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The weak and strong Gaussian probabilistic realization problem*) 

by 

C. van Puttein & J .H. van Schuppen 

ABSTRACT 

A classification is given of all a-algebras that make two given 

a-algebras conditionally independent in the case that the a-algebras are 

generated by finite dimensional Gaussian random variables. In addition 

a classification is given of all Gaussian measures that have the conditional 

independence! property and such that, restricted to a subspace, they coin­

cide with a given measure. 

KEY WORDS & PHRASES: ConditionaZ ind.ependence, Gaussian random variabZes, 

canonicaZ variabZe representation, sufficient statis­

tics, stocha.stic systems 

*) This report will be submitted for publication elsewhere. 





l • INTRODUCTION 

The purpose of this paper is to present the solution of the weak and 

strong probabilistic realization problem for a-algebras generated by finite 

dimensional Gaussian random variables. 

The stochastic realization problem in stochastic system theory is to 

construct stochastic dynamic system representations for stochastic proces­

ses. There is a growing literature on this subject [4,5,7,9] mainly for 

Gaussian processes. The problem is still not satisfactorily solved. One 

open question in the Gaussian case is the explicit classification of all 

minimal stochastic realizations. In a static setting the stochastic realiza­

tion problem reduces to the probabilistic realization problem, to be 

formulated below. In this paper this problem will be solved. The solution 

given may provide insight in the classification of minimal Gaussian stochas­

tic realizations. 

The main concept in stochastic realization theory, as shown in [7,10], 

is the conditional independence relation for a-algebras. This relation is 

a key-property in many areas of probability theory and stochastic processes. 

Examples of such areas are sufficient statistics, Markov processes, infor­

mation theory, random fields and stochastic system theory. 

What is the problem ~ere? Assume given two jointly Gaussian random 

variables and consider the a-algebras that they generate. One may ask for 

all the a-algebras that make these two a-algebras conditional independent. 

To exclude some trivial answers the concept of a minimal a-algebra that 

makes these two a-algebras conditional independent must be introduced. The 

strong probabilistic realization problem is then to show existence of 

a-algebras that make two given a-algebras minimal conditional independent, 

to classify all such a-algebras and to develop an algorithm that constructs 

these a-algebras. The weak probabilistic realization problem is analogous 

to the above problem, except that in this case the underlying probability 

space may be constructed. A still open problem is the probabilistic realiza­

tion problem in the case that the a-algebras are arbitrary, not necessarily 

generated by Gaussian random variables. 

The approach of the paper is a mixture of probabilistic and geometric 

analysis. The main objects of the paper are a-algebras generated by finite 
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dimensional Gaussian random variables. From NEVEU [6] it is clear that a 

Hilbert-space framework may be used in this case. This approach has been 

followed in [5]. However, this line of work is insufficient for the problem 

to be considered here. Because of the restriction to a-algebras generated 

by finite dimensional Gaussian random variables a more explicit classifica-

. tion may be obtained. 

A brief summary of the paper follows. The problem formulation is given 

in the next section, while some preliminaries are presented in Section 3. 

The weak probabilistic realization problem is solved in Section 4 and the 

strong probabilistic realization problem in Section 5. 

2. PROBLEM FORMULATION 

In this section some notation is introduced and the problem defined. 

In this paper (n,F,P) denotes a complete probability space, consisting 

of a set n, a a-algebra F, and a probability measure P. Let 

F ={Ga a-algebra of elements of n I G c F, completed with all 

the null-sets of F}, 

and for Ge: F 

L+(G) = {x: n + R+ I xis G-measurable}. 

If y: n + Rk is a random variable, then FY= a({y}) e: ! is the a-algebra 

generated by y. If F1,F2 e: !, then (F 1vF2) e: F denotes the smallest 

a-algebra that contains both F1 and F2• The notation (F 1,F2) e: I is used 

to indicate that F1,F2 are independent a-algebras. Rn will be equiped with 
n the a-algebra of the Lebesgue measurable sets, together denoted by (R ,B ). n 

2.1. DEFINITION. The aonditionaZ independence relation for a triple of 

a-algebras F1,F2,G e: Eis defined by the condition that for all 
+ + 

Yt e: L (Fl), Yz e: L (F2) 



Equivalently, if 

+ :for all y 1 E L (F 1). Then one says that F l'F 2 are aonditional, independent 

. given G. Notation (F 1,G,F 2) E CI. 0 

The equivalence follows from [1,. II.45]. 

