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with stochastic lead times and backlogging of excess demand. A service level 

constraint is imposed on the fraction of demands that is backlogged. The 

purpose is to determine for given value of S-s the reorder points such 

that the service constraint is satisfied. Approximations for the reorder 

points are obtained by a simple and direct approach that also applies to 

both the periodic review lost-sales (s,S) inventory system and the continuous 

review (s,S) inventory system with stochastic lead times. A normal approximation 

using only the first two moments of the total demand in the lead time plus 

review time is presented. Numerical investigation shows that the normal 

approximations yield excellent results for the service level when the 

coefficient of variation of the demand in the lead time plus review time 

does not exceed 0.5, otherwise good approximations can be obtained when 

gamma densities are fitted to the demand densities by matching the first 

two moments. 
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1. Imtroduction 

A frequently used inventory control system is the periodic review (s,S) 

system in which the inventory position is periodically reviewed and at a 

review the inventory position is ordered up to the level S when it is at or 

below the reorder points. Under the assumptions of deterministic lead times 

and backlogging of excess demand, useful approximations for (s,S) policies 

were obtained in Ehrhardt [4], Freeland and Porteus [7], Naddor [10,11],Porteus 

[13], Roberts [14], Schneider r.1s] and Wagner et al [18] amongst others. In 

most of the literature it is assumed that penalty costs for unsatisfied demand 

are known. However, in practice these costs are often difficult to measure and 

as alternative one usually requires a certain service level for e.g. the 

fraction of demands that is backlogged. The approximations in [15] deal with 

such a service constraint, cf. also [10]. 

For the periodic review inventory system with stochastic lead times and 

backlogging of excess demand, an exact but intricate analysis was given in 

Kaplan [9] and recently improved upon in Ehrhardt [5]. Using this exact approach, 

approximately average cost optimal (s,S) policies were suggested in [SJ for 

fixed set-up costs and linear holding and backlogging costs. In this paper we 

shall present a much simpler and direct approach for deriving new approximations 

for the periodic review (s,S) inventory system in which a service level is 

required for the fraction of demands that is backlogged. Moreover, our simple 

approach can be directly extended to both the periodic review lost-sales (s,S) 

inventory system and the continuous review (s,S) inventory system with stochastic 

lead times. 

In section 2 we present the derivation of the approximations. In section 3 

very simple approximations suited for routine use are found by fitting a 

normal distribution to the distribution of the total demand in the lead 

time plus review time by matching the first two moments. Numerical 

experience with the approximations is discussed in section 4. We found 

that the normal approximations give excellent results for the service level 

when the coefficient of variation of the demand in the lead time plus 

review time does not exceed 0.5, otherwise good approximations can be 

obtained when gamma densities are fitted to the demann densities by 

matching the first two moments. 
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2. The derivation of the approximations 

We first consider the single-item dynamic inventory system in which the 

demands in the periods t=0,1, ••• are independent random variables having common 

probability density f(x) with mean µ 1 and standard deviation a1 • Excess demands 

are backlogged. Following the terminology in Hadley and Whitin [8], we define 

the inventory position as the stock on hand minus backorders plus stock on order. 

The system is controlled by an (s,S) policy under which at the beginnings of 

every T periods the inventory position is reviewed and at a review the inventory 

position is ordered up to the level S when it is at or below the reorder point 

sand no ordering is done otherwise. The length T of the review interval is a 

fixed positive integer. The lead time of a replenishment order is a nonnegative, 

integer-valued random variable L with mean µ (L) and standard deviation a (L). 

Assuming that S-s is given (e.g. by the classical EOQ formula), we shall 

concentrate on the determination of the reorder points such that the following 

service level is achieved, 

fraction of demands that is backlogged~ 1-S ( 1) 

with Sa prescribed number between O and 1. In practice Swill be close to 1. 

Before deriving an approximation for the reorder points, we introduce the 

following notation. Denote by F(k) (x) and f(k) (x) the probability distribution 

function and the probability density of the total demand ink periods, k~1. Let 

µk and ok be the mean and the standard deviation of f(k) (x). Note that µk=kµ1 

and ok =lko 1 . 

To do the approximate analysis, we make the following assumptions for the 

(s,S) policies that are relevant for the service constraint (1). 

