job j is completed at time Cj, a cost fj(Cj) is incurred. 
It is possible to find a schedule which minimizes the ma.xirnwn of 
the job completion costs maxj{fj(Cj)} by the following simple rule 
[Lawler 1973]. From among all jobs that are eligible to be sequenced 
last, i.e., that have no successors under+, put that job last 
which will incur the smallest cost in that position. Then repeat 
on the set of n-1 jobs remaining, and so on. 

The correctness of this rule can be proved as follows. Let 
N = {l, ••. ,n} be the set of all jobs, let q = PJ+, .. +pn, let L ~ N 
be the set of jobs without successors, and for any s C N let res) 
be the maximum job completion cost in an optimal schedule for S. 
If job l EL is chosen such that 

then the criterion value of a schedule which is optimal subject to 
the condition that job l is processed last is given by 

max{fl(q),r(N-{l})}. 

Since neither of the maximands is larger than f*(N), there exists 
an optimal schedule in which job l is in the last position. 

The algorithm can be implemented to run in O(n2 ) time, under 
the assumption that each fj can be evaluated in unit time for any 
value of the argument. 

We next consider an extension of this problem, in which each 
job j becomes available for processing at a specified release date 
rj. In this situation it may be advantageous to relax the require­
ment that each job is to be processed without interruption. 
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Instance of PARTITION: 
t = 7, a· = j (j = 1 , •.• , 7) , b = 14. 

S.olution: J 

S = {1,6,7}. 
Corresponding schedule: 

I 1 I 6 7 I 8 I 2 3 4 5 I 
0 14 15 29 

Figure 1. Illustration of the reduction from PARTITION. 

The above algorithm has been generalized to the situation in 
which preemption is permitted, i.e., the processing of any job may 
arbitrarily often be interrupted and resumed at a later time, with­
out penalty [Baker et al. 1982]. 

In contrast, the nonpreemptive version of this problem is 
NP-hard. More specifically, the problem of deciding whether ,there 
exists a feasible schedule in which each job j is processed for an 
uninterrupted period of length Pj between a given release date rj 
and a given deadline dj is NP-complete, even in the absence of 
precedence constraints fGarey & Johnson 1977; Lenstra et al. 1977]. 
The proof is given below. 

The feasibility problem belongs to NP, since any given sched­
ule can be tested for feasibility in linear time. It suffices to 
prove that a known NP-complete problem is reducible to the feasi­
bility problem. Consider the PARTITION problem as formulated in 
Section 2. Given any instance of PARTITION, defined by positive 
integers a 1, .. ~,at,b with a 1+ ••• +at = 2b, we construct a corre­
sponding instance of the feasibility problem as follows: the number 
of jobs is given by 

n = t+ 1; 

there are t partition jobs j (j = 1, •.• ,n) with 

r.=O, p.=a., d.=2b+1; 
J J J J 

there is one splitting job n with 

r = b, p = 1 
n n ' 

d = b+l. n 

It should be obvious that PARTITION has a solution if and only if 
there exists a feasible schedule_ (cf. Figure 1), and hence PARTITION 
is reducible to the feasibility problem. 

The remainder of this section deals with the special case in 
which the cost function of each job j measures its lateness fj(Cj) 
= Cj-dJ with respect to a given due date dj. Of course, the problem 
of minimizing maxinnun lateness is NP-hard if processing times, 
release dates and due dates are arbitrary, but it is possible to 
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find an optimal schedule in polynomial time if all Pj are equal, 
all Pj are equal, or all dj are equal. 

First assume that the jobs are independent. One of the oldest 
results in scheduling theory is the "earliest due date rule" [Jack­
son 1955], which states that the case of equal release dates is 
solved by sequencing the jobs in order of nondecreasing due dates; 
this rule can be viewed as a specialization of Lawler's algorithm. 
Similarly, the case of equal due dates is solved by sequencing the 
jobs in order of nondecreasing release dates. 

The case of unit processing times and integer release and due 
dates is solved by an extension of Jackson's rule rBaker & Su 1974], 
which schedules at any time an available job with smallest due date. 
The case of equal processing times requires a more sophisticated 
approach but is still solvable in polynomial time [Simons 1978; 
Garey et al. 1981A]. 