Some notation will be introduced. Let 

z+ = {I,2,3, ••• }, 

and for n E Z+ 

Z = {1,2, ••• ,n}, n 

N = {0,1,2, ••• }, 

N = {0,1,2, ••• ,n}. n 
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If n E Z+, Q E Rnxn, then QT denotes the transposed of Q; if Q is synnnetric, 

then Q ~ 0 denotes that Q is positive definite and Q > 0 that it is strict­

ly positive definite. 

A finite dimensional Gaussian random variable with parameters n E Z+, 

µ E Rn, Q E Rnxn, satisfying Q =QT~ O, is a random variable x: Q + Rn 

such that for all u E Rn 

Notation: x E G(µ ,Q); (x.1, ••• ,x ) E G(µ ,Q) will denote that with 
T . m 

xT = (x1, ••• ,xT), x E G(µ,Q). If x E G, then Q may denote its covariance m xx 
matrix. The notation G(µ,Q) will stand for a Gaussian measure on (Rn,B) as n 
indicated above, when n is clear from the context. 

2.2. DEFINITION. The Gaussian aonditionaZ independenae reZation for a triple 

of a-algebras FYI,FX,FY2 E F generated by Y1= Q + Rk1, Y2= Q + Rk2, 
n x: Q + R, is defined by the conditions 

1 • (FYI ,Fx ,FY2) E CI; 

2. (y 1,x,y2) E G. 

Notation: (FYI ,Fx ,FY2) E CIG. D 
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Given (y 1,y2) E G there exists a random variable x such that 

(FYI ,Fx ,FY2) ,c: CIG. For example, x = y 1, or x = y 2 , are such random 

variables. From many viewpoints it is of interest to ask for a minimal 

dimension for the random variable x . 

. 2. 3. DEFINITION. The minima:l Gaussian conditional independence relation 

for a triple of a-algebras FYI ,FY2 ,Fx E !'. generated by y 1: n-+ Rk1, 

y 2 : n -+ Rk2, :x: n -+ Rn is defined by _the conditions 

]. 

2. 

(FYI,Fx,Fy2) E CIG; 

if Fx1 E f, Fx1 c Fx, (FY] ,Fx 1 ,FY2) E CIG, 

and (y l ,y 2 ,x,x1) E G, then Fxl = Fx. 

Then one says that Fx makes FYJ,FY2 minimal Gaussian conditional independent. 

2.4. PROBLEM. The weak Gaussian probabilistic realization problem for a 
. ( k 1 +k2 ) . Gaussian measure on R ,Bk +k is: 

I 2 n 
a. to show existence of a state space (R ,B) and of a Gaussian measure P n 

k1+k2+n ) . . on (R ,Bki+k2+n such that, after introduction of the canonical 

variables, 

1. (FYI ,Fx ,FY2) E CIG . ; m;i.n 
2. the measure on (y 1,y2) coincides with the given measure; 

the triple (Rn,B ,P) will then be called a minimal weak Gaussian proba­
n 

bilistic realization of the given measure; 

b. to classify all such minimal realizations; 

c. to develop an algorithm that constructs all such minimal realizations. D 

2.5. PROBLEM. The strong Gaussian probabilistic realization problem for a 

triple of Gaussian random variables (y 1,y2 ,v) is: 

a. to show existence of triples (r,B ,Fx), where x: n-+ Rn, such that n 
1. (FYI ,Fx ,FY2) E CIGmin; 

2. Fx c FYI v FY2 v FV and (y1,Y2,v,x) E G; 

such a triple will then be called a minimal strong Gaussian probabilistic 

realization of the given triple; 

b. to classify all such minimal realizations; 

c. to develop an algorithm that constructs all such minimal probabilistic 

realizations. D 
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A technical result on conditional independence is needed that will be 

proved next. Note that if (F 1,G,F2) € CI and F3 c F1, then (F3 ,G,F2) € CI. 

2.6. PROPOSITION. If F1,F2,G1,G2 € f, (F1,G1VG2,F2) € CI, and (G2,F1VF2VG1) € 

€ I, then (F 1,G1,F2) € CI. 

One concludes with the equivalent condition of 2.1. 0 

Finally some additional notation for matrices is introduced. For 

n € Z+ let 

Dn ={A€ Rnxn A diagonal}, 

D+ = {A€ D A~ O}, 
n n 

nxn the set of orthogonal matrices. For A€ R let 

C (A)= {(S 1,s2) € 0 xo n n n 

It is easily verified that Cn(A) is an equivalence relation. The set of 
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equivalence classes of O over C (A) is denoted by O /C (A). The class of n n n n 
matrices that colillilute with a given matrix is described in [2, I.VIII 2]. 