Assumptions 

(i) replenishment orders do not cross in time and moreover the marginal 

lead time distribution of each order is independent of the number 

and size of outstanding orders, 

(ii) s-s is sufficiently large compared with the average demand µTin 

the review interval (say S-s>µT), 

(iii) just after the delivery of a replenishment order the stock on hand 

is positive except for a negligible probability. 
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We shall now first analyse the service level of a given (s,S) rule. Define 

a cycle as the time interval between two consecutive arrivals of replenishment 

orders. Using assumption (iii), we have approximately 

fraction of demands that is backlogged~ 

~ average _.shortage at the end of a cycle 
average demand per cycle (2) 

To derive this ratio, we tag one of the replenishment orders. Define the random 

variables 

y = overshoot of sat the review at which the tagged order was placed, 

~ = total demand in the lead time of the tagged order. 

Clearly, the inventory position just before the placing of the tagged order equals 

s-y. Further by assumption (i), any replenishment order placed before the tagged 

order will have been arrived when the tagged order comes in while no order 

placed after the tagged order will arrive before the tagged order. Hence 

stock on hand just before the tagged order arrives= s-y-~. 

Denoting by h(x) the probability density of y+~, it follows that 

c:o 

average shortage at the end of a cycle~ f (x-s)h(x)dx. 
s 

(3) 

Further, since the average demand per cycle is equal to the average order size, 

average demand per cycle= S-s + Ey. (4) 

By assumption ii) it follows from renewal theory that (cf. Cox [3]) 

X 
f 

(T) 
{1-F (y)}dy, x~O, 

0 

independently of S-s. Further 

(5) 
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To evaluate (3), note that y and~ are independent by the second part of 
1 \T) 

assumption (i). Putting ge(x)=µ; (1-F (x)), it follows by conditioning that 

Hence 

Pr{y+~~x} = E Pr{L=i}P{y+~~xlL=i} = 
i~O 

= Pr{L=O} f 

0 

X 

g (y)dy + 
e 

Pr{L=i} f 

0 

X ( . ) 
F 1 (x-y)g (y)dy. 

e 

h (x) = Pr{L=O}µ;l (1-F(T) (x)) + E Pr{L=i} 
i~1 0 

f 
X (i) 

f (x-y)g (y)dy. 
e 

Using the change of variable u=x-y in the latter integral, we next get 

+ E 
i~1 

X 
E Pr{L=i} f f(i) (u)f(T) (x-u)du + 

i~1 0 

Pr{L=i}f(i) (x)g (0) = 
e 

= -µ; 1 E Pr{L=i}f(T+i) (x)+µ;l E Pr{L=i}f(i) (x), 
i~O i~1 

where the la.st equality uses that f(T+i) (x) is the convolution of f(i) (x) and 

f(T) (x). Put for abbreviation 

n(x) = E Pr{L=i}f(T+i) (x) and ~(x) = E Pr{L=i}f(i) (x)• 

Note that n(x) is the probability density of the total demand n in the lead 

time plus review time, while ~(x) is the probability density of the total demand 

~ in the lead time. Assuming that the one period's demand has a finite third 

moment, it follows that Ey2<00 and so lim x2h(x)=O. We now obtain x~ 

00 

f (x-s)h(x)dx 
s 

= ~ f 

s 

2 
h(x)d(x-s) 

1 00 2 
= - f (x-s) n(x)dx 

2µT s 

00 

f (x-s) 2h 1 (x)dx = 
s 

00 

1 2 
f (x-s) ~(x)dx. 

2µT s 
(6) 

Using the relations (2)-( 6) we find that fer given value of S-s the service 

constraint (1) can be approximately satisfied by determining the reorder point 

s from 

00 

2 
(x-s) n(x)dx - f 

00 

f 
2 

(x-s) ~(x)dx = (7) 
s s 



5 

Recall that n(x) and ~(x) are the probability densities of the demand in the 

lead time plus review time and the demand in the lead time. The mean and the 

standard deviation of the density n(x) are given by 

1 

µ=(T+EL)µl and o={(T+EL)of+o 2 (L)µf}~, 

while the m1:"!an and the standard deviation of the density ~ (x) arc given by 

the above fcrmulae in which T=0 is put. We can simplify (7) when the service 

level S is close enough to 1. Therefore note that we can rewrite (6) as 

00 

J (x-s)h(x)dx 
s 

1 2 1 2 
-2- E[max(n-s,0)] - -2- E[max(~-s,0)] . 

11T µT 

The second term in this relation can be neglected for (s,S) policies having a 

sufficiently high service level and so for S close enough to 1 the relation (7) 

can be simplified to 

00 2 
J (x-s) n(x)dx (8) 

s 

The relation (7) for approximating the reorder points is new. For the special 

case of detE:"!rministic lead times the simplified relation (8) was already 

obtained in [15] by a different approach using the asymptotic analysis in [14]. 