Now suppose that precedence constraints are specified. Consid­
er a feasible schedule in which two jobs j and k with j + k are 
completed at times Cj and Ck, respectively; note that Cj ~ ck~Pk· 
The feasibility of the schedule is not affected if we set 

Pk := max{rj+pj,rk}' 

since we have for the starting time of job k that Ck-Pk~ Cj ~ 
Pj+Pj· The criterion value of the schedule does not change 1f we set 

dj := min{dj,dk-pk}, 

since we have for the lateness of job k that Ck-dk ~ Cj-(dk-Pk). 
Hence, we may modify release and due dates as indicatea above, so 
that S < Pk_ and dj < dk whenever j + k [Lageweg et al. 1976]. 

The reader should have no difficulty in verifying that the 
algorithms for the cases that all PJ are equal, all dj are equal 
or all Pj = 1 will, after modification of the Pj and aj according 
to+, automatically respect the precedence constraints. The algo­
rithm for the case that all Pj are equal has the same property. 
However, in the general case this modification is not sufficient 
and the precedence constraints have to be taken explicitly into 
account. 

4. SERIES-PARALLEL SCHEDULING 

Another classical result in scheduling theory is the "ratio 
rule" [Smith 1956 J. Suppose again that n independent jobs are to be 
processed on a single machine, and that in addition to a processing 
time Pj each job j has a specified weight Wj· It is possible to find 
a scheaule which minimizes the weighted swn of the job completion 
times in O(n log n) time by sequencing the jobs in order of nonde­
creasing ratios Pj = PjlWj• 

The problem becomes NP-hard if arbitrary precedence constraints 
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are permitted, even if all Pj are equal or all Wj are equal [Lawler 
1978A; Lenstra & Rinnooy Kan 1978]. However, a number of special 
cases ~as been dealt with successfully, including precedence con­
straints admitting of various types of decompositions fSidney 1975], 
rooted trees fHorn 1972; Adolphson & Hu 1973], and series-parallel 
precedence constraints [Lawler 1978A]. The algorithm for the last 
case has been generalized to apply to a diverse variety of other 
sequencing problems [Lawler 1978B; Monma & Sidney 1979]. In the 
following we give a brief review of the theory of series-parallel 
sequencing that has resulted from this generalization. 

First, let us pose a very general type of sequencing problem. 
Given a set of n jobs and a real-valued function f which assigns a 
value f(TI) to each permutation TI of the jobs, find a permutation 
TI* such that 

f(TI*) = min {f(TI)}. TI 

If we know nothing of the structure of the function f, there 
is clearly nothing to be done except to evaluate f(TI) for each of 
then! permutations TI. However, we may be able to find a transitive 
and complete relations (i.e. a quasi-total order) on the jobs with 
the property that·for any two jobs b,c and any permutation of the 
form abco we have 

b s C => f(abco) s f(acbo). 

Such a relation is called a job interchange relation. It says that 
whenever band c occur as adjacent jobs with c before b, we are at 
least as well off to interchange their order. Hence, this relation 
is sometimes referred to as the "adjacent pairwise interchange 
property". Smith's ratio rule observes this property. 

It is a simple matter to verify the following. 

THEOREM 1. If f admits of a job interchange relations, then an 
optimal permutation TI* can be found by ordering the jobs according 
to s, with O(n log n) comparisons of jobs with respect to s. 

Now suppose that precedence constraints are specified in the 
form of a partial order+. A permutation TI is feasible if j + k 
implies that job j precedes job k under TI. The objective is to find 
a feasible permutation TI* such that 

f(TI*) = min f .bl {f(TI)}. TI eas1. e 

We need something stronger than a job interchange relation to 
solve this problem. A transitive and complete relations on subper­
mutations or strings of jobs with the property that for any two 
disjoint strings of jobs S,y and any permutation of the form aSyo 
we have 
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is called a string interchange relation. Smith's rule generalizes 
to such a relation in a fairly obvious way: for any string a we 
define Pa= EjEaPjlEjEaWj- However, jt is not true that every 
function f which admits of a job interchange relation also has a 
string interchange relation. 

The remainder of this section is devoted to an intuitive jus­
tification of the following result. Details can be found in [Lawler 
1978B]. 

