
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

C.N. POTTS

BW 150/81

ANALYSIS OF HEURISTICS FOR TWO-MACHINE FLOW-SHOP
SEQUENCING SUBJECT TO RELEASE DATES

Preprint

~
MC

NOVEMBER

kruislaan 413 1098 SJ amsterdam

PJunted a:t .the Ma:thematic.al. Cen:tlte, 413 Kll.U.,{,6i.aa.n, Am6.tvuf.am.

The Mathema.Ueai. CentJr.e, fioun.ded .the 11-th ofi FebJtuaJLy 1946, ,{)., a: non
pJr.ofiU ,i,ru,.t-Uuuon aimlng at. the pJi.omo:tlon ofi puJr.e mathema::tlC-6 and -l:t6
a:pp.U,c.a::tlovu,. 1.t ,{)., .6pon6oJr.e.d by the Ne.the.Jr.l.a:n.d6- Gove.Jr.nment thMugh the
Ne.thcuc1.a:nd6 01t.ga:n,i,za::tlon fioJr. .the Adva:nc.ement ofi PuJr.e Rue.Mc.h (Z.W.O.).

1980 Mathematics Subject Classification: 90B35, 68C25

Analysis of heuristics for two-machine flow-shop sequencing subject to

release dates*)

by

**) C.N. Potts

ABSTRACT

The two-machine flow-shop problem is considered in which each job

becomes available for processing at its release date after which it must

be processed without interruption on the first machine and then on the

second machine. The objective is to minimize the maximum completion time.

Three heuristics are presented which each have a worst-case performance

ratio of 2. One of these is modified to give an improved worst-case perform

ance ratio of 5/3.

KEY WORDS AND PHRASES: two-machine fZow-shop, reZease dates, ma.:x;irrrum

compZetion time, heu:J:>istics, worst-case performance

*) This report will be submitted for publication elsewhere.
**) University of Keele, England

I • INTRODUCTION

The problem may be stated as follows. Each of n jobs (numbered I, ••• ,n)

must be processed without interruption firstly on machine A and then on

machine B. Jobi (i = I, ••• ,n) becomes available for processing at its non-

negative release date r. and requires a positive processing time of a. and
l. l.

b. on machines A and
l.

B respectively. At any time the machine can handle only

one job and each job can be processed on only one machine. The objective is

to schedule the jobs so that the maximum completion time Cmax is minimized.

It is well-known [1,8] that it is unnecessary to consider schedules in

which the processing orders on the two machines are not identical.

An equivalent problem exists [8] in which job i (i = I, ••• ,n) has a

zero release date and has a non-positive due dated .• After the jobs are
l.

sequenced, the completion time C. and the lateness L. = C.-d. of job i
l. l. l. l.

(i = I, ••• ,n) can be computed. The objective is to sequence the jobs so that

the maximum lateness is minimized. However, the original problem of minimiz-

ing C when jobs have arbitrary release dates will be considered hence-max
forth.

When all release dates are equal, the problem can be solved in

O(n log n) steps by the algorithm of JOHNSON [5] in which those jobs with

a.~ b.·are-sequenced first in non-decreasing order of a. followed by
l. l. l.

the remaining jobs (with a.> b.) sequenced in non-increasing order of b .•
l. l. l.

For arbitrary release dates, LENSTRA et al. [6] have shown that the problem

is NP-hard which indicates that the existence of a polynomial bounded

algorithm to solve the problem is unlikely. Apart from the branch and bound

algorithm proposed by GRABOWSKI [4] ,the problem has received little atten

tion from researchers.

In this paper, we propose some heuristic methods to sequence the jobs.

Suppose that c* denotes the minimum value of the maximum completion time
H max

while C denotes the maximum completion time max when the jobs are sequenced

using a certain heuristic H. If, whatever H * the problem data, C ~ pC + o max max
for specified constants p and o, where pis as small as possible, then

pis called the worst-case perfomzance ratio of H. A survey and discussion

of the worst-case analysis of heuristics are given by FISHER [2] and

GAREY et al. [3].

