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The weak and strong Gaussian probabilistic realization problem
by

C. van Putten & J.H. wvan Schuppen

ABSTRACT

A classification is given of all o-algebras that make two given
o-algebras conditionally independent in the case that the o-algebras are
generated by finite dimensional Gaussian random variables. In addition
a classification is given of all Gaussian measures that have the conditional
independence property and such that, restricted to a subspace, they coin-

cide with a given measure.
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1. INTRODUCTION

The purpose of this paper is to present the solution of the weak and
strong probabilistic realization problem for c-algebras generated by finite
dimensional Gaussian random variables.

The stochastic realization problem in stochastic system theory is to
construct stochastic dynamic system representations for stochastic proces-
ses. There is a growing literature on this subject [4,5,7,9] mainly for
Gaussian processes. The problem is still not satisfactorily solved. One
open question in the Gaussian case 1is the explicit classification of all
minimal stochastic realizations. In a static setting the stochastic realiza-
tion problem reduces to the probabilistic realization problem, to be
formulated below. In this paper this problem will be solved. The solution
given may provide insight in the classification of minimal Gaussian stochas-
tic realizations.

The main concept in stochastic realization theory, as shown in [7,10],
is the conditional independence relation for o-algebras. This relation is
a key-property in many areas of probability theory and stochastic processes.
Examples of such areas are sufficient statistics, Markov processes, infor-
mation theory, random fields and stochastic system theory.

What is the problem here? Assume given two jointly Gaussian random
variables and consider the o-algebras that they generate. One may ask for
all the o-algebras that make these two o—algebras conditional independent.
To exclude some trivial answers the concept of a minimal o-algebra that
makes these two o-algebras conditional independent must be introduced. The
strong probabilistic realization problem is then to show existence of
o-algebras that make two given o-algebras minimal conditional independent,
to classify all such o—-algebras and to develop an algorithm that constructs
these o-algebras. The weak probabilistic realization problem is analogous
to the above problem, except that in this case the underlying probability
space may be constructed. A still open problem is the probabilistic realiza-
tion problem in the case that the o-algebras are arbitrary, not necessarily
generated by Gaussian random variables.

The approach of the paper is a mixture of probabilistic and geometric

analysis. The main objects of the paper are c-algebras generated by finite



2 ,

dimensional Gaussian random variables. From NEVEU [6] it is clear that a
Hilbert-space framework may be used in this case. This approach has been
followed in [5]. However, this line of work is insufficient for the problem
to be considered here. Because of the restriction to o—algebras generated
by finite dimensional Gaussian random variables a more explicit classifica-
- tion may be obtained.

7 A brief summary of the paper follows. The problem formulation is given
in the next section, while some preliminaries are presented in Section 3.
The weak probabilistic realization problem is solved in Section 4 and the

strong probabilistic realization problem in Section 5.
2, PROBLEM FORMULATION

In this section some notation is introduced and the problem defined.
In this paper (R,F,P) denotes a complete probability space, consisting

of a set @, a o-algebra F, and a probability measure P. Let

F = {G a o-algebra of elements of @ | G c¢ F, completed with all
‘the null-sets of F},
and for G ¢ F

LY@ = {x: a R, | x is G-measurable}.

If y: Q » Rk is a random variable, then P o= o({y}) € F is the c-algebra
generated by y. If FI’FZ e F, then (FIVFZ) € F denotes the smallest
o—-algebra that contains both F] and FZ' The notation (FI’FZ) € I is used
to indicate that F],F2 are independent c-algebras. R" will be equiped with

the o-algebra of the Lebesgue measurable sets, together denoted by (Rp,Bn).

2.1. DEFINITION. The conditional independence relation for a triple of
o—-algebras FI’FZ’G € F is defined by the condition that for all

+ +
vy, €L (Fl)’ ¥y € L (Fz)

E[ylyzlG] = E[yllG]E[yzlG].



Equivalently, if
E[yllevG] = E[y1|G]

for all y, € L+(Fl)' Then one says that F,,F, are conditional independent
. given G. Notation (FI’G’FZ) e CI. 0O

The equivalence follows from [1, II.45].

Some notation will be introduced. Let

Z+ ={1,2,3,...}, N = {0,1,2,...},
and for n € Z+

z = {1,2,...,n}, N, = {0,1,2,...,n}.
If n € Z,, Qe Rpxn’ then QT denotes the transposed of Q; if Q is symmetric,
then Q 2 0 denotes that Q is positive definite and Q > O that it is strict-
ly positive definite.

A finite dimensional Gaussian random variable with parameters n € Z,,
[Ta Rp, Q ¢ Rpxn’ satisfying Q = QT > 0, is a random variable x: Q - R"

such that for all u e R" _
E[exp(iuTx)] = exp(iuTu—-%uTQu).