THEOREM 2. If f admits of a string interchange relation~ and if 
the precedence constraints+ are series-parallel, then an optimal 
permutation~* can be found by an algorithm which requires 
O(n log n) comparisons of strings with respect to~-

A digraph is said to be series-parallel if its transitive 
closure is transitive series-parallel, as given by the recursive 
definition below: 
(I) A digraph G = ({j},0) with a single vertex j and no arcs is 
transitive series-parallel. 
(2) Let G1 = (V1,A1), G2 = (V2,A2) be transitive series-parallel 
digraphs with disjoint vertex sets. Both the series composition 
G1➔G2 = (V1uV2,A1uA 2u(V1xV2)) and the parallel composition G1IIG2 = 
(V1uV2,A1uA2) are transitive series-parallel digraphs. 
(3) No digraph is transitive series-parallel unless it can be 
obtained by a finite number of applications of Rules (I) and (2). 

A variety of interesting and useful digraphs (and their corre­
sponding partial orders) are series-parallel. In particular, rooted 
trees, forests of such trees and level digraphs are series-parallel. 
The smallest acyclic digraph which is not series-parallel is the 
Z-digrcrph shown in Figure 2. An acyclic digraph is series-parallel 
if and only if its transitive closure does not contain the Z-digraph 
as an induced subgraph. It is possible to determine whether or not 
an arbitrary digraph G = (V,A) is series-parallel in O(IVl+IAI) 
time [Valdes et al. 1981]. 

The structure of a series-parallel digraph is displayed by a 
decomposition tree which represents one way in which the transitive 
closure of the digraph can be obtained by successive applications 
of Rules (1) and (2). A series-parallel digraph and its decomposi­
tion tree are shown in Figure 3. Each leaf of the decomposition 
tree is identified with a vertex of the digraph. An S-node repre­
sents the application of series composition to the subdigraphs 
identified with its children; the ordering of these children is 
important: we adopt the convention that left precedes right. A 
P-node represents the application of parallel composition to the 
subdigraphs identified with its chi°Idren; the ordering of these 
children is unimportant. The series or parallel relationship of 
any pair of vertices can be determined by finding their least com­
mon ancestor in the decomposition tree. 
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Figure 2. Z-digraph. 

Figure 3. Series-parallel digraph and its decomposition tree. 
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Suppose we are to solve a sequencing problem for which a 
string interchange relations exists and a decomposition tree for 
the series-parallel constraints ➔ is given. We can solve ~he prob­
lem by working from the bottom of the tree upward, computing a set 
of strings of jobs for each node of the tree from the sets of 
strings obtained for its children. Our objective is to obtain a 
set of strings at the root node such that sorting these strings 
according to s yields an optimal feasible permutation. 

We will accomplish our objective if the sets S of strings we 
obtain satisfy two conditions: 
{i) Any ordering of the strings in a set S according to s does 
not violate the precedence constraints+. 
(ii) At any point in the computation, let S1,···,Sk be the sets of 
strings computed for nodes such that sets have not yet been com­
puted for their parents. Then some ordering of the strings in 
S1u ... uSk yields an optimal feasible permutation. 

If we order the strings computed at the root according to s, 
then condition (i) ensures that the resulting permutation is fea­
sible and condition (ii) ensures that it is optimal. 

For each leaf of the tree, we let S = {j}, where j is the job 
identified with the leaf. Condition (i) is satisfied trivially and 
condition (ii) is clearly satisfied for the union of the leaf-sets. 

Suppose S1 and S2 have been obtained for the children of a 
P-node in the tree. There are no precedence constraints between 
the strings in S1 and the strings in S2. Accordingly, conditions 
(i) and (ii) remain satisfied if for the P-node we let S = S1uS2. 

Suppose S1 and S2 have been obtained for the left child and 
the right child of an S-node, respectively. Let 

01 = maxs S1, 02 = mins S2--

If o2 i 01, then conditions (i) and (ii) are still satisfied if 
for the S-node we let S = S1uS2 • If 02 s 01, we assert that there 
exists an optimal feasible permutation in which 01 and 02 are 
adjacent, i.e., in which 01 and 02 are replaced by their concate­
nation 0102. (The proof of this assertion involves simple inter­
change arguments; see [Lawler 1978B].) This suggests the following 
procedure: 

BEGIN 
01 := max< S1; 02 
IF 02 i 01 
THENS:= S1uS2 
ELSE o := o1o2 ; 

S1 := S1-{01}; 
S2 := S2-{02}; 
WHILE o S 01 v 
DO IF o s 01 

o1 := maxs s1 ; 
o2 := mins S2 ; 
o2 so 

THEN o := 010; 
S1 := S1-{01}; o1 := 



FI 
END. 