3. PRELIMINARIES 

In this section the canonical variable form for Gaussian random 

variables is introduced and an equivalent condition for GIG. is derived. min 
These preliminaries will be used in the following sections. 

To describe the relationship between two random variables HOTELLING 

[3] has introduced the concept of a canonical variable form. For Gaussian 

random variables this form has a rather explicit structure that is stated 

below. 

k k2 3.1. DEFINITION. Given y 1: n + R, y2: n + R , (y 1,y2) € G(O,K). These 

random variables are said to be in aanonioaZ vanabZe form if 

K= 
(k1+k2)x(k1+k2) 

€ R , 

O+ 
where A€ Dk12 , A= diag(A 1, ••• ,Ak12), 1 >Al~ Ai~ ••• ~ Ak12 > O. 

Compatible with this decomposition let y 11 : n + R 11 , y12 : n + Rk12, 

Y13: n + Rk13, Y21: n + Rk11, Y22= n + Rkt2, Y23: n + Rk23, Yi= <Yi1,Yi2,Yi3), 
T T T T Y2 = (y21 ,y22 ,y23). Furthermore, let 

W=CA)e □ 

It is a classical result [8] that for any pair (z 1,z2) € G(O,K1), with 

k 1 > O, there exists a basis transformation (z 1,z2) 1-+- (s 1z 1,s2z2) such that 

(s 1z 1,s2z2) is in canonical variable form. On the basis of the canonical 

variable form one may formulate a canonical form for Gaussian measures. 



The problem posed in 2.4 is the construction and classification of 

a-algebras that make two given a-algebras minimal Gaussian conditional 

independent. This problem is analogous to the construction of realizations 

in linear system theory. There it is known that a dynamical system has a 

state space of minimal dimension iff the dynamical system is observable 

. and controllable. Furthermore, all minimal realizations are equivalent in 
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a well defined sense. What remains of this picture in probabilistic realiza­

tion? The concept of probabilistic ob-servability will be defined first. 

3.2. DEFINITION. Given (FY 1,Fx,Fy2) € CIG. This triple will be called 

probabilistia observable if the map x 1-+ E[exp(iuTy 1)jFx] is injective on 

the support of x. It will be called probabilistia reaonstruatible if the 

map x ~ E[exp(iuTy2)jFx] is injective on the support of x. D 

Suppose that through multiple experiments one is able to obtain an 

estimate of the measure of y 1 for a fixed value of x. Then probabilistic 

observability implies that from this measure one can determine the value 

of the state x uniquely. This property motivates the above definition of 

probabilistic observability. 

With (y 1,x,y2) € G(O,Q) and a basis for x such that Qxx > 0 one has 

that 

T I x T -1 T -1 E[exp(iu y 1) F] = exp(iu O Q x- ½u [O -0 Q O Ju). 
-y 1x xx -y 1y 1 -y 1x xx~y1 

Thus (FY 1,Fx,Fy2) € CIG is 

= rank(Q ). The following xx 
is now motivated. 

probabilistic observable iff rank(Q ) = 
. ylx 

result, an equivalence condition for CIG. , min 

k k 
3.3. THEOREM. Given y 1: n + R 1, y2 : n + R 2, x: n + Rn. The foUOlJ)ing are 

equivalent: 
(a) (FY 1,Fx,FY2) € CIG.; 

min 
(b) 1. (yl'x,y2) € G; 

-1 
2• QY1Y2 = QY1XQxxQxy2; 
3. rank(Qy 1x) = rank(Qxx) = rank(Qy2x). 

Here it ha.s been asswned tha.t a basis ha,s been ahosen suah tha.t Q > o. 
xx 
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The proof of 3.3 is based on the following intermediate results. 

. kl k2 n 
3.4. PROPOSITION. Given Y1: '2-+ R , Yz= '2-+ R , x: n-+ R , (yl ,x,yz) e: G. 

