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Analysis of heuristics for two-machine flow-shop sequencing subject to 

release dates*) 

by 

**) C.N. Potts 

ABSTRACT 

The two-machine flow-shop problem is considered in which each job 

becomes available for processing at its release date after which it must 

be processed without interruption on the first machine and then on the 

second machine. The objective is to minimize the maximum completion time. 

Three heuristics are presented which each have a worst-case performance 

ratio of 2. One of these is modified to give an improved worst-case perform

ance ratio of 5/3. 
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I • INTRODUCTION 

The problem may be stated as follows. Each of n jobs (numbered I, ••• ,n) 

must be processed without interruption firstly on machine A and then on 

machine B. Jobi (i = I, ••• ,n) becomes available for processing at its non-

negative release date r. and requires a positive processing time of a. and 
l. l. 

b. on machines A and 
l. 

B respectively. At any time the machine can handle only 

one job and each job can be processed on only one machine. The objective is 

to schedule the jobs so that the maximum completion time Cmax is minimized. 

It is well-known [1,8] that it is unnecessary to consider schedules in 

which the processing orders on the two machines are not identical. 

An equivalent problem exists [8] in which job i (i = I, ••• ,n) has a 

zero release date and has a non-positive due dated .• After the jobs are 
l. 

sequenced, the completion time C. and the lateness L. = C.-d. of job i 
l. l. l. l. 

(i = I, ••• ,n) can be computed. The objective is to sequence the jobs so that 

the maximum lateness is minimized. However, the original problem of minimiz-

ing C when jobs have arbitrary release dates will be considered hence-max 
forth. 

When all release dates are equal, the problem can be solved in 

O(n log n) steps by the algorithm of JOHNSON [5] in which those jobs with 

a.~ b.·are-sequenced first in non-decreasing order of a. followed by 
l. l. l. 

the remaining jobs (with a.> b.) sequenced in non-increasing order of b .• 
l. l. l. 

For arbitrary release dates, LENSTRA et al. [6] have shown that the problem 

is NP-hard which indicates that the existence of a polynomial bounded 

algorithm to solve the problem is unlikely. Apart from the branch and bound 

algorithm proposed by GRABOWSKI [4] ,the problem has received little atten

tion from researchers. 

In this paper, we propose some heuristic methods to sequence the jobs. 

Suppose that c* denotes the minimum value of the maximum completion time 
H max 

while C denotes the maximum completion time max when the jobs are sequenced 

using a certain heuristic H. If, whatever H * the problem data, C ~ pC + o max max 
for specified constants p and o, where pis as small as possible, then 

pis called the worst-case perfomzance ratio of H. A survey and discussion 

of the worst-case analysis of heuristics are given by FISHER [2] and 

GAREY et al. [3]. 
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In Section 2 four heursitics are given, one of which is shown to have 

a worst-case performance ratio of 3 while the other three are each shown 

to have a worst-case performance ratio of 2. Section 3 shows how the 

repeated application of one of these heuristics to a constrained version of 

the original problem leads to an improved worst-case performance ratio of 

5/3. This is followed by some concluding remarks in Section 4. 

2. ANALYSIS OF HEURISTICS 

The four heursitics to be analyzed in this section are described now. 

The first is heuristic ARB in which the jobs are sequenced arbitrarily after 

which CARB is evaluated in O(n) steps. The second is heuristic R in which 
max 

the jobs are sequenced in non-decreasing order of release dates in 

O(n log n) steps and the third is heuristic Jin which the jobs are se

quenced according to Johnson's rule (ignoring release dates) in O(n log n) 

steps. If heuristic R is adopted, there will be no unforced idle time on 

machine A. The fourth heuristic RJ is a variant of R which attempts to take 

advantage of J while retaining the absence of unforced idle time on 

machine A: whenever there is a choice of jobs for the first unfilled 

position in the sequence which preserves this absence of unforced idle time, 

one is chosen which would be sequenced first amongst these jobs according 

to Johnson's rule. A form.al statement of this heuristic, which requires 

O(n log n) steps, is given below. 

Heuristic RJ 

Step 1. Let S be the set of all jobs, let k = 0 and find T = min. 8{r.}. 
JE J 

Step 2. 