Notation: x € G(u,Q); (Xl""’xm) € G(u,Q) will denote that with
xT = (x?,...,xi), x € G(u,Q). If x € G, then Qxx may denote its covariance
matrix. The notation G(u,Q) will stand for a Gaussian measure on (Rn,Bn) as

indicated above, when n is clear from the context.

2.2. DEFINITION. The Gaussian conditional independence relation for a triple

of o—-algebras FYI,FX,Fy2 € F generated by ¥yt Q - Rkl, Yyt Q > sz,
x: @ + R%, is defined by the conditions

1. 1, F5, 7 2) e c1;

2, (y]’x’yz) € G.

Notation: (Fy],Fx,Fyz) e CIG. [



Given (yl,yz) € G there exists a random variable x such that
(Fyl,Fx,Fyz) € CIG. For example, x = ¥i» OF X =y,, are such random
variables. From many viewpoints it is of interest to ask for a minimal

dimension for the random variable x.

~2.3. DEFINITION. The minimal Gaussian conditional independence relation
k
1

s

for a triple of o-algebras Fy],Fyz,FX € F generated by Yt Q >
y2: Q - sz, x: @ > R is defined by the conditions

1. & 1,7%,72) e cig;

X X
2. if Flep, Flcr, @ LFLF?) ¢ cg,
and (YI’YZQX’XI) € G, then Fx] = FX,

Then one says that F* makes Fyl,Fyz minimal Gaussian conditional independent.

f Ay e Y1 X Y2
Notation: (F/!,F",F/%) € CIGmin' il

2.4, PROBLEM. The weak Gaussian probabilistic realization problem for a

Gaussian measure on (Rk1+k2,Bk1+k2) is:

a. to show existence of a state space (Rp,Bn) and of a Gaussian measure P
on (Rk1+k2+n,Bk]+k2+n) such that, after introduction of the canonical
variables,

1. (1,5, F72) CI6,; 3
2. the measure on (y],yz) coincides with the given measure;

the triple (Rp,Bn,P) will then be called a minimal weak Gaussian proba—
bilistic realization of the given measure;

b. to classify all such minimal realizations;

c. to develop an algorithm that constructs all such minimal realizations. [J

2.5. PROBLEM. The strong Gaussian probabilistic realization problem for a
triple of Gaussian random variables (y],yz,v) is:
a. to show existence of triples (Rp,Bn,FX), where x: Q »> RP, such that
X
1. (F1,7%5,772) ¢ CIG . ;
2. ¥ c ¥l v F¥2 v FV and (yl,yz,v,x) € Gj
such a triple will then be called a minimal strong Gaussian probabilistic
realization of the given triple;
b. to classify all such minimal realizations;

c. to develop an algorithm that constructs all such minimal probabilistic

realizations. [J]



A technical result on conditional independence is needed that will be

proved next. Note that if (FI’G’FZ) € CI and F, ¢ F.,, then (F3,G,F2) e CI.

3 1°

2.6. PROPOSITION. If F,,F,,G,,G

e I, then (FI’GI’FZ) e CI.

€ F, (F),6,VG,,F,) e CI, and (G,,F VF,VG ) ¢

2 1

'PROOF. With g, € L'(G,) and (G,,F VF,VG)) € I

1
Elg,|F,v6,] = Elg,] = Elg,|G,1,

hence (F,,G,,G,) ¢ CI. Let y, ¢ L+(F1). Then

Ely,|F,vG,] = E[E[y,|F,vG,VG,][F,VG,]

E[E[yllclvczlezvcl]
= E[E[yllclleZVGIJ = Ely,|6,1.

One concludes with the equivalent condition of 2.1. [J

Finally some additional notation for matrices is introduced. For

ne Z+ let

D, = {A e RM™ | A diagonal}l,
+
D ={AeD, | A >0},
0+ _ e
Dn = {A € Dn | if A = dlag(a],...,an) then ajza,2 ...z:an},
o ={ser"™| ssT = 1 = sTs},

the set of orthogonal matrices. For A ¢ RY? let
c (&) = {(s;,8,) e 0 x0_ |8

It is easily verified that Cn(A) is an equivalence relation. The set of



equivalence classes of’On over Cn(A) is denoted by On/Cn(A)' The class of

matrices that commute with a given matrix is described in [2, 1.VIII 2].
3. PRELIMINARTES

‘ In this section the canonical variable form for Gaussian random
variables is introduced and an equivalent condition for CIGmin is derived.
These preliminaries will be used in the following sections.