Suppose t"ha.t a basis for x "ha.s been ahosen suah that~> O. Then the foZ-

7.,0bJing are equivalent: 
(a) (FYt,Fx,Fyz) e: CIG; 
. . -1 
(b) QYtY2 = QY]X~Qxyz• 

PROOF. This is a calculation via the conditional characteristic function. D 

b de , d ' YI x Y2 3.5. PROPOSITION. Let Y1,Yz,X e as f~ne in 3.4. If (F ,F ,F ) e: CIG, 

kl 
xl = E[yl jFx], xl: '2-+R ' 

k2 X] 
Xz: '2-+R , x2 = E[y2 1F J, 

Yt xz Y2 then (F ,F ,F ) e: CIG and rank(Q ) = rank(O ) • 
x2x2 'Y1Y2 

xl x 
PROOF. Because F c F, 

Yt xl Yz Xz xi 
and with 2.1, (F ,F ,F ) e: CIG. Similarly, using F c F , one obtains 

that (pYl,px2,FY2) e: CIG. ~hen x1 = E[y1jFx] = Qylx~!x. Let n 1 =rank(QX]X]). 

Then there exists Se: Rn1x 1 such that 
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Define w: n + Rn2 , w = Rx2• Then~= In, Fx2 = Fw, and rank(~):;;; 

. :;;; rank(QYJY2)." By (FY 1,Fw,FY2) = (FY 1,Fx2,Fy2) e: CIG and 3.4 

rank(~)~ rank(Qy 1y2). The conclusion then follows. D 

-1 
PROOF of 3.3. If QYJYZ = Qy 1xQxxQxyz, then rank(QYJX) = rank(Qxx) = 

= rank(Qy2x) if£ rank(QYIYZ) = rank(~)- a+ b. By 3.4(b) rank(QYJYZ):;;; 

:;;; rank(Qxx). Suppose that rank(Qy y) < rank(~). As in 3.5 define 
X XI 1 2 y X Y2 x1 = E[y11F ], x2 = E[y21F ], and conclude that (F 1,F 2,F ) e: CIG and 

rank(Qx2x2) = rank(Qy 1y2) < rank(Qxx>• This and Fx2 c Fx contradicts the 

minimality. Thus rank(Qy y) = rank(Q ) and one concludes with the above I 2 xx 
k Xt x ( YJ Xt Y2) d ( ) remar. b +a.Let F c F, F ,F ,F e: CIG, an y 1 ,y2,x,x1 e: G. 

Suppose that a basis for x 1 has been chosen such that Qx x > O, 
X] X } } 

n 1 = rank(Qx1x1). By (y 1 ,y2,x,x1) e: G and F c F one has n 1 :;;; n. Further-

more (FYJ,Fxl,FY2) e: CIG implies by 3.4 that n = rank(Qxx) = rank(Qy 1y2):;;; 

:;;; rank(Qx1x1) = n 1, hence n 1 = n. Familiar arguments now yield that 
Fx = Fxl and (FYI Fx FY2) e: CIG .• 0 

' ' min 

Note that the construction procedure given in 3.5 provides a way to 

construct a-algebras that have the minimality property. Based on the decom­

position presented in 3.1 some results may be obtained that will facilitate 

the proofs in the following two sections. This is done below. 

. kl kz • 
3.6. PROPOSITION. Given Y1: Q + R , Yz= n + R , (yl'y2) e: G(O,K) mth K 

i.n the canonical, vaPiabZe form as given in 3. I. The notation of 3.1 is 

adopted. Then (FY 1,Fx,Fy2) e: CIG. iff there exists a basis for x such that 
T _ ( T T) • k11 . min ktz ( Y11 xl Y21) d x - xl,x2, xl. Q + R , Xz· Q + R , F ,F ,F e: CIGmin an 

(FY12 F 2 FY22) e: CIG .• 
' ' min 

PROOF. Necessity of the decomposition. By the remark preceding 2.6 and 

(FY1,Fx,Fy2) e: CIG. it follows that min 
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X = l 

'l'hen (Fx2 ,FYJ 1) E I. Because of (FYt t ,Fx,FY21 ) E CIG, y 1 l = y21 and 2.1, 