OD; 

ELSE o := 002; 
S2 := S2-{02}; 02 := min$ S2 

FI 

S := s1u{o}uS2 

1 1 

(We make here the customary assumption that ma~ 0 and min< 0 are 
very small and large elements, respectively.) It is not difficult 
to verify that conditions (i) and (ii) remain satisfied if for an 
S-node we compute a set of strings according to the above procedure. 

The entire algorithm can be implemented so as to require 
O(n log n) time plus the time for the O(n log n) comparisons with 
respect to$. 

In addition to the total weighted completion time problem, 
several other sequencing problems admit of a string interchange 
relation and hence can be solved efficiently for series-parallel 
precedence constraints. Among these are the problems of minimizing 
total weighted discounted completion time [Lawler & Sivazlian 1978], 
expected cost of fault detection [Garey 1973; Monma & Sidney 1979] 
or minimum initial resource requirement [Abdel-Wahab & Kameda 1978; 
Monma & Sidney 1979] on a single machine, and the two-machine per-­
mutation flow shop problem with time lags· [Sidney 1979]. 

5. PARALLEL MACHINE SCHEDULING 

Suppose that n unit-time jobs are to be processed on m iden­
tical parallel machines. Each job can be assigned to any machine, 
and the schedule has to respect given precedence constraints. The 
objective is to find a schedule which minimizes the maximum of the 
job completion times. 

This problem is NP-hard in general, but it can be solved in 
polynomial time if either the precedence constraints are in the 
form of a rooted tree or if there are only two machines. Below we 
discuss these three basic results and mention a number of refine­
ments and extensions. 

First, let us assume that the precedence constraints are in 
the form of an intree, i.e., each job has exactly one immediate 
successor, except for one job which has no successors and which is 
called the root. It is possible to minimize the maximum completion 
time in O(n) time by applying an algorithm due to Hu [Hu 1961]. 
The level of a job is defined as the number of jobs in the unique 
path to the root. At the beginning of each time unit, as many 
available jobs as possible are scheduled on them machines, where 
highest priority is granted to the jobs with the largest levels. 
Thus, Ru's algorithm is a list scheduling algorithm, whereby at 
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each step the available job with the highest ranking on a priority 
list is assigned to the first machine that becomes available. It 
-can aiso be viewed as a critical path scheduling algorithm: the 
next job chosen is the one which heads the longest current chain 
of unexecuted jobs. 

To validate Ru's algorithm, we will show that, if it yields a 
schedule of length t*, then no feasible schedule of length t < t* 
exists. 

Choose any t < t* and define a label for each job by sub­
tracting its level from t; note that the root has label t and that 
each nther job has a label one less than its immediate successor. 
The algorithm gives priority to the jobs with the smallest labels. 
Since it yields a schedule of length larger than t, in some unit­
time intervals a job is scheduled with a label smaller than s. 
Lets be the earliest such interval and let there be a job with 
label l < s scheduled in it. We claim that there are m jobs sched­
uled in each earlier intervals'< s. Suppose there is an interval 
s' < s with fewer than m jobs scheduled. Ifs'= s-1, then the 
only reason that the job with label l was not scheduled ins' could 
have been that an immediate predecessor of it was scheduled ins'; 
but then this predecessor would have label l-1 < s-1, which con­
tradicts the definition of s. Ifs'< s-1, then there are fewer 
jobs scheduled ins' than in s'+l, which is impossible from the 
structure of the intree. Hence, each intervals'< s has m jobs 
scheduled. Since each of these jobs has a label smaller than s, at 
least one job with a label smaller than s must be scheduled in 
intervals, so that there is no feasible schedule of length t < t* 
possible. This completes the correctness proof of Ru's algorithm. 

An alternative linear-time algorithm for this problem has been 
proposed by Davida and Linton [Davida & Linton 1976]. Assume that 
the precedence constraints are in the form of an outtree, i.e., 
each job has at most one immediate predecessor. The weight of a job 
is defined as the total number of its successors. The jobs are now 
scheduled according to decreasing weights. 