{jljES, 

Find the set S' = {j!jES, r.sT, a.s;b.} and the set S" = 
J J J 

r.s;T, a.>b.}. If S' # 0, find a job i in S' with 
J J J 

possible; if S' = 0, find a job i in S" with b. as large 
l. 

a. as small as 
l. 

as possible. 

Step 3. Set k 

s = s - {i}. 

= k+l, sequence job i in position k, set T = T+a. and set 
l. 

Step 4. If S = 0, then stop. Otherwise set T 

to Step 2. 

= max{T, min. S{r.}} and go 
JE J 

If any heuristic H generates a sequence (cr(l), ••• ,cr(n)), the corres

ponding maximum completion time can be written as 



( I ) 
V 

CH \ + 
max= rcr(u) + l acr(i) 

i=u 

n 

l bcr(i)' 
i=v 

for some u,v E {1, ••• ,n}, where u::;; v and where u is chosen as small as 

possible. 

Some lower bounding schemes for c* , which are needed in the sub-
max 

sequent analysis, are introduced. In general, each job i has a set of 

predecessors which are jobs that are known to be sequenced before job i 
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in an optimum sequence and a set of successors which are jobs that are 

known to be sequenced after job i in an optimum sequence. For any subset S 

of jobs, the machine-based bound for machine A (or machine B) is the sum of 

the following: 

(i) the minimum release date of jobs in S which have no predecessors; 

(ii) the total processing time on machine A (or machine B) of the jobs ins. 

For any subset S of jobs, the job-based bound centered about any job j in 

Sis the swn of the following: 

(i) the minimum release date of jobs in S which have no predecessors; 

(ii) the total processing time on machine A of all predecessors of job j; 

(iii) the total processing time on machine A of all jobs i in S - {j} with 

(iv) 

(v) 

(vi) 

a. ::;; 1b • which are neither predecessors nor successors of job j; 
i i 

the total processing time of job j; 

the total processing time on machine B of all successsors of job 

the total processing time on machine B of all jobs i in S - {j} 

a. > b. 
i i 

which are neither predecessors nor sucessors of job j. 

j; 

with 

We now proceed with the derivation of the worst-case performance ratio 

for our four heuristics. 

THEOREM I. CAR.BJc* < 3, CR Jc* < 2, CJ Jc* 
max max max max max max 

and these bounds are the best possible. 

< 2 and cRJ Jc* < 2 
max max 

PROOF. We assume in each case that the sequence generated is (cr(l), ••• ,cr(n)) 

and the maximum completion time is given by (1). 
* . Clearly, C is greater than any release date, so max 

(2) 
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The machine-based bound for machine A and jobs in {cr(u), ••• ,cr(v)} yields 

(3) c* 
max 

V 

> t 
i=u 

and the machine-based bound for machine Band jobs in {cr(v), ••• ,cr(n)} yields 

(4) 

For heuristic ARB, by adding (2), (3) and (4) we obtain 3c* > CARB max max as 

required. 

Under heuristic Rand RJ the minimum release date of jobs {cr(u), •• 

• ,cr(v)} is rcr(u)" Applying the machine-based bound for machine A to this 

set yields 

(5) 

Adding (4) and (5) yields 2c* > CR and 2c* > CRJ as required. 
max max max max 

Lastly, under heuristic J the jobs in {cr(u), ••• ,cr(n)} are sequenced 

according to Johnson's rule. Their maximum completion time, ignoring 

release dates, provides the lower bound 

(6) c* 
max 

Adding (2) and (6) we obtain 2c:ax > c;ax as required. 

To complete the proof, we present an example to show that the bounds 

of Theorem 1 are the best possible. 

Consider the 3•job problem specified by the date in Table 1, where 

0 < 8k < K. 