one obtains 

hence y 11 = E[y 11 jFx]. Thus Fx1 c FYJ J c Fx. Furthermore, x2 = x-x1 implies 

that Fx2 c (F¾Fx1) c Fx, hence Fx1vFx2 = Fx. Now (Fy 11 vFY12,Fx 1vFx2 , 

Fy21vFY22) E CIG, (Fx2 ,FYJJ) EI, Fxl c FYtt, and 2.6 imply that 

(FYt1,Fxt,FY21) E CIG and (FYI 2 ,Fx2 ,Fy22 ) E CIG. Then 

= rank(Q ) 
xx 

where the inequality follows from 3.4(b). Hence equality holds throughout, 

rank(Qx1x 1) == k 11 , rank(Qx2x2) = k 12 and the conclusion follows. Finally 

one may reduce the effective dimensions of x 1,x2• The sufficiency of the 

decomposition is a verification using 3.3. D 

3.7. PROPOSITION. Given y: 51 ➔ Rk, y E G(O,I), x: 51 ➔ Rn.Then (Fy,Fx,Fy) E 

E CIG. iff with respect to some basis x = y a.s. min 

PROOF. The elementary proof is omitted. D 
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4. THE WEAK GAUSSIAN PROBABILISTIC REALIZATION PROBLEM 

In this section the weak Gaussian probabilistic realization problem is 

solved. 

k1+k2 
. 4.1. DEFINITION. Let a Gaussian measure G(O,K) be given on (R ,Bki+k2). 

Define the s,et of weak Gaussian probabiUstic reaUzations 

kl+k2 
WPR(R ,Bk +k ), G(O,K)) 

I 2 

= {(Rn,B ), P: Bk k ➔ [0,1] I 
n I+ 2+n 

if Q 

Y1 x Y3 
then (F ,F ,F ) E CIG . , and (y 1 ,y2) E G(O,K)}. min 

nl . n2 
The elements (R ,Bn 1,P 1), (R ,Bn2 ,P2) E WPR are said to be equivalent if 

P1 = P2 up to a basis transformation of the underlying probability space. 

In the following the set WPR will be identified with the set of equivalence 

classes obtained by dividing out the above equivalence relation. 

In the above definition y 1,y2 ,x are called canonical variables, which 

term must be distinguished from the canonical variable form defined in 3.1. 

. k1+k2 
4.2. THEOREM. G1.-ven the set WPR(R ,Bki+k2 ,G(O,K)) where a basis has 

been chosen such that the matrix K has the form as given in 3.1. The nota­

tion of 3.1 is adopted. Let 

WPA O+ I = {U E Dk , SEO SE Ok /Ck (U), 
12 kl2 12 12 



12 

Define the map r: WP A -+ WPR by 

where 

L = 

I 

n r(U,S) = (R ,B ,G(O,L)), n 

I 

I I 
I 

I 
I 
I 
I 

I I 
I 

A 

I 

0 

0 0 0 
-------------.---------- "T --------
I I I I I 

I I 0 

A 
I I 
I I I 0 
I I 
I I 

0 I I I O 0 
-------------1---------------1-----------
I 0 

0 

I 
0 I I 

I 
I 
I 
I 

o I o 
I 

0 0 I 

Q 

Then r: WP A + WPR is we U defined and a bij eation. 

(k1+k2+n)x(k1+k2+n) 
€ R 

The solution to the weak Gaussian probabilistic realization problem is 

given by 4.2, since it classifies all minimal weak Gaussian probabilistic 

realizations and provides an algorithm to construct these realizations. 

The structure of the solution will be explained in Section S. 



4. 3. LEMMA. Given the set WPR(R2\B2k ,G(O, E)) with E as given in 3. I. Let 

g = { Q E Rkxk I Q = QT ~ 0, A = (A -1 - A) -1 , 

A 

I 
! 

QA2 

Q + QAA + AAQ - QAQ - A ~ 0 } • 

2k Then the map r 1: ~ + WPR(R ,B2k,G(O,E)) is well defined and a bijection. 

Some calculations needed in the proof of 4.3 are summarized in the 

following result. 

nxn d f . d . nxn d 4.4. PROPOSITION. Given A E R , as e 1--ne 1--n 3.1, Q E R , an 

L1 E R3nx3n as defined in 4.3. Assume that Q =Qr.Then the following 

are equivalent: 

a. LI ~ O; 

b. Q E Q, where Q is as defined in 4. 3; 

c. A :s; Q :s; A-1. 

PROOF. E, as defined in 3.1, is nonsingular and 

-1 
E 

Elementary row and 

Q ~ A 

iff 
! 

Q - (A2 

A calculation then 

column operations now yield that L1 

and I-A½QA! ~ O, 

1 -I(A!) QA2)z: A½Q ~ O. 

gives the result. D 

~ 0 iff 

l3 
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PROOF of 4.3. 