2

In Section 2 four heursitics are given, one of which is shown to have

a worst-case performance ratio of 3 while the other three are each shown

to have a worst-case performance ratio of 2. Section 3 shows how the

repeated application of one of these heuristics to a constrained version of

the original problem leads to an improved worst-case performance ratio of

5/3. This is followed by some concluding remarks in Section 4.

2. ANALYSIS OF HEURISTICS

The four heursitics to be analyzed in this section are described now.

The first is heuristic ARB in which the jobs are sequenced arbitrarily after

which CARB is evaluated in O(n) steps. The second is heuristic R in which
max

the jobs are sequenced in non-decreasing order of release dates in

O(n log n) steps and the third is heuristic Jin which the jobs are se

quenced according to Johnson's rule (ignoring release dates) in O(n log n)

steps. If heuristic R is adopted, there will be no unforced idle time on

machine A. The fourth heuristic RJ is a variant of R which attempts to take

advantage of J while retaining the absence of unforced idle time on

machine A: whenever there is a choice of jobs for the first unfilled

position in the sequence which preserves this absence of unforced idle time,

one is chosen which would be sequenced first amongst these jobs according

to Johnson's rule. A form.al statement of this heuristic, which requires

O(n log n) steps, is given below.

Heuristic RJ

Step 1. Let S be the set of all jobs, let k = 0 and find T = min. 8{r.}.
JE J

Step 2.

{jljES,

Find the set S' = {j!jES, r.sT, a.s;b.} and the set S" =
J J J

r.s;T, a.>b.}. If S' # 0, find a job i in S' with
J J J

possible; if S' = 0, find a job i in S" with b. as large
l.

a. as small as
l.

as possible.

Step 3. Set k

s = s - {i}.

= k+l, sequence job i in position k, set T = T+a. and set
l.

Step 4. If S = 0, then stop. Otherwise set T

to Step 2.

= max{T, min. S{r.}} and go
JE J

If any heuristic H generates a sequence (cr(l), ••• ,cr(n)), the corres

ponding maximum completion time can be written as

(I)
V

CH \ +
max= rcr(u) + l acr(i)

i=u

n

l bcr(i)'
i=v

for some u,v E {1, ••• ,n}, where u::;; v and where u is chosen as small as

possible.

Some lower bounding schemes for c* , which are needed in the sub-
max

sequent analysis, are introduced. In general, each job i has a set of

predecessors which are jobs that are known to be sequenced before job i

3

in an optimum sequence and a set of successors which are jobs that are

known to be sequenced after job i in an optimum sequence. For any subset S

of jobs, the machine-based bound for machine A (or machine B) is the sum of

the following:

(i) the minimum release date of jobs in S which have no predecessors;

(ii) the total processing time on machine A (or machine B) of the jobs ins.

For any subset S of jobs, the job-based bound centered about any job j in

Sis the swn of the following:

(i) the minimum release date of jobs in S which have no predecessors;

(ii) the total processing time on machine A of all predecessors of job j;

(iii) the total processing time on machine A of all jobs i in S - {j} with

(iv)

(v)

(vi)

a. ::;; 1b • which are neither predecessors nor successors of job j;
i i

the total processing time of job j;

the total processing time on machine B of all successsors of job

the total processing time on machine B of all jobs i in S - {j}

a. > b.
i i

which are neither predecessors nor sucessors of job j.

j;

with

We now proceed with the derivation of the worst-case performance ratio

for our four heuristics.

THEOREM I. CAR.BJc* < 3, CR Jc* < 2, CJ Jc*
max max max max max max

and these bounds are the best possible.