Table 1. Data for the first example 

i I 1 2 3 

r. k 0 K-3k 
1 

a. 2k K-6k k 
1 

b. K-6k k 2k 
1 
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* Clearly, (I,2,3) is an optimum sequence with C = K. If the jobs 
max 

are sequenced arbitrarily 
ARB/* 

in the order (3,2,1), we have CARB = 3K-12k. 
max 

12k/K which can be arbitrarily close to 3. If Therefore c· C = 3 -
max max 

either heuristic R or heuristic RJ is applies, the sequence (2,1,3) results 

with CR = CRJ = 2K - 8k. Therefore, CR Jc* = CRJ /c* = 2 - 8k/K 
max max max max max max 

which can b,e arbitrarily close to 2. Finally, heuristic J generates the 

sequence (3,1,2) with CJ = 2K - 5k. Thus CJ Jc* = 2 - Sk/K which can 
max max max 

also be arbitrarily close to 2. D 

Henceforth, we shall examine heuristic RJ in more detail and suggest 

a method of improving it. We start by presenting two special identifiable 

cases in which the maximum deviation from the optimum is less than 50%. As 

b f . d h RJ ' . b (I) e ore, it is assume tat C is given y • max 

THEOREM 2 • .If a(') ~ b (.) for i = u, ••• ,v or if a(.)~ b (.) for cr i RJ cr i cr i cr i 
i = v, .•. ,n, then C · Jc* < 3/2. In each case, this bound is the best 

max max 
possible. 

PROOF. The machine-based bounds for jobs in fo(u), ••• ,cr(n)} on machines A 

and Bare respectively 

(7) 

and 

(8) 

n 

c:ax > rcr(u) + l acr(i) 
i=u 

Subtracting (8) from (1) we obtain 

(9) * - C max 

V 

< l acr(i) -
i=u 

v-1 

l bcr(i)" 
i=u 

If acr(i) ~ bcr(i) for i = u, ••• ,v, it follows from (9) that 

which implies that CRJ Jc* < 3/2 for this first case. 
max max 
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(IO) 

Subtracting (7) from (1) we obtain 

CRJ 
max - C * max 

n n 
< l b (.) - l a~(i)" 

i=v CJ J_ i=v+ 1 V 

If aCJ(i) ~ bCJ(i) for i = v, ••• ,n, then (10) implies that 

CRJ - c* b < 1 < b ) < 1 c* max max< CJ(v) - 2 aCJ(v) + CJ(v) - 2 max• 

Therefore CRJ /c* < 3/2 for the second case also. max max 
To complete the proof, we present examples to show that in each case 

the bound of 3/2 is the best possible. 

Consider the 3-job problem specified by the data in Table 2, where 

0 < 5k < K. 

Table 2. Data for the second example 

i 2 3 

r. k 0 0 
1. 

a. !k ½K-k ½K-k 
1 

b. ½K-k ½K-k ½k 
1 

Clearly (1,2,3) is an optimum sequence with c* = K. When heuristic 
max RJ 

RJ is applied, the sequence CJ= (2,1,3) is generated with C = max 
rCJ(l) + aCJ(l) + bCJ(l) + bCJ( 2) + bCJfi) = !K/2 - Sk/2. Thus we have u = v = 1 

with a (l) s b (l)" Furthermore, C / C = 3/2 - 5k/(2K) which can be CJ CJ max max 
arbitrarily close to 3/2. 

Consider now another 3-job problem with r 1 = 0 and r 2 = 3k/2 and 

where the other data are given in Table 2. We have that (1,2,3) is again 

an optimum sequence with c* = K. When heuristic RJ is applied, the 
max • RJ 

sequence CJ= (1,3,2) is generated with Cmax = rCJ(l) + aCJ(l) + aCJ(2) + aCJ( 3) + 

b~3): 3K/2 - Sk/2. Thus we have v = n = 3 with aCJ(3) ~ bCJ( 3). Furthermore, 

C /C = 3/2 - Sk/ (2K) which can be arbitrarily close to 3/2. D max max 

When the conditions of Theorem 2 are satisfied heuristic RJ has a 

satisfactory worst-case performance. When the conditions are not satisfied, 



a method by which RJ can be imporved is proposed in the next section. 