1. It will be shown that r 1 is well defined. If Q € Q then it follows from 

4.4 that L1 = L~ ~ 0 and Q > O. Then G(O,L 1) is a valid Gaussian measure on 

(R3k,B3k). Denote the canonical variables by (y1,y2,x). Furthermore, 

rank(O ) = rank(A) = rank(Q ) 
")7}X XX 

Yt x Y2 
By 3.3 one obtains that (F ,F ,F ) € CIG. , and by definition of L1 min 

(FYI x Y2 
2. Surjectiveness. Because of the minimality in ,F ,F ) € CIG. min 

> 0. From 3.3 one may choose a basis for x of dimension k; then Q 
y y -1 xx 

(F 1,Fx,F 2) € CIG it follows that A= Qy xo Qxy, hence Qy 1x is non-
. - l -1 - . t ~x 2 - l ½ 

and 

singular. Let x1 - A Qy 1xx and Q - Qx1x1• Then Qy 1x1 - A, Qy2x1 = A Q 

and (y l'y2 ,x1) € G(O,L1) wi'th L1 as given in 4. 3. Because L1 = L'f ~ 0, it 

follows from 4.4 that Q € Q. 

3. Injectiveness. As indicated in 2. above, one may choose a basis for the 

probability space, such that with respect to this basis the corresponding 
n1 n2 covariance matrix has the- form L1• Hence (R ,Bn1 ,P 1) = (R ,Bn2 ,P2) € WPR 

implies that Q1 = Q2 € g. D 

PROOF of 4.2. 

I. It will be shown that the map r is well defined. Given (U,S) € WPA it is 

a calculation to verify that Q € Q. Using 4.4 and linear algebra operations 

one obtains that L =LT~ O. The Gaussian measure G(O,L) is thus well 

defined. Denote the canonical variables, as defined in 4.1, by (y1,y2,x). 

Then (y1,y2) € G(O,K). Using the expression for Land 3.3, one concludes 
YI x Y2 n that (F ,F ,F ) € CIG. , and (R ,B ,G(O,L)) € WPR. min n 

2. Surjectiveness. Because of the minimality in (FY 1,Fx,FY2) € CIG. and min 
3.3, one may take a basis for x of dimension k 11 +k 12• By 3.6 there exists 
x : n -+ Rkl I x : n -+ Rkl 2 such that Fx = Fxl v Fx2 (FYI I Fxl Fy21 ) € CIG . 

I '2 · ' ' ' min 
and (FY12,Fx2,FY22 ) € CIGmin" With 3.7 one concludes that a basis for x 1 
may be chosen such that x1 = y 11 = y21 a.s., hence O =I= 0 x = Q x • 

'Y11X1 'Y21 1 XI 1 
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. Y21 x2 Y22 
It follows from (F ,F ,F ) € CIG. and 4.3 that there k min 1 1 1 

such that r 1(Q) = (R 12 ,B~,G(O,I:)). Let A= (A- -A)-, A2 

exists a Q E Q 
+ 

€ Dit12' 
M € Rk12xk12 

T Because Q E Q and by 4.4 one has Q ~A> 0. Thus M = M ~ O, and from 

Q E Q follows that M-M2 ~ O. From a result in linear algebra one may con-
0+ T elude that there exists s1 E ok12 , U E Dk12 , such that M = s1us 1• Then 

or u2-u s O, or if u = diag(u1, ••• ,uk12) 

u. € [0, 1]. Finally, take SE Ok /Ck (U) 
I. 12 12 

then for i E zk12 , uf-ui s O, or 

corresponding to s1• Note that one 

obtains the expression for Q given in 4.2. 

3. Injectiveness. 

ness of r one may 

nl ·n2 . . 
Let (R ,Bn1,P 1) = (R ,Bn2,P2) € WPR. By the surJective-

associate with these (U1,s 1), (u2,s2) E WPA, respectively. 

By part 2 above and 4.3 one has that the corresponding matrices Q1,Q2 € g 
satisfy Q1 = Q2• From the expressions for Q1,Q2 it follows that s1u1si = 

= s2u2s~. From linear algebra and the fact that the diagonal elements of 

u1,u2 are decreasingly ordered, one deduces that u1 = u2• Then s~s 1u1 = 
T = u1s2s1• Because s1,s2 E Ok 12/ck12 cu1) and by definition of ck12 (u1) one 

concludes that s1 = s2• D 

5. THE STRONG GAUSSIAN PROBABILISTIC REALIZATION PROBLEM 

In this section the strong Gaussian probabilistic realization problem 

is solved. 