To describe the relationship between two random variables HOTELLING
[3] has introduced the concept of a canonical variable form. For Gaussian
random variables this form has a rather explicit structure that is stated

below.

3.1. DEFINITION. Given y,: R RX, Yy Q> R¥2, (y,59,) € G(0,K). These

random variables are said to be in canonical variable form if

I I
I A
1 1 0 (k,+k,)x(k,+k,)
K = c R 172 172 ,
I I
A I
0 I
0+ .
where A € Dk]2’ A= dlag(l],...,kklz), 1> Xl =2 An = ... 2 Aklz > 0.
Compatible with this decomposition let Yyp @R 1, Vg & > Rklz,

. ki3 . Ky . k . k T_,T T _T
Y137 @R Yo @2 R, yppt @0 RUZ, ypsr 0 R, yy= O0yp0Y 100919
yg = (y2],y22,y23). Furthermore, let

2k . X2k I k. xk
z=(11\ g)eRlz '2, W=(A)eR12. g
0

It is a classical result [8] that for any pair (ZI’ZZ) € G(O,Kl), with
Kl > 0, there exists a basis transformation (z],zz) — (S]z],Szzz) such that
(Slzl’SZZZ) is in canonical variable form. On the basis of the canonical

variable form one may formulate a canonical form for Gaussian measures.



The problem posed in 2.4 is the construction and classification of
o-algebras that make two given c-algebras minimal Gaussian conditional
independent. This problem is analogous to the construction of realizations
in linear system theory. There it is known that a dynamical system has a
state space of minimal dimension iff the dynamical system is observable
.and controllable. Furthermore, all minimal realizations are equivalent in
a well defined sense. What remains of this picture in probabilistic realiza-

tion? The concept of probabilistic observability will be defined first.

X
3.2. DEFINITION. Given (F°!,F ,F2) ¢ CIG. This triple will be called
probabilistic observable if the map x —> E[exp(iuTyl)]Fx] is injective on
the support of x. It will be called probabilistic reconstructible if the

map x +— E[exp(iuTyz)lFX] is injective on the support of x. [

Suppose that through multiple experiments one is able to obtain an
estimate of the measure of Y for a fixed value of x. Then probabilistic
observability implies that from this measure one can determine the value
of the state x uniquely. This property motivates the above definition of
probabilistic observability.

With (yl,x,yz) € G(0,Q) and a basis for x such that Qxx > 0 one has
that

. T X, _ . T -1 T _ -1
Elexp(iu yl)lF 1 = exp(iu lexQxx x- 3u [leyl lexQxexylju)'
y1 X _Y2 . e . _
Thus (F° ",F ,F ) € CIG is probabilistic observable iff rank(Qy X) =

= rank(Q ). The following result, an equivalence condition forICIG .
XX min

is now motivated.

k k
3.3. THEOREM. GZiven y,: @ + R 1, y,2 8 >R 2, x: Q@ + R%. The following are
onones 1 2 g
equivalent:
y
@) @ L,F5F2) ¢ cIc_. ;

min
(b) 1. (Yl,x,yz) € G

-1
2. QY1Y2 = Y]XQxeXYZ’

3. rank(Qy1x) = rank(Qxx) = rank(Qyzx).

Here it has been assumed that a basis has been chosen such that Q. > 0.



The proof of 3.3 is based on the following intermediate results.

k k
3.4. PROPOSITION. Given yi Q>R 1, Yo &+ R 2, x: o> R, (y],x,yz)e:G.

Suppose that a basis for x has been chosen such that Q. > 0. Then the fol-
lowing are equivalent:
(a) @1, F5,72) e cIg;

- -1
(§) QYIYZ = QY]XQXXQXY2'

PROOF. This is a calculation via the conditional characteristic function. [J

3.5. PROPOSITION. et y,,y,,x be as defined in 3.4. If (@ L,F,F2) e CIG,

k

x;: 8> R T x, = E[yl|Fx],

k b'q
X,: 2 >R 2 x, = E[y,|F ]]
2° ’ 2 Y2 ’
vy X
then (B L,F 2,7 2) ¢ CIG and rank(Q_ _ ) = rank(Q, ).
XX 1y2

272
| X
PROOF. Because F c F,

X,y
Ely,|F vE 23

y, X ¥
E[ELy, |[F*VE “1|F 'vF 2]

r

X, ¥
E[E[yl|Fx]lF vr 27 = E[yIIFX]

Xl 1 X
E[(ELy,|F"I|F "1 = Ely,|F ']

X X X

.. . 1 .
l,F 2) € CIG. Similarly, using F 2 c F , one obtains

71
and with 2.1, (F ,F
Y] X2 V2 - X- _ -1 -
that (F71,F°2,F/2) ¢ CIG.then x, = Ely, [F"] Qp xQ, - Let nj=rank(Qy , ).
Then there exists S e R°17°! such that

= T -1 T
Inl = SQXlx]S SQYIXQXXQXYIS .