If the problem is to minimize the maximum lateness with re­
spect to given due dates rather than the maximum completion time, 
then the case that the precedence constraints are in the form of 
an intree can be solved by an adaptation of Ru's algorithm, but 
the case of an outtree turns out to be NP-hard [Brucker et al. 
1977]. Polynomial-time algorithms and NP~hardness results for the 
maximum completion time problem with various other special types 
of precedence constraints are reported in [Dolev 1981; Garey et al. 
1981B; Warmuth 1980]. 

Next, let us assume that there are arbitrary precedence con­
straints but only two machines. It is possible to minimize the 
maximum completion time by a variety of algorithms. 

The earliest and simplest approach is due to Fujii, Kasami and 
Ninomiya [Fujii et al. 1969, 1971]. A graph is constructed with 
vertices corresponding to jobs and edges {j,k} whenever jobs j and 
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k can be executed simultaneously, i.e., j f k and k f j. A maximum 
cardinality matching in this graph, i.e. a maximum number of dis­
joint.edges, is then used to derive an optimal schedule; if the 
·matching contains c pairs of jobs, the schedule has length n-c. 
Such a matching can be found in O(n 3) time [Lawler 1976]. 

A completely different approach by Coffman and Graham [Coffman 
& Graham 1972] leads to a list scheduling algorithm. The jobs are 
labeled in the following way. Suppose labels l, ... ,l have been 
applied and Sis the subset of unlabeled jobs all of whose succes­
sors have been labeled. Then a job in Sis given the label l+l if 
the labels of its immediate successors are Z.ex-icographicaUy mini­
mal with respect to all jobs in S. The priority list is formed by 
ordering the jobs according to decreasing labels. This method re­
quires O(n 2 ) time. 

Recently, ,an even more efficient algorithm has been developed 
by Gabow [Gabow 1980]. His method uses labels, but with a number 
of rather sophisticated embellishments. The running time is almost 
linear in n+a, where a is the number of arcs in the precedence 
graph. 

If the problem is to find a feasible two-machine schedule 
under arbitrary precedence constraints when each job becomes avail­
able at a given integer release date and has to meet a given integer 
deadline, polynomial-time algorithms still exist [Garey & Johnson 
1976, 1977]. These algorithms can be applied to minimize maximum 
lateness in polynomial time. 

It is unlikely that the minimal common generalization of the 
two well-solved problems discussed above is solvable in polynomial 
time. More specifically, the problem of minimizing maximum comple­
tion time for n unit-time jobs on m identical parallel machines 
subject to arbitrary precedence constraints is NP-hard. This result 
is due to Ullman [Ullman 1975]; the proof to be given below is from 
[Lenstra & Rinnooy Kan 1978]. 

It suffices to prove that a known NP-complete problem is 
reducible to the scheduling problem. Consider the CLIQUE problem 
as formulated in Section 2. Given any instance of CLIQUE, defined 
by a graph G = (V,E) and an integer c, let V = IVI, e = IEI, d = 
}c(c-1), c' = v-c and d' = e-d. We construct a corresponding in­
stance of the scheduling problem as follows: the numbers of machines 
and jobs are given by 

m = max{c,d+c' ,d'}+l, n = 3m; 

there are v vertex jobs j (j EV) and e edge jobs {k,l} ({k,l} EE) 
with 

j + {k,l} whenever j E {k,l}; 

there are n-v-e dumrry jobs <1,i> (i = 1, ... ,m-c), <2,i'> (i' 
1 d ' ) 3 . 11 ( • 11 - 1 d ' ) . th , ... ,m- -c , < , 1., > 1., - , ••• ,m- w1 
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Instance of CLIQUE: 
G = (V,E): 

C = 3. 
Solution: 

C = {2,3,4}. 
Corresponding schedule: 

2 {2,3} { 1 , 2} 

d' 3 {2,4} {4,5} 

C 4 {3,4} <3,1> 

<1,1> 1 <3,2> 

d+c' < 1, 2> 5 <3,3> 

m < 1, 3> <2,1> <3,4> 

0 2 3 

Figure 4. Illustration of the reduciion from CLIQUE. 

We claim that CLIQUE has a solution if and only if there exists a 
feasible schedule of length at most 3. The basic idea behind the 
reduction is the following. In any schedule of length 3, the dummy 
jobs create a pattern of idle machines during three unit-time in­
tervals, available for the vertex and edge jobs. This pattern con­
sists of c, d+c' and d' idle machines during the first, second and 
third interval, respectively, and it can be filled properly if and 
only if CLIQUE has a solution (cf. Figure 4). 