5.1. DEFINITION. Given a complete probability space (n,F,P) and three 
k k 

Gaussian random variables defined on it y 1: n + R 1, y2: n + R 2 , 

v: n + Rm with (y 1,y2,v) E G(O,L). Define the set of strong Gaussian 

probabiZistic reaZizations 
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= {(Rn,Bn),Fx E ~ I x: Q ➔ Rn. Fx = a({x}), 

Yt x Y2 Y1 Y2 
(F ,F ,F ) E CIG. 'Fx CF VF V Fv, 

min 

In the above definition v represents additional information on which 
X the a-algebra F may be based. It is clear that for an arbitrary Gaussian 

random variable w representing external information, one may construct a 

Gaussian random variable v such that Fv c Fw, (Fv,FYJvFY2) EI, and 

FYlvFY2vFw = Fy 1vFY2vFv. 

5.2. THEOREM. Given a complete probability space (n,F,P) with three Gaussian 
kl k2 m random variables defined on it y 1: Q ➔ R , y 2 : n ➔ R , v: Q ➔ R , 

(y 1 ,y2 ,v) E G(O,L), where 

L=() 
m 

with K as given in 3. 1. The notation of 3. 1 is adopted. Let 

A = (A - l - A) - l , A~ E D: , 
12 

U = blockdiag(I ,u3 ,o ), 
n 2 n 1 



Pl= A-½S(I-U)STA½Ai, 

p2 = A-½susTA-½A½, 

P3 - A-ls(u-u2)1(~. 
n x: Q ➔ R, x= (y 11 ). 

P1Y12+P2Y:22+P3v 

,17 

Then, 1iJith respeat to the given basis for (y 1 ,y2 ,v), r is 1iJeU defined and 

a bijeation. 

The solution to the strong Gaussian probabilistic realization problem 

is provided by Theorem 5.2, since it classifies all strong realizations and 

gives an algorithm to construct all these realizations. The structure of 

the representation of Fx may be illustrated as follows. Let U = blockdiag 

(In2 ,u3,on1) and xT = (xi,x~) as indicated in .5.2. Then, up to a trans­

formation, the first n2 components of x2 consist only of elements of y22 , 

the last n 1 components of x2 consist only of elements of y 12 , while the 

remaining n3 components consist of elements of y 21 ,y22 and v jointly. 

5.3. LEMMA. Given (Q,F,P) 1iJith three Gaussian random variables defined on 
·t k k m ( ) (O ) ~ y 1: Q ➔ R, y 2 : Q ➔ R, v: Q ➔ R, y 1,y2 ,v € G ,L, 

L = C : ) < R(2k+m)x(2k+m), 

m 

1iJhere Eis as defined in 3.1. Let 

SPAl = {Q € Rkxk, p3 € Rkxm I A := (A-1 - A)-1, 

Q=QT ~ O, Q+QAA+AAQ-QAQ-A = P3P~}. 

2k+m k x Define the map r 1: SPA1 -+- SPR(R ,B2k+m'G(O,L)) by r 1 (Q,P3) = (R ,Bk,F ), 

1iJhere 
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Then, with respeat to the given basis for (y 1,y2 ,v) the map r 1 is weZZ 

defined and a bijection. 

PROOF. 

1. Some equalities are derived first. Note that Eis nonsingular and its 

inverse may be found in the proof of 4.4. Then P1,P2 satisfy 

(P 1 P2) = (Ai I QA½)A- 1, 

(PI P2)E(:i) = QAQ + A- QAA-AAQ. 

2. To show that r is well defined let (Q,P3) E SPA1• Then Fx is well defined. 

It is then a calculation to show that QYJX = Ai, Qy2x = A½Q, and with I. 

above and (Q,P3) E SPA1 that 

(pT) T 
O ~ Qxx = (PI p 2) E pt + p 3P 3 

= QAQ+A-QAA-AAQ+P3P~ = Q. 

T Now Q = Q ~ 0 and 

imply by 4.4 that Q ~A> O. Then 



Y1 x Yz k x 
and by 3.3, (F ,F ,F ·) € CIGmin• Thus r 1(Q,P3) = (R ,Bk,F) € SPR. 