3. THE IMPROVED HEURISTIC 

Before proceeding, some notation is introduced. Let 

SI = {cr<i) Ii e 

s2 = {cr(i) Ii e 

s3 = fo(i) Ii e 

s4 = {cr(i) Ii e 

so we can write 

(11) CRJ = r + 
max cr(u) 

{u, ••• ,v}, 

{u, ••• ,v}, 

{v, ••• ,n}, 

{v, ••• ,n}, 

a. + 
1 

acr(i) 

acr(i) 

acr(i) 

acr(i) 

s bcr(i)}' 

> bcr(i)}' 

s bcr(i)}' 

> bcr(i)}, 

b •• 
1 

We also define S! = S. - {cr{v)} (i = 1,2,3,4). 
1 1 
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The improved heuristic RJ' which, at each iteration, applies heuristic 

RJ and increases one release date is described now. The first step is to 

apply heuristic RJ and find the sets s 1, s2, s3 and s4• If s 2 = 0 or if 

s3 = 0, then computation is terminated. Otherwise we find a changeover job 

cr(t) with cr(t) e s2 and with t chosen as large as possible and constrain 

it to be sequenced after at least one job in s 3 in each subsequent applica

tion of heuristic RJ. This constraint is implemented by setting rcr(t) = 
min. S {r. + p.}. This process is repeated until s 2 or s 3 is empty at 

1€ 3 1 1, 
which stage cRJ is chosen to be the maximum completion time of the best max · 
schedule generated. A formal statement of the heuristic is given below. 

Heuristic RJ' 
RJ' Step 1. Let j = 1 and let C = =. - max 

Step 2. Apply heuristic RJ to obtain a sequence cr. with maximum completion 
RJ' RJ' J 

time C (cr.). If C (cr.) < C , then set C = C (cr.). max J max J max max max J 
Step 3.Find s 2 and s3• If s2 = 0 or if s3 = 0, then stop having found a 

. h . 1 . " cRJ' 0 h • f. d h h sequence wit maximum comp et1on tune • t erw1se in t e c angeover max 
job cr.(t), set r {t) = min. S {r.+p.}, set j = j+l and go to Step 2. 

J cr j 1e 3 1 1 
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Since there are in general O(n)jobs i with a.~ b. and O(n) jobs i 
2 l. l. 

with a.> b., it may 
l. l. 

be necessary to impose O(n) constraints before 

guaranteeing that s2 or s3 is empty. Each time a constraint is added 

heuristic RJ, which requires O(n log n) steps, is applied. Thus, heuristic 

RJ' requires O(n3 log n) steps. However, it is expected that for most 

problems the heuristic will terminate in less than O(n2) iterati0ns. 

Computation can be reduced by using the observation that those jobs sequenc

ed in the first t-1 positions of a. before the changeover job cr.(t) are also 
J J 

sequenced, in the same order, in the first t-1 positions of crj+t• 

We now prove that heuristic RJ' has a worst-case performance ratio 

of 5/3. 

RJ' * THEOREM 3. C /C < 5/3 and, for arbitrary n, this bound is the best max max 
possible. 

PROOF. Suppose that, after each increase in release date, the minimum value 
. * of the maximum completion time for that currect problem is equal to C • max 

when s2 or s3 is empty, Theorem 2 is applied yielding Then, at termination 
RJ f * C /C < 3/2. max max 

Alternatively, at some iteration, increasing a release date yields 

a current problem for which the minimum value of the maximum completion time 

exceeds c* • Suppose that the first such increase in release date is max 
derived from the sequence a. Suppose also that the maximum completion time 

CRJ for the sequence a is given by (11) and that cr(t) is the changeover max 
job. Any sequence in which job cr(t) is forced to be sequenced after at least 

one job in s3 has a maximum completion which exceeds c* • Therefore, in any 
max 

optimum sequence, cr(t) is sequenced before all jobs in s3• We prove that 

CRJ /c* < 5/3 by using this requirement. 
max max * 

Some lower bounds on C which are used throughout the proof are 
max 

given first. The machine-based bound for the jobs in {cr(u), ••• ,cr(n)} on 

machine A is 

which implies that 



(12) a.+ 
l. 

b .• 
l. 

To derive our next lower bound, we observe that the time at which the pro

cessing of job cr(t) connnences is less than the release date of all jobs in 

s3 : if it we,re not, heuristic RJ would sequence a job in s3 in preference 
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to cr(t). Assume that in an optimum sequence some job cr(w) is sequenced first 

amongst jobs in s3 • Then the job-based bound centred about job cr(w) for the 

jobs in s3 is 

(13) c:.a_x > rcr(u) + r ai - acr(t) + acr(w) + r 
iES2 iES3 

b. • 
l. 