Then F ! = F and

1 T -1 T -1
= 57Q Sx, = S'S Q .x,
9¥1 le,le 1 Qyzx] lex XX

™
N
|
=
=
«
(N
=
-
|



Let n, = rank(szxz). Then there exists R ¢ szxkz, such that

T T T
I =RQ _ R =R S'S R .
) X2%2 Qyzyl leyz
Defi ) 2 - *2 _

efine w: @ > R 7, w = sz. Then =I,,F F , and rank(wa)
< rank(Qy y2); By (Fyl,FW,FYZ) = (Fyl F 3 y2) € CIG and 3.4

rank(wa) > rank(leyz). The conc1u31én then follows. [

-1 _
PROOF of 3.3. If Qy1y2 = lequxQxYZ’ then rank(lex) = rank(Qxx) =
= rank(Qyzx) iff rank(Qy]yz) = rank(Q ). a > b. By 3.4(b) rank(Qylyz
. y2) < rank(Q ) As in 3.5 define

= E[y]|F 1, X, = E[y2|F 17, and conclude that (F'!,F*2,7Y2) ¢ CIG and

) <
< rank(Q ). Suppose that rank(Q

|

rank(QxeZ) = rank(leyz) < rank(Qxx). This and F*2 c F* contradicts the

minimality. Thus rank(Q ) = rank(Q ) and one concludes with the above

Y2t o g
remark. b + a. Let Fl c FX, (F/1,F°1 FYZ) € CIG, and (yl’YZ’X X ) e G.
Suppose that a basis for X, has been chosen such that Qxlxl > 0,

n, = rank(QX %)+ BY (yl,yz,x,xl) € G and FX1 c F* one has n, < n. Further-
more (F1,F¥1,FY2) ¢ CIG implies by 3.4 that n = rank(Q, ) = rank(Qy y,) <
< rank(Qxlxl) = nl, hence n, = n. Familiar arguments now yield that

= 71 and (#1,F5,P2) ¢ cic e O

Note that the construction procedure given in 3.5 provides a way to
construct o-algebras that have the minimality property. Based on the decom-—
position presented in 3.1 some results may be obtained that will facilitate

the proofs in the following two sections. This is done below.

5t Q> sz, (7,5¥5) € G(0,K) with K
in the canonical variable form as given in 3.1. The notation of 3.1 is
adopted. Then (Fy1 P FYZ) € CIG_ . 1ff there exists a basis for x such that

%% = ,x%x:Q+R“,ﬁ:Q+ﬁm,wﬁhfhﬁm)ea%mmw

F2 22y ¢ cIG_; .
in

k
3.6. PROPOSITION. Given y,: © > R 1 y.:

PROOF. Necessity of the decomposition. By the remark preceding 2.6 and
(FYI,FX,FYZ) € CIG . it follows that
min

Vi, ¥ Yoy Y
@& i 12 555 2lvr 22y ¢ cre.
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Define X Q> R®, xz:‘Q > Rn,

X, = E[xleIl] X, = X-X
1 ? 2 1°

X y y
Then (F 2,F ll) € I. Because of (F ll,Fx,FYZI) e CIG, Y11 = Y9q and 2.1,
".one obtains
‘ T Xo _ p. S, X
E[yllyll|F 1= E[ylllF ]E[y11|F 1,
- x X Y11 X _ . s
hence Y11 < E[ylllF ]J. Thus F ' ¢ F c F°. Furthermore, x, = X=X implies

X X X X X
that F 2 ¢ (FSVF'1) < F¥, hence FIVF 2 = FX, Now (& Ivi 12 5 Ivp2,
y X X y .
Fy21VF 22) e CIG, (F 2,Fy]1) e I, F ler 11, and 2.6 imply that
Vi X .Y Xy Yy
@ 11,5 1,21y ¢ cIG and (7 12,F 2,7 22) ¢ CIG. Then

k“-l-k]2 = rank(QXX) = rankl(Qx x ) + rank(QX x )

171 272

v

rank + rank
(Qy11y21) (lezyzz)

= kg kg
where the inequality follows from 3.4(b). Hence equality holds throughout,
rank(Qx]xl) = k]], rank(szxz) = k12 and the conclusion follows. Finally
one may reduce the effective dimensions of X 5%ye The sufficiency of the

decomposition is a verification using 3.3. [J

3.7. PROPOSITION. Given y: 9 + RS, y € G(0,I), x: @ + R%. Then (& ,F5,F) «

€ CIG . 1ff with respect to some basis x = y a.s.