< 2 and cRJ Jc* < 2
max max

PROOF. We assume in each case that the sequence generated is (cr(l), ••• ,cr(n))

and the maximum completion time is given by (1).
* . Clearly, C is greater than any release date, so max

(2)

4

The machine-based bound for machine A and jobs in {cr(u), ••• ,cr(v)} yields

(3) c*
max

V

> t
i=u

and the machine-based bound for machine Band jobs in {cr(v), ••• ,cr(n)} yields

(4)

For heuristic ARB, by adding (2), (3) and (4) we obtain 3c* > CARB max max as

required.

Under heuristic Rand RJ the minimum release date of jobs {cr(u), ••

• ,cr(v)} is rcr(u)" Applying the machine-based bound for machine A to this

set yields

(5)

Adding (4) and (5) yields 2c* > CR and 2c* > CRJ as required.
max max max max

Lastly, under heuristic J the jobs in {cr(u), ••• ,cr(n)} are sequenced

according to Johnson's rule. Their maximum completion time, ignoring

release dates, provides the lower bound

(6) c*
max

Adding (2) and (6) we obtain 2c:ax > c;ax as required.

To complete the proof, we present an example to show that the bounds

of Theorem 1 are the best possible.

Consider the 3•job problem specified by the date in Table 1, where

0 < 8k < K.

Table 1. Data for the first example

i I 1 2 3

r. k 0 K-3k
1

a. 2k K-6k k
1

b. K-6k k 2k
1

5

* Clearly, (I,2,3) is an optimum sequence with C = K. If the jobs
max

are sequenced arbitrarily
ARB/*

in the order (3,2,1), we have CARB = 3K-12k.
max

12k/K which can be arbitrarily close to 3. If Therefore c· C = 3 -
max max

either heuristic R or heuristic RJ is applies, the sequence (2,1,3) results

with CR = CRJ = 2K - 8k. Therefore, CR Jc* = CRJ /c* = 2 - 8k/K
max max max max max max

which can b,e arbitrarily close to 2. Finally, heuristic J generates the

sequence (3,1,2) with CJ = 2K - 5k. Thus CJ Jc* = 2 - Sk/K which can
max max max

also be arbitrarily close to 2. D

Henceforth, we shall examine heuristic RJ in more detail and suggest

a method of improving it. We start by presenting two special identifiable

cases in which the maximum deviation from the optimum is less than 50%. As

b f . d h RJ ' . b (I) e ore, it is assume tat C is given y • max

THEOREM 2 • .If a(') ~ b (.) for i = u, ••• ,v or if a(.)~ b (.) for cr i RJ cr i cr i cr i
i = v, .•. ,n, then C · Jc* < 3/2. In each case, this bound is the best

max max
possible.

PROOF. The machine-based bounds for jobs in fo(u), ••• ,cr(n)} on machines A

and Bare respectively

(7)

and

(8)

n

c:ax > rcr(u) + l acr(i)
i=u

Subtracting (8) from (1) we obtain

(9) * - C max

V

< l acr(i) -
i=u

v-1

l bcr(i)"
i=u

If acr(i) ~ bcr(i) for i = u, ••• ,v, it follows from (9) that

which implies that CRJ Jc* < 3/2 for this first case.
max max

6

(IO)

Subtracting (7) from (1) we obtain

CRJ
max - C * max

n n
< l b (.) - l a~(i)"

i=v CJ J_ i=v+ 1 V

If aCJ(i) ~ bCJ(i) for i = v, ••• ,n, then (10) implies that

CRJ - c* b < 1 < b) < 1 c* max max< CJ(v) - 2 aCJ(v) + CJ(v) - 2 max•

Therefore CRJ /c* < 3/2 for the second case also. max max
To complete the proof, we present examples to show that in each case

the bound of 3/2 is the best possible.

Consider the 3-job problem specified by the data in Table 2, where

0 < 5k < K.