The case that job cr(v) is the changeover job and the case that it 1.s 

not are considered separately. 

Case I. acr(v) > bcr(v)(implying cr(v) E s2 and cr(v) E s4). 

In this case, job cr(v) is the changeover job, i.e. t = v. The job

based bound centered about job cr(v) for the jobs in {cr(u), ••• ,cr(n)} is 

~ r~(u) + l a.+ a () + b () + l b., 
V • s l. cr V a V 1.·Es'us us' l. 

l.E 1 2 3 4 

( I 4) * C max 

since the jcib of s3 are known to be successors of job cr(v) in an optimum 

sequence. If s2' = 0, then (I 4) implies that CRJ = c* • If s2' -:f 0, we max max 
compute (l/2:) ((12 + (13) + (14)) to obtain 

( I 5) 

a.+ 
l. 

+ 21 (a~(w) + l b. - b ( )). 
u iES' l. cr v 

2 

b. 
l. 

Now, if Si contains a job cr(s) with bcr(s) ~ bcr(v), then (15) implies that 

C~x/c:ax < 3/2. Alternatively, if Si contains no such job, then we may 

assume that in the sequence cr job cr(s), with bcr(s) < bcr(v)' is sequenced 

last amongst jobs in s2. The time at which the processing of job cr(s) 

connnences is less than the release date of job cr(v) due to the construction 

of cr by heuristic RJ. Thus, the job-based bound centred about cr(v) for the 



jobs in s3 u {cr (v)} is 

c:a,x > rcr(u) + 1.·~s' ai - acr(s) + acr(v) + bcr(v) + l 
~ 2 ies3 

(16) b., 
]. 

since the jobs of s 3 are known to be successors of job cr(v) in an optimum 

sequence. 

Firstly, suppose that in an optimum sequence job cr(s) is sequenced 

before job cr(v). Then the job-based bound centred about job cr(v) for the 

jobs in s 1 u s 3 u s4 u {cr(s)} is 

(17) C* + ~ + max> rcr(u) .ls ai acr(s) 
1.€ 1 

Computing <!> ( (12) + ( 16) + (17)) yields 

3 * 3 ~ ~ 1 2 Cmax > 2 rcr(u) + l ai + l b. + 2 acr(v)' 
ieS 1us2 ieS3us4 1. 

which implies that CRJ /c* < 3/2. 
max max 

Secondly, suppose that in an optimum sequence job cr(s) is sequenced 

after job cr(v) but before any job in s 3• Recalling that rcr(v) > rcr(u) + 

l a. - a ()'the job-based bound centred about job cr(s) for the jobs ies2 1. cr s 
in s 3 u {cr(s),cr(v)} is 

c:ax > rcr(u) + .IS,ai + acr(v) + bcr(s) + .IS bi. 
1.€ 2 1.€ 3 

(18) 

Computing (1/2) ((12) + (14) + (18)) yields 

a.+ 
]. 

+ !<.IS' bi+ bcr(s) + acr(v) - bcr(v)), 
1.€ 2 

b. 
]. 

which implies that CRJ /c* < 3/2 because a () > b ( )" max max cr v cr v 
Thirdly and lastly, suppose that in an optimum sequence job cr(s) is 

sequenced after at least one job of s 3• The ·machine-based bound for the 

jobs in s3u{cr(s)} on machine A is 



(19) c* > r () + I a. + I a. + a ( )" max cr u . S' 1 . S 1 cr s 
1€ 2 1€ 3 

Computing (1/5) (2 x (12) + (13) + 3 x (14) + (16) + (19)) yields 

8 8 -c >-r + 5 max 5 cr(u) 
a. + 

1 

.!.. (a () - b () + 3 I b. + I a1. + acr(w)), 
5 cr v cr v iES2 1 iES3 

which implies that CJR /c* < 8/5 because a > bn(v)• max max cr(v) v 

This completes the proof of Case 1. 

Case 2. acr(v) s bcr(v) (implying cr(v) E s1 and cr(v) E s3) 

In this case, for the sequence cr, the changeover job cr(t) is se

quenced before job cr(v). Recall that cr(w) is sequenced first amongst jobs 

in s3 in an optimum sequence. 