PROOF. The elementary proof is omitted. [J
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4., THE WEAK GAUSSIAN PROBABILISTIC REALIZATION PROBLEM

In this section the weak Gaussian probabilistic realization problem is

solved.

kq+k
- 4.1, DEFINITION. Let a Gaussian measure G(0,K) be given on (R 1 Z’Bk1+k2)-

Define the set of weak Gaussian probabilistic realizations

ky+ky
WPR(R ,B ), G(0,K))
k +k,
k.+k +n
- {(&%,B), P: B >[0,11 ] ifg=r"' 2
07 77 Tk kyn ’ ’

F = Bk1+k2+n’ P a probability measure,

k
yi2 >Ry (w),0,,05))

k .
Y,: 2 >R 2, yz((wl,wz,w3)) = Wy,

wl,

X: Q> Rn, X((wlsw29w3)) = (.03,

y y
then (F l,FX,F

3) € CIGmin’ and (yl,yz) e G(0,K)}.

The elements (RP],Bnl,Pl), (RFZ,an,PZ) € WPR are said to be equivalent if
P] = P2 up to a basis transformation of the underlying probability space.
In the following the set WPR will be identified with the set of equivalence

classes obtained by dividing out the above equivalence relation.

In the above definition ¥ sYy>X are called canonical variables, which

term must be distinguished from the canonical variable form defined in 3.1.

kytk
4.2. THEOREM. Given the set WPR(R | Z,Bk]+k2,G(0,K)) where a basis has
been chosen such that the matrix K has the form as given in 3.1. The nota-
tion of 3.1 is adopted. Let

WPA = {U ¢ Dg+ ,8e0, |seo /[ (W,
12 12 12 512

U=(ﬁag®]“.”uku),12u12u22...2qﬁ220L
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Define the map r: WPA - WPR by

£(U,8) = (R",B_,G(0,L)),

where
n=%k,,6 +k a'-mt et
- *11 12° k.’
12
_ . _ A k.. xk
o= '-n?susTal-m2 +per 1212
1 1 I
1 A 0 AZ
I o4jo 0
1 I I 0
! (k,+k. +n) x (k,+k,+n)
L = A I 0 A2Q e R 12 172 .
0 I 0 0
1 0 0 1 0 0 1
% 1 %
0 A 0 | 0 QA Q

Then r: WPA -+ WPR Zs well defined and a bijection.

The solution to the weak Gaussian probabilistic realization problem is
given by 4.2, since it classifies all minimal weak Gaussian probabilistic
realizations and provides an algorithm to construct these realizations.

The structure of the solution will be explained in Sectiomn 5.



4.3, LEMMA. Given the set WPR(R G(0,%)) with % as given in 3.1. Let

2k’

kxk -1

leq=q' 20, 4= -n7",
Q+QlA+ANQ-QAQ-A 20  }.

Q=1{Qe
Define x;: Q> WER by r,(Q) = (R,B,,G(0,L)), where

R3kx3k.

Then the map r: Q -~ WPR(R G(0,x)) Zs well defined and a bijection.

2k’

Some calculations needed in the proof of 4.3 are summarized in the

following result.

4.4. PROPOSITION. Given A € RO ™, as defined in 3.1, Q € RV %, and
L, e R3n><3n as defined in 4.3. Assume that Q = QT. Then the following
are equivalent:

a. L1 > 0;

b. Q € Q, where Q 18 as defined in 4.3;

c. Q<A l.

PROOF. I, as defined in 3.1, is nonsingular and

-1

LTt -
o G )

Elementary row and column operations now yield that L, 2 0 iff

v

1
Q=2A and I—AEQAi 0,

iff

v

1
a- @ ahrl(h ) o

A calculation then gives the result. [

13
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PROOF of 4.3.

1. It will be shown that T is well defined. If Q € Q then it follows from
4.4 that Ll = L? 2 0 and Q > 0. Then G(O,Ll)is a valid Gaussian measure on

(R3k,B3k). Denote the canonical variables by (yl,yz,x). Furthermore,

1 1
= A2 2 _ =
nyxxxyz—AQ QA% = A QY1Y2’

rank(Qy < )
1

y y
By 3.3 one obtains that (F I,FX,F 2) € CIGmin’ and by definition of Ll
(yl’yz) e G(0,I).

rank (A) = rénk(Qxx) = rank(QA%) = rank(Qyzx).

y y
2, Surjectiveness. Because of the minimality in (F ! FX F 2) € CIG . and

min
3.3 one may choose a basis for x of dimension k; then Q > 0. From

Y1 p) = i -
(F F ,F %) e CIG 1t follows that A Qy]xQxexy2 henc? Qyx is no?