Table 2. Data for the second example

i 2 3

r. k 0 0
1.

a. !k ½K-k ½K-k
1

b. ½K-k ½K-k ½k
1

Clearly (1,2,3) is an optimum sequence with c* = K. When heuristic
max RJ

RJ is applied, the sequence CJ= (2,1,3) is generated with C = max
rCJ(l) + aCJ(l) + bCJ(l) + bCJ(2) + bCJfi) = !K/2 - Sk/2. Thus we have u = v = 1

with a (l) s b (l)" Furthermore, C / C = 3/2 - 5k/(2K) which can be CJ CJ max max
arbitrarily close to 3/2.

Consider now another 3-job problem with r 1 = 0 and r 2 = 3k/2 and

where the other data are given in Table 2. We have that (1,2,3) is again

an optimum sequence with c* = K. When heuristic RJ is applied, the
max • RJ

sequence CJ= (1,3,2) is generated with Cmax = rCJ(l) + aCJ(l) + aCJ(2) + aCJ(3) +

b~3): 3K/2 - Sk/2. Thus we have v = n = 3 with aCJ(3) ~ bCJ(3). Furthermore,

C /C = 3/2 - Sk/ (2K) which can be arbitrarily close to 3/2. D max max

When the conditions of Theorem 2 are satisfied heuristic RJ has a

satisfactory worst-case performance. When the conditions are not satisfied,

a method by which RJ can be imporved is proposed in the next section.

3. THE IMPROVED HEURISTIC

Before proceeding, some notation is introduced. Let

SI = {cr<i) Ii e

s2 = {cr(i) Ii e

s3 = fo(i) Ii e

s4 = {cr(i) Ii e

so we can write

(11) CRJ = r +
max cr(u)

{u, ••• ,v},

{u, ••• ,v},

{v, ••• ,n},

{v, ••• ,n},

a. +
1

acr(i)

acr(i)

acr(i)

acr(i)

s bcr(i)}'

> bcr(i)}'

s bcr(i)}'

> bcr(i)},

b ••
1

We also define S! = S. - {cr{v)} (i = 1,2,3,4).
1 1

7

The improved heuristic RJ' which, at each iteration, applies heuristic

RJ and increases one release date is described now. The first step is to

apply heuristic RJ and find the sets s 1, s2, s3 and s4• If s 2 = 0 or if

s3 = 0, then computation is terminated. Otherwise we find a changeover job

cr(t) with cr(t) e s2 and with t chosen as large as possible and constrain

it to be sequenced after at least one job in s 3 in each subsequent applica

tion of heuristic RJ. This constraint is implemented by setting rcr(t) =
min. S {r. + p.}. This process is repeated until s 2 or s 3 is empty at

1€ 3 1 1,
which stage cRJ is chosen to be the maximum completion time of the best max ·
schedule generated. A formal statement of the heuristic is given below.

Heuristic RJ'
RJ' Step 1. Let j = 1 and let C = =. - max

Step 2. Apply heuristic RJ to obtain a sequence cr. with maximum completion
RJ' RJ' J

time C (cr.). If C (cr.) < C , then set C = C (cr.). max J max J max max max J
Step 3.Find s 2 and s3• If s2 = 0 or if s3 = 0, then stop having found a

. h . 1 . " cRJ' 0 h • f. d h h sequence wit maximum comp et1on tune • t erw1se in t e c angeover max
job cr.(t), set r {t) = min. S {r.+p.}, set j = j+l and go to Step 2.

J cr j 1e 3 1 1

8

Since there are in general O(n)jobs i with a.~ b. and O(n) jobs i
2 l. l.

with a.> b., it may
l. l.

be necessary to impose O(n) constraints before

guaranteeing that s2 or s3 is empty. Each time a constraint is added

heuristic RJ, which requires O(n log n) steps, is applied. Thus, heuristic

RJ' requires O(n3 log n) steps. However, it is expected that for most

problems the heuristic will terminate in less than O(n2) iterati0ns.