3. Surjectiveness. Let (Rk,Bk,Fx) € SPR. As in the Proof of 4.3, point 2, 
l 

one may choose a basis for x such that if Q = Q , then Qy x = A2 , xx t • 
~yzx = A!Q. Using 1. above, one obtains 

19 

Let z: n + R\ z - x-P 1y 1 -P2y2• Th~n / c Fyl V FYz v Fv, z is independent 
( ) ( ) . kxm h of y 1,y2 , and y 1,y2,v,z € G, hence there exists a P3 € R such tat 

z = P3v. Furthermore, 

P3P; = E[zzT] = Q- (Pl Pz)r(:1) 
2 

= Q + QAA + AAQ - QAQ - A. 

k xl k Xz 
4. Injectiveness. Let r 1(Q1,P13) = (R ,Bk,F ) = (R ,Bk,F ) = 
= r 1(Q2,P23) € SPR. Suppose that for x1,x2 a basis has been chosen as in 

XI xz YJ Yz v 3. above. Because F = F c F v F v F, (y1,y2,v,x1) € G and 

(y 1,y2,v,x2) € G, there exists a nonsingular S € Rkxk such that x2 = Sx1. 

Let 

Then 

Using the expressions for P11 ,P12 ,P21 ,P22 and performing some calculations, 

one obtains 
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SPII - p21 = [(S-I) - (SQI-Q2)A]Ai(I-A2)-l 

SP 12 - p22 = [ (SQI-Q2) - (S-I)A]Ai (I-A2)-l' 

2 (S-I)(I-A) = 0 ➔ S = I, 

PROOF of 5. 2. 

□ 

I. It will be shown that r is well defined. Given (n1,n2,n3,u3,s,H) E SPA. 

A calculation then shows that 

Q := E[x2x~]= (P P2)I:(pl) + A-!s(u-u2)STA-i 
1 p2 

= A-lsusTA-! + A, 

Q + QAA + AAQ - QAQ - A ~ 0. 

By Q =QT~ O, the above inequality, and 4.4, one obtains that Q ~A> O. 

Then (b) of 3.3 follows and thus (FY 1,Fx,FY2) E CIG .• Hence min 
n X r(n1,n2,n3,u3,s,H) = (R ,Bn,F) E SPR. 

2. Surjectiveness. Let (Rn,B ,Fx) E SPR. As in point 2 of the Proof of 4.2 
n k k 

it follows that there exists x1: n ➔ R 11 , x2 : n ➔ R 12 such that 

(FYt I Fxl FY21) CIG - (FYI 2 Fx2 FY22) E CIG . and Fx = FxlvF x2 • 
' y ' x y E min' x I - YI I ' ' ' min' 

Then (F 1;F 2 ,F 22) E CIGmin and 5.3 imply that there exists (Q,P3) E SPA1 
such that r 1(Q,P3) =(Rk12,Bk12 ,Fx2). Then 

k 12xk 12 1 1 
and with M E R , M := A2 (Q-A)A2 , 
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T . O+ T 
Because M = M ~ 0, there exists U € ~ , s1 € ok12 , such that M = s1us 1• 

12 3 
Let S € ok1/ck12 (u) be the element corresponding to s 1• Let (n1 ,n2,n3) € Nk12 -

be respectively the number of diagonal elements of U that are in {0},{1}, 

(0,1). Note that because the diagonal elements of U are by convention 

decreasingly ordered, one has the decomposition U = blockdiagonal(In2 ,u3 ,on1), 

· where u3 = diag(u31 , ••• ,u3n3) with 1 > u31 ~ u32 ~ ••• ~ u3n3 > 0. Let 

V Rnzxm V Rn3xm V Rn1xm 
1€ '2€ '3€ ' 

T -! 2 -1 -! 2 T -! Then P3P3 = A (M-M )A 2 = A S(U-U )SA , implies that v 1 = 
T 2 2 -½ + 2 -½ n3xm 

v2v2 = U3-U3• Take (U3-U3) € Dn3' H = (U3-U3) v2 € R • 
T 

HR = In3• 

Then 

3. Injectiveness. Let r(n 11 ,n12 ,n13 ,u13 ,s 1,H1) = r(n21 ,n22 ,n23 ,u23 ,s2 ,Hi €SPR. 

As indicated in 2. above there exists (Q 1 ,P13) = (Q2 ,P23) corresponding to 

these elements. From the expression 

T T and a similar expression for Q2, it follows that s1u1s 1 = s2u2s 2• Because 

of a result in linear algebra and the convention of ~;2, one obtains that 
T 

n 11 = n21 , n 12 = n22 , n 13 = n 23 • Furthermore, s2s1u13 = 

s1,s2 € Ok12/Ck12<U13) imply that SI= s2. Finally, 

imply that H1 = H2• D 
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