= = 72 = 72

singular. Let X, A lexx and Q = Qxlxl' Then lexl A“, Qy2x1 A*Q
and (yl’y2’x1) € G(0,L)) with L, as given in 4.3. Because L, = L? > 0, it
follows from 4.4 that Q € Q.

3. Injectiveness. As indicated in 2. above, one may choose a basis for the

probability space, such that with respect to this basis the corresponding
n n

covariance matrix has the form L,. Hence (R 1,Bn1,P]) = (R 2,Bn2,P2)<5WPR

1
implies that Q, = Q,€Q. 0

PROOF of 4.2,

1. It will be shown that the map r is well defined. Given (U,S) € WPA it is
a calculation to verify that Q € Q. Using 4.4 and linear algebra operations
one obtains that L = LT > 0. The Gaussian measure G(0,L) is thus well
defined. Denote the canonical variables, as defined in 4.1, by (yl’YZ’X)’
Then (y§,y ) € G(0,K). Using the expression for L and 3.3, one concludes

y
that (F°1,F%, 7 2) cIG_, , and (R",B_,G(0,L)) e WER.

2, Surjectiveness. Because of the minimality in (Fyl,Fx,Fyz) € CIGmin and
3.3, one may take a basis for x of dimension kll k12' By 3.6 there exists
Pe Rk“, Xyt Q> R 12 guch that F¥ = £ 1 v 72, (P 11,71 72l CIG .
and (Fylz,FXZ,Fyzz) € CIGmin‘ With 3.7 one concludes that a basis for X,

may be chosen such that X) T Y] T Ygq 88, hence lelx]='I==Qy2]x]=‘Qxlxl-

X
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-y .
It follows from (F 21,F Z,Fyzz) € CIGmin and 4.3 that there exists a Q € Q

K z 1 1
such that r,(Q) = (R '%,Bk_,G(0,5)). Let A = (A Topy™t, Az Dic, 25
M e r¥12%K12
1 1
M = AZ(Q- A)AZ.
T

Because Q € Q and by 4.4 one has Q 2 A > 0. Thus M =M 2= 0, and from

Q € Q follows that M—M2 > 0. From a result in linear algebra one may con-

clude that there exists S1 € Ok12’ Ue Dﬁ?z, such that M = SlUST. Then

0 > M?-M = Sl(Uz—U)ST,

2 . . . 2
or U'-U <0, or if U = dlag(ul,...,uklz) then for 1 e Zk12’ u.-ug < 0, or
u, € [0,1]. Finally, takeSezOklz/Cklz(U) corresponding to Sl' Note that one

obtains the expression for Q given in 4.2.

n n
3. Injectiveness. Let (R I,Bnl,Pl) = (R 2,Bn2,P2) € WPR. By the surjective-
ness of r one may associate with these (U],Sl), (UZ’SZ) € WPA, respectively.

By part 2 above and 4.3 one has that the corresponding matrices QI’QZ € Q

satisfy Q] = Q2. From the expressions for QI’QZ it follows that SIUIS? =

= 5,U,S,. From linear algebra and the fact that the diagonal elements of

2°252°
Ul’UZ are decreasingly ordered, one deduces that U] = U2’ Then S'JZTSIU1 =
- T e el
= UISZSI' Because S],S2 € OkIZ/CkIZ(Ul) and by definition of Ck]Z(Ul) one
concludes that S, = S,. O

5. THE STRONG GAUSSIAN PROBABILISTIC REALIZATION PROBLEM

In this section the strong Gaussian probabilistic realization problem

is solved.

5.1. DEFINITION. Given a complete probability spaci Q,F,P) andkthree

Gaussian random variables defined on it oK Q>R

R y2: Q>R 2,
v: Q > R® with (yl,yz,v) € G(0,L). Define the set of strong Gaussian

probabilistic realizations
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kl+k2+m

SPR(R »G(0,L))

B
5

k1+k2+m
= {(R.",Bn),FX e F| x: 0~»Rr%N FF=o({x}),

y1 X

bp) I Y v
(F ,F ,F“) eCIG . , F

XcF VvF vVvFE,

(yl,stVsX) e G}.