Computation can be reduced by using the observation that those jobs sequenc

ed in the first t-1 positions of a. before the changeover job cr.(t) are also
J J

sequenced, in the same order, in the first t-1 positions of crj+t•

We now prove that heuristic RJ' has a worst-case performance ratio

of 5/3.

RJ' * THEOREM 3. C /C < 5/3 and, for arbitrary n, this bound is the best max max
possible.

PROOF. Suppose that, after each increase in release date, the minimum value
. * of the maximum completion time for that currect problem is equal to C • max

when s2 or s3 is empty, Theorem 2 is applied yielding Then, at termination
RJ f * C /C < 3/2. max max

Alternatively, at some iteration, increasing a release date yields

a current problem for which the minimum value of the maximum completion time

exceeds c* • Suppose that the first such increase in release date is max
derived from the sequence a. Suppose also that the maximum completion time

CRJ for the sequence a is given by (11) and that cr(t) is the changeover max
job. Any sequence in which job cr(t) is forced to be sequenced after at least

one job in s3 has a maximum completion which exceeds c* • Therefore, in any
max

optimum sequence, cr(t) is sequenced before all jobs in s3• We prove that

CRJ /c* < 5/3 by using this requirement.
max max *

Some lower bounds on C which are used throughout the proof are
max

given first. The machine-based bound for the jobs in {cr(u), ••• ,cr(n)} on

machine A is

which implies that

(12) a.+
l.

b .•
l.

To derive our next lower bound, we observe that the time at which the pro

cessing of job cr(t) connnences is less than the release date of all jobs in

s3 : if it we,re not, heuristic RJ would sequence a job in s3 in preference

9

to cr(t). Assume that in an optimum sequence some job cr(w) is sequenced first

amongst jobs in s3 • Then the job-based bound centred about job cr(w) for the

jobs in s3 is

(13) c:.a_x > rcr(u) + r ai - acr(t) + acr(w) + r
iES2 iES3

b. •
l.

The case that job cr(v) is the changeover job and the case that it 1.s

not are considered separately.

Case I. acr(v) > bcr(v)(implying cr(v) E s2 and cr(v) E s4).

In this case, job cr(v) is the changeover job, i.e. t = v. The job

based bound centered about job cr(v) for the jobs in {cr(u), ••• ,cr(n)} is

~ r~(u) + l a.+ a () + b () + l b.,
V • s l. cr V a V 1.·Es'us us' l.

l.E 1 2 3 4

(I 4) * C max

since the jcib of s3 are known to be successors of job cr(v) in an optimum

sequence. If s2' = 0, then (I 4) implies that CRJ = c* • If s2' -:f 0, we max max
compute (l/2:) ((12 + (13) + (14)) to obtain

(I 5)

a.+
l.

+ 21 (a~(w) + l b. - b ()).
u iES' l. cr v

2

b.
l.

Now, if Si contains a job cr(s) with bcr(s) ~ bcr(v), then (15) implies that

C~x/c:ax < 3/2. Alternatively, if Si contains no such job, then we may

assume that in the sequence cr job cr(s), with bcr(s) < bcr(v)' is sequenced

last amongst jobs in s2. The time at which the processing of job cr(s)

connnences is less than the release date of job cr(v) due to the construction

of cr by heuristic RJ. Thus, the job-based bound centred about cr(v) for the

jobs in s3 u {cr (v)} is

c:a,x > rcr(u) + 1.·~s' ai - acr(s) + acr(v) + bcr(v) + l
~ 2 ies3

(16) b.,
].

since the jobs of s 3 are known to be successors of job cr(v) in an optimum

sequence.