11 

Firstly suppose that aa(w) ~ aa(v)" The job-based bound centred about 

job cr(w) for the jobs in s1 u s3 u s4 u {cr(t)} is 

(20) c:ax > rcr(u) + 1.EIS, ai + acr(t) + acr(w) + .IS S bi' 
1 1 € 3u 4 

since job cr(t) is sequenced before job cr(w). Computing (1/2)((12) + (13) + 

+ (20)) yields 

a. + 
1 

which implies that c:ax /c:ax < 3/2 because acr(w) ~ acr(v)• 

1 --a 
2 cr (v) 

Secondly and lastly, suppose that aa(w) < acr(v)" The job-based bound 

centred about job cr(v) for jobs in s1 u s4 is 

c:ax > rcr(u) + l ai + ba(v) + l 
iESl iES4 

(21) b. • 
1 

The machine-based bound for jobs in s3 u s4 on machine Bis 

(22) b. • 
1 
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The time at which the processing of job a(v) commences is less than ra(w): 

if it were not, then heuristic RJ would sequence job a(w) in preferance to 

job a(v). Thus, the machine-based bound for jobs in s3 on machine Bis 

(23) a.+ 
1 

b •• 
1 

Computing (1/3)((12) + (21) + (22) + 2 x (23)) yields 

~ c* 5 ' 3 max> 3 ra(u) + l ai + 
iES 1us2 

+ ~ <.ls' ai + ba(v) - aa(v)) 
1€ 1 

b. 
1 

which implies that C~x/c:ax < 5/3 since ba(v) ~ aa(v)• 
To complete the proof, we present an example to show that, for arbi-

trary n, the bound of 5/3 is the best possible. Consider then-job problem 

(n ~ 5) specified by the data in Table 3, where O < n2 e: < k and where 

k = K/(3n-8). 

Table 3. Data for the third example 

i n-3 n-2 n-1 n 

r. e; e: ~(K+2k+3e:) .k 0 
1 1 3 1 a. k k e: -:s-(K-k-6e:) -(K-k-3e:) 
1 1 J 3 

b. k-e: . . • k-e: - (K-k-6e:) l(K-k-3e:) e: 
1 3 3 

Clearly, (l, ••• ,n) is an optimum sequence with c* = K. The first max 
n-3 applications of heuristic RJ produce sequences (n,i,n-l,n-2,1, ••• ,i-l, 

i+l, ••• ,n-3) for i=l, ••• ,n-3, each with CRJ = 5(K-k)/3 - (n+2)e:. Jobi max 
is the changeover job and we set r. = r 2 + p 2 = 1/(3(K+2k+6e:)). Applica-

1 n- n-
tion n-2 of heuristic RJ produces the sequence (n,n-l,n-2,1, ••• ,n-3) with 

CRJ = (5K-4k)/3 - (n+2)e:. At this stage there is no changeover job and the 

a~::rithm terminates with cRJ'/c* = 5/3- - 5k/(3K) - (n+2)e:/K which can be 
max max 

arbitrarily close to 5/3 - 5k/(3K) or 5/3 - 5/(3(3n-8)). This in turn canbe 

arbitrarily close to 5/3 when n is arbitrary. D 
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It is, perhaps, rather surprising that for arbitrary n the bound of 

5/3 is the best possible, since it might be expected that one of the other 

sequences generated by heuristic RJ' would give a lower value of the 

maximum completion time than the value CRJ which is used in the proof of max 
Theorem 3. However, the example demonstrates that this is not the case. 

If n is fixed, there is a difference between the upper bound of 5/3 

for cRJ'/c* and its lower bound of 5/3 - 5/(3(3n-8)). Further research is 
max max 

required to resolve this difference. 

4. CONCLUDING REMARKS 

We have constructed a heuristic method of sequencing the job produc

ing a maximum completion time which lies within two thirds of the value of 

the optimum. As is usual for most heuristics, the average performance is 

likely to be considerably better than the worst-case performance. 

The method of repeatedly applying a simple heuristic to an increasing

ly constrained version of the original problem was also used in [7] for a 

single machine sequencing problem with release dates. It seems likely that 

simple heuristics for other scheduling problems can be improved using this 

technique. 
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