In the above definition v represents additional information on which
the o-algebra F* may be based. It is clear that for an arbitrary Gaussian
random variable w representing external information, one may construct a

Gaussian random variable v such that F' c FW, (FV,FYIVFYZ) e I, and
P IvP2vi¥ = P Ive) 2vrY,

5.2. THEOREM. Given a complete probability space (Q,F,P) with three Gaussian
. ) . ky ko m

random variables defined on it Y8 @R 7, ¥, @RS, v Q>R

(yl’yZ:V) € G(O,L), where

K 0
e )
0 I
m

with K as given in 3.1. The notation of 3.1 is adopted. Let

n,Xm
, Uy € D;O, Seo0, ,HeR 3
12 3 12

- T _
nl+n2+n3-k12, HH™ = In3’

3
SPA = {(nl,nz,n3) € N

U3 = dlag(u31,...,u3n3), 1> Ugy 2 us, 2 ... 2 u3n3 > 0,

if U= blockdlag(Un »U3,0 ) then S € 0, /Ck (m}
2 1 12 12
k.+k,+m

Define the map r: SPA - SPR(R 12
= (Rp,Bn,FX), where

aBk1+k2+msG(0aL))’ r(n],nz,n3,U3,S,H) =

1 , A? € D; .
12

n=k, 6 +k A= (A -0

11 12°

[}
]

blockdiag(lnz,u3,0n1),
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=1 1
= A"s(r-vm)sTaiat,

P, =
-1 -1 1
P, = A 2gUSTA 2A2,
0
- 1
P, = A %S(U-U2)2<H),
0
y
<t 2>, x={ ! .
P Y 2tP ¥tV

Then, with respect to the given basis for (y],yz,v), r 28 well defined and

a bijection.

The solution to the strong Gaussian probabilistic realization problem
is provided by Theorem 5.2, since it classifies all strong realizations and
gives an algorithm to construct all these realizations. The structure of
the representation of F* may be illustrated as follows. Let U = blockdiag
(Inz’UB’on]) and xT = (xf,xg) as indicated in 5.2. Then, up to a trans-
formation, the first n, components of X, consist only of elements of Y99s
the last n, components of X, consist only of elements of Yio2» while the

remaining n, components consist of elements of Y912Y99 and v jointly.

5.3. LEMMA. Given (Q,F,P) with three Gaussian random variables defined on

. k k
it y;: >R, y,: >R, vi Q> R, (¥,5¥,5v) € G(O,L),

r O
L = ( ) ¢ p2kHm)* (2ktm)
0 I
m

where T is as defined in 3.1. Let

sPA| = {Q « Rk P, e RO | A= l-n7),

Q=Q" 2 0, Q+ QMA+ ANQ- QAQ- A = P,P7}.
Define the map T : SPA, - SPR(RZK'E

where

k X
,32k+m,G(O,L)) by rl(Q,P3) = (R ’Bk’F ),
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(- A (-2%) 7!,

la)
[l

, = @mrta-ah,

)
|

x: Q > Rk, X = P1y1+-P

Yy * Pav, FX = g({x}).
Then, with respect to the given basis for (y.,y,,v) the map r, is well
_ 1°Y2 P T

defined and a bijection.

PROOF.

1. Some equalities are derived first. Note that I is nonsingular and its
inverse may be found in the proof of 4.4. Then P],P2 satisfy
TP N
(, Py = (A*laa®)n ",

pTl .
® PZ)Z(P,D = QAQ+ A- QAA - AAQ.
2

2. To show that r is well defined let (Q’PB) € SPA,. Then FX is well defined.

by !
= A®Q, and with 1.

It is then a calculation to show that lex = A%, Qy2X

above and (Q,P3) € SPA1 that

0 < —PP')ZP’¥+PPT
S Q= By By 2 33
= QAQ+A- QM- ANQ+ PP = Q.

T

Now Q = Q 2 0 and
Q+QMAA+ ANQ- QAQ-A = 39§ >0
imply by 4.4 that Q 2 A > 0. Then
= A=A A2
QY]YZ Q Q nyXX XyZ

rank(QXX) = rank(Qy X),

k( )
ran lex )
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Y1 x 72 k x
and by 3.3, (F ,F,F ") € CIGmin' Thus r](Q,PB) = (R ’Bk’F ) € SPR.

3. Surjectiveness. Let (Rk,Bk,FX) € SPR. As in the Proof of 4.3,lpoint 2,

one may choose a basis for x such that if Q = Qxx’ then lex = A%,

1
QYZX = A’Qf Using 1. above, one obtains
Y1 Y2 b1 =1V
E[x|F VF “]= (A% QA®)Z (y2> =Py, + Byy,.
Kk -z Yy Y2 v L.
Let z: Q> R, 2 = x-Plyl-szz. Then F <« F  VF "~ VF, z is independent
of (yl,yz), and (y],yz,v,z) € G, hence there exists a P3 € kam such that
z = P3v. Furthermore,
T T Py
- = -— 1
P,y = Elzz ] = Q (2, PZ)Z(P§>
= Q+ QM+ ANQ - QAQ - A.
Thus (Q,P3) € SPAl.
S Kk | k *2
4. Injectiveness. Let rl(Ql’PIB) = (R ’Bk’F ) = (R ’Bk’F ) =