Firstly, suppose that in an optimum sequence job cr(s) is sequenced

before job cr(v). Then the job-based bound centred about job cr(v) for the

jobs in s 1 u s 3 u s4 u {cr(s)} is

(17) C* + ~ + max> rcr(u) .ls ai acr(s)
1.€ 1

Computing <!> ((12) + (16) + (17)) yields

3 * 3 ~ ~ 1 2 Cmax > 2 rcr(u) + l ai + l b. + 2 acr(v)'
ieS 1us2 ieS3us4 1.

which implies that CRJ /c* < 3/2.
max max

Secondly, suppose that in an optimum sequence job cr(s) is sequenced

after job cr(v) but before any job in s 3• Recalling that rcr(v) > rcr(u) +

l a. - a ()'the job-based bound centred about job cr(s) for the jobs ies2 1. cr s
in s 3 u {cr(s),cr(v)} is

c:ax > rcr(u) + .IS,ai + acr(v) + bcr(s) + .IS bi.
1.€ 2 1.€ 3

(18)

Computing (1/2) ((12) + (14) + (18)) yields

a.+
].

+ !<.IS' bi+ bcr(s) + acr(v) - bcr(v)),
1.€ 2

b.
].

which implies that CRJ /c* < 3/2 because a () > b ()" max max cr v cr v
Thirdly and lastly, suppose that in an optimum sequence job cr(s) is

sequenced after at least one job of s 3• The ·machine-based bound for the

jobs in s3u{cr(s)} on machine A is

(19) c* > r () + I a. + I a. + a ()" max cr u . S' 1 . S 1 cr s
1€ 2 1€ 3

Computing (1/5) (2 x (12) + (13) + 3 x (14) + (16) + (19)) yields

8 8 -c >-r + 5 max 5 cr(u)
a. +

1

.!.. (a () - b () + 3 I b. + I a1. + acr(w)),
5 cr v cr v iES2 1 iES3

which implies that CJR /c* < 8/5 because a > bn(v)• max max cr(v) v

This completes the proof of Case 1.

Case 2. acr(v) s bcr(v) (implying cr(v) E s1 and cr(v) E s3)

In this case, for the sequence cr, the changeover job cr(t) is se

quenced before job cr(v). Recall that cr(w) is sequenced first amongst jobs

in s3 in an optimum sequence.

11

Firstly suppose that aa(w) ~ aa(v)" The job-based bound centred about

job cr(w) for the jobs in s1 u s3 u s4 u {cr(t)} is

(20) c:ax > rcr(u) + 1.EIS, ai + acr(t) + acr(w) + .IS S bi'
1 1 € 3u 4

since job cr(t) is sequenced before job cr(w). Computing (1/2)((12) + (13) +

+ (20)) yields

a. +
1

which implies that c:ax /c:ax < 3/2 because acr(w) ~ acr(v)•

1 --a
2 cr (v)

Secondly and lastly, suppose that aa(w) < acr(v)" The job-based bound

centred about job cr(v) for jobs in s1 u s4 is

c:ax > rcr(u) + l ai + ba(v) + l
iESl iES4

(21) b. •
1

The machine-based bound for jobs in s3 u s4 on machine Bis

(22) b. •
1

12

The time at which the processing of job a(v) commences is less than ra(w):

if it were not, then heuristic RJ would sequence job a(w) in preferance to

job a(v). Thus, the machine-based bound for jobs in s3 on machine Bis

(23) a.+
1

b ••
1

Computing (1/3)((12) + (21) + (22) + 2 x (23)) yields

~ c* 5 ' 3 max> 3 ra(u) + l ai +
iES 1us2

+ ~ <.ls' ai + ba(v) - aa(v))
1€ 1

b.
1

which implies that C~x/c:ax < 5/3 since ba(v) ~ aa(v)•
To complete the proof, we present an example to show that, for arbi-

trary n, the bound of 5/3 is the best possible. Consider then-job problem

(n ~ 5) specified by the data in Table 3, where O < n2 e: < k and where

k = K/(3n-8).