More precisely, suppose that CLIQUE has a solution Cc V. We 
construct a feasible schedule of length 3 by processing the m-c 
dummy jobs <1,i> and the c clique vertex jobs j (j E C) in the 
first interval, the m-d-c' dummy jobs <2,i'>, the d clique edge 
jobs {k, l} (k, Z, E C) and the c' remaining vertex jobs in the second 
interval, and the m-d' dlllIIIIly jobs <3,i"> and the d' remaining edge 
jobs in the third interval. Note that this schedule respects the 
precedence constraints. 

Conversely, suppose that CLIQUE has no solution and assume 
that the dunnny jobs <1,i>, <2,i'> and <3,i"> are processed in the 
first, second and third interval, respectively. Any set of c vertex 
jobs processed in the first interval releases at most d-1 edge jobs 
for processing in the second interval and since there are only c' 
vertex jobs left, at least one machine must remain idle during the 
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second interval. We conclude that any feasible schedule has length 
at least 4. 

Two observations concerning this result are in order. If P(t) 
denotes the problem of deciding whether there exists a feasible 
schedule of length at most t, then P(3) has been shown to be NP­
complete, whereas P(2) can trivially be solved in O(n2 ) time. The 
problem thus exhibits the mystical property of 3-ness, which is 
encountered in many other combinatorial problems. Moreover, the 
NP-completeness of P(3) implies that no polynomial-time algorithm 
for the minimization problem can guarantee a worst-case performance 
bound less that 4/3, unless P = NP. 

In the above problem formulation, the number of machines is a 
variable specified as part of the problem instance. The complexity 
status of the problem is open, however, for any fixed m ~ 3. In 
particular, the case m = 3 remains one of the most v~xing open 
problems in scheduling theory. 

In this section we have concentrated on problems involving 
nonpreemptive scheduling of unit-time jobs. There has been a par­
allel investigation of problems concerning preemptive scheduling 
of jobs of arbitrary length. Gonzalez and Johnson [Gonzalez & 
Johnson 1980] have developed a polynomial-time algorithm for pre­
emptive scheduling which is analogous to that from [Davida & Linton 
1976]. Further, in [Lawler 1982] algorithms are proposed which are 
the preemptive counterparts of those found in [Brucker et al. 1977; 
Garey & Johnson 1976, 1977]. These preemptive scheduling algorithms 
employ essentially the same techniques for dealing with precedence 
constraints as the corresponding algorithms for unit-time jobs. 
However, they are considerably more complex, and we shall not 
attempt to deal with them here. 

6. CONCLUDING REMARKS 

We have given an introductory survey of the most important 
polynomial-time algorithms and NP-hardness proofs for machine sched­
uling with precedence constraints. These results represent only a 
small fraction of the theory of deterministic sequencing and sched­
uling. Other models which have been studied in detail involve non­
identical parallel machines, multi-operation jobs, and a wide 
variety of optimality criteria. Also, a considerable amount of work 
has been done on the design and analysis of approximation algorithms. 
A comprehensive survey of the entire area is given in [Graham et al. 
1979]. 

Given a well-defined class S of combinatorial optimization 
problems, it is often an easy matter to derive a partial ordering 
➔ on the class with the following property: if P,Q ES and P ➔ Q, 
then Pis reducible to Q. This implies that, if there exists a 
polynomial-time algorithm for Q, then Pis also well solved, and 
if Pis NP-hard, then the same is true for Q. 
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For an extensive class of scheduling problems, a computer 
program has been developed that employs such a partial ordering to 
determine the complexity status of all problems in the class 
[Lageweg et al. 1981A, 1981B]. More precisely, the program receives 
as input the known research results in the form of a listing of 
well-solved problems and a listing of NP-hard problems. It then 
partitions the problem class into three subclasses of well-solved, 
open and NP-hard problems, and produces as output a count of these 
classes as well as listings of the problems in each of the sub­
classes which are minimal or ma.ximal with respect to the partial 
ordering. The maximal well-solved problems and the minimal NP-hard 
problems represent the strongest results that have been obtained 
so far. The listings of minimal and maximal open problems have 
proved to be very useful as guidelines for further research. 

It can be shown that, in a classification scheme like this, 
the problem of determining the minimum number of research results 
which together would resolve all remaining open problems, is itself 
NP-hard. 
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