= rl(QZ’P23) € SPR. Suppose that for X(,%X, a basis has been chosen as in

X X y
3. above. Because F | = F 2 c Fyl VEZ2v Fv, (y],yz,v,x]) € G and

kxk such that x, = Sx

(yl,yz,v,xz) € G, there exists a nonsingular S € R 2 1
Let

Xp S P TRVt BigVs Xy = Boy¥Pypyy t Bygve
Then

Po1¥1 ¥ Pygyy+ Pygv = 8Py + 5P yy + 5P 4V,
(SPy17Pyy) = —(SBy,=By))A,

P,, = SP,,.

(SP 127F2975  Po3 13

Using the expressions for P P]Z’PZI’PZZ and performing some calculations,

11°
one obtains
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' 1 2.-1
SPy; = Py, = [(s-I) - (SQ]-QZ)A]AE(I—A )

i 2.-1
12 = Pgy = [(SQl—Qz)-(S—I)A]Az(I—A ) o,

SP
2
(S-I)(I-A“) = 0+8S =1,

Q=) (1% = 0> Q, = Q,, P

PROOF of 5.2.

1. It will be shown that r is well defined. Given (n],nz,n3,U3,S,H) € SPA.

A calculation then shows that

3 3
Q = A%, = A°Q,
Y12%2 Qyzzxz
Q+ QAA+ AMQ-QAQ-A = 0.
By Q = QT 2 0, the above inequality, and 4.4, one obtains that Q = A > 0.

Then (b) of 3.3 follows and thus (Fyl,FX,Fyz) € CIGmin' Hence
r(n,n,,04,0,,5,H) = (RP,B ,FX) e SPR.

2. Surjectiveness. Let &* B o F %) € SPR. As in p01nt 2 of the Proof of 4.2
k
it follows that there exists Xt Q>R 11, X,:  +R 12 such that

X X X X
@ 11,71 §21y ¢ c16 s X =Y F12,52,7722y CIG_, , and F'=F IvF Z,

Then (Fy]2 *2 Y22)€ CIG min and 5.3 imply that there exists (Q,P3) € SPA1

=(rF12 )
such that r (Q P3) (R ’Bklz’F ). Then

Q+ QA+ ANQ - QAQ- A = PP},

kioxk

1 1
and with M € R ]2, M := A2(Q-A)AZ,

-1 2. -1
P.P. = A 2(M-M)A 2=20, M=M 2=0.



21

T 0+

Because M = M~ > 0, there exists U ¢ Dklz, S. € 0k12’ such that M = S UST.

1 1771

. 3
Let S € Oklz/cklz(U) be the element corresponding to Sl' Let (nl,nz,nS)e Nklz'
be respectively the number of diagonal elements of U that are in {0},{1},
(0,1). Note that because the diagonal elements of U are by convention
decreasingly ordered, one has the decomposition U = blockdiagonal(lnz,U3,On1),
- where U, = diag(u31,...,u3n3) with 1 > Ugp 2 Ugy 2 ... 2 u3pg > 0. Let

V, € RA2™m Vv, e B, v, € RAIm

2 3

Ay

V3

T _ -4 2,,-4 -1 2..T,-% . . _
Then P3P3 = A 2(M-M")A ? = A ?S(U-U")S A %, implies that vy =0, V3 =0,
-1 -1 X
\' VT =T -U2. Take (U —Uz) 2 ¢ pF , H= (U —Uz) 2V, € RF3 ™ Then
2T2 3 "3 373 nj 373 2

HE = Ip_.

3. Injectiveness. Let r(nll’nIZ’HIS’UIS’S]’Hl) = r(n2],n22,n23,U23,Sz,HQ eSPR.
As indicated in 2. above there exists (Ql,P13)==(Q2,P23) corresponding to
these elements. From the expression

=1 T ...21
= 2
Q] A SlUlslA + A

T _ T
1S1 = SZUZSZ' Because

of a result in linear algebra and the convention of DE?Z’ one obtains that

and a similar expression for Q2’ it follows that S]U

= = = = T =
U13 223 and n, Ny s By = Doy Nyg = Dyge Furthermore, stl 13

= UIBSZSI and Sl’SZ € OkIZ/CkIZ(UIB) imply that S, = S,. Finally,

-4 T -} 2 32
A 78, (Uy57Uy3) (%1> = Py3 = Py3=4 75, (U57Uy5) (%2>

imply that H, = H,. O
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