Table 3. Data for the third example

i n-3 n-2 n-1 n

r. e; e: ~(K+2k+3e:) .k 0
1 1 3 1 a. k k e: -:s-(K-k-6e:) -(K-k-3e:)
1 1 J 3

b. k-e: . . • k-e: - (K-k-6e:) l(K-k-3e:) e:
1 3 3

Clearly, (l, ••• ,n) is an optimum sequence with c* = K. The first max
n-3 applications of heuristic RJ produce sequences (n,i,n-l,n-2,1, ••• ,i-l,

i+l, ••• ,n-3) for i=l, ••• ,n-3, each with CRJ = 5(K-k)/3 - (n+2)e:. Jobi max
is the changeover job and we set r. = r 2 + p 2 = 1/(3(K+2k+6e:)). Applica-

1 n- n-
tion n-2 of heuristic RJ produces the sequence (n,n-l,n-2,1, ••• ,n-3) with

CRJ = (5K-4k)/3 - (n+2)e:. At this stage there is no changeover job and the

a~::rithm terminates with cRJ'/c* = 5/3- - 5k/(3K) - (n+2)e:/K which can be
max max

arbitrarily close to 5/3 - 5k/(3K) or 5/3 - 5/(3(3n-8)). This in turn canbe

arbitrarily close to 5/3 when n is arbitrary. D

13

It is, perhaps, rather surprising that for arbitrary n the bound of

5/3 is the best possible, since it might be expected that one of the other

sequences generated by heuristic RJ' would give a lower value of the

maximum completion time than the value CRJ which is used in the proof of max
Theorem 3. However, the example demonstrates that this is not the case.

If n is fixed, there is a difference between the upper bound of 5/3

for cRJ'/c* and its lower bound of 5/3 - 5/(3(3n-8)). Further research is
max max

required to resolve this difference.

4. CONCLUDING REMARKS

We have constructed a heuristic method of sequencing the job produc

ing a maximum completion time which lies within two thirds of the value of

the optimum. As is usual for most heuristics, the average performance is

likely to be considerably better than the worst-case performance.

The method of repeatedly applying a simple heuristic to an increasing

ly constrained version of the original problem was also used in [7] for a

single machine sequencing problem with release dates. It seems likely that

simple heuristics for other scheduling problems can be improved using this

technique.

ACKNOWLEDGEMENT

The author is grateful to the Mathematisch Centrum, Amsterdam for

helping to finance a visit to the Mathematisch Centrum where this research

was undertaken. The author is also grateful to J.K. Lenstra for his

comments on a preliminary version of this paper.

REFERENCES

[I] CONWAY, R.W., W.L. MAXWELL & L.W. MILLER, Theory of SaheduUng, Addison

Wesley, Reading, MA (1967).

[2] FISHER, M.L. Worst-ease ana.iysis of heuristia aigorithms, Management

Sci. 26, 1-17 (1980).

14

[3] GAREY, M.R., R.L. GRAHAM & D.S. JOHNSON, Perfo'Y'Tna:noe guarantees for

soheduling algorithms, Operations Res. 26, 3-21 (1978).

[4] GRABOWSKI, J., On wo-ma.ohine saheduZing uJith roelease dates to

minimize ma.:x:imum lateness, Opsearch 17, 133-154 (1980).

[5] JOHNSON, S.M., Optima.l tluo- and thr>ee-stage produotion sohedules uJith

setup times inoluded, Naval Res. Logist. Quart. 1, 61-68 (1954).

[6] LENSTRA, J.K., A.H.G. RINNOOY KAN & P. BRUCKER, Complexity of maohine

soheduling problems, Ann. Discrete Math. 1, 343-362 (1977).

[7] POTTS, C.N., Analysis of a heuristio for one ma.ohine sequenoing with

release dates and delivery times, Operations Res. 28, 1436-

1441 (1980).

[8] RINNOOY KAN, A.H.G., Maohine 8oheduling Problems: Classifioation,

Complexity and Computations, Nijhoff, The Hague (1976).