Our approach is not only simpler and more insightful, but it can also handle 

both the periodic review lost-sales (s,S) inventory system and the continuous 

review (s,S) inventory system with stochastic lead times. 

REMARK 1. The periodic review lost-sales (s,S) inventory system 

An examination of the above analysis shows that for the periodic review 

lost-sales (s,S) inventory system the average lost demand per cycle equals 

approximately (6) while the average demand per cycle is approximately equal 

to the average lost demand per cycle plus the average order size which is given 

by the right: side of (4). Thus to achieve that the fraction of demands that is 

lost will not exceed 1-S, it follows that for given value of s-s the reorder 

point can be, approximately determined from (7) in which 1-S is replaced by 

( 1-S) /S. Cle,arly for S close to 1 the backlogging and lost-sales models will 

not differ significantly. Other approximations for the periodic review lost-sales 

inventory model with a cost structure are discussed in Nahmias [12]. 
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REMARK 2. The continuous review (s,S) inventory system 

Consider a continuous review inventory model in which the demand process is 

described by a compound Poisson process. Customers arrive according to a Poisson 

process with rate A and the demand per customer has probability density f(x) 

with mean µ1 and standard deviation cr 1• Excess demands are backlogged. Under a 

continuous review (s,S) policy the inventory position is ordered up to the level 

S if at a demand epoch the inventory position falls at or belows, otherwise no 

ordering is done. The lead time of a replenishment order is a random variable L 

with mean µ(L) and standard deviation cr(L). For the case of deterministic lead 

times exact methods to compute an average cost optimal (s,S) policy have been 

given in Archibald and Silver [1] and Federgruen et al [6]. We address ourselves 

to the determination of the reorder points for given value of s-s to warrant that 

service constraint (1) holds. An examination of the above analysis shows that 

under the assumptions (i)-(iii) the reorder points can be approximately determined 

trom (7) provided that we put T=1 and interprete n(x) as the probability 

density of the totaJ. demand of 1+N(L) customers where N(L) denotes the 

number of customers arriving in the lead time L. In assumption (ii) 

we now require that S-s is sufficiently large compared with the average 

demand µ1 per customer (i.e. s-s>µ 1). The mean and the standard 

deviation of the demand density n(x) are now given by 

while the mean and the standard deviation of the density ~(x) are given 

by the above formulae in which (1+AEL) is replaced by AEL. J<'or the 

continuous review lost-sales (s,S) inventory model we suggest to use 

(7) in which 1-S is replaced by (1-S)/S. 

3. Approximations based on a normal demand density 

In practice it may be difficult to solve (7) or (8) routinely by using the 

complete probability densities n(x) and ~(x). We first give a very simple 

approximation that results fran the simplified equation (8) when a normal density 

is fitted to n(x) by matching the first two moments. It will be clear that the 

normal fit can be only applied when cr/µ is not too large, i.e. when cr/µ~0.5. 

Denote by ~(x) and $(x) the probability distribution function and the probability 

density of the standard normal distribution. Also, put for abbreviation 

G(k) = f 
00 

(y-k) 2$(y)dy and p=(1-S)2µT{S-s+(cr~+µ~)/2µT}/cr 2 • 
k 

(9) 
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We can write 

s = µ + kcr ( 10) 

for safety factor k. If we fit to n(x) a normal density by matching the first 

two moments, then the simplified equation (8) becomes 

G(k) = p. ( 11) 

Using the relation G(k) = (1+k2)(1-<P(k))-k~(k) (cf. [8]), we may tabulate the 

function G(k) and solve fork. However, there is an easier way to compute k. 
-1 

Therefore approximate the inverse function k=G (pl by a rational function. 

Using Werner et al [19], it was derived in Schneider [16] that 

2 3 a0+a1w+a2w +a3w 

2 3 
b0+b 1w+b2w +b3w 

k = + e; (w) , ( 12) 

where for the case of p ~ 0.5, 

and for the case p > 0.5, 

Further, maxle:(w) 1~2.3·10-4 for -4~k~4. The approximation determined by (10)-(12) 

uses only the first two moments of the demand in the lead time plus review time 

and is therefore suited for routine use in practice. This approximation will be 

called the normal approximation. We next discuss a very, simple procedure which 

can be routinely used to compute the modified normal approximation that results 

when in (7) normal densities are fitted to n(x) and s(x) by matching the first 

two moments. Therefore denote byµ and cr the mean and the standard deviation of 

the density s(x). Observe that for the representation s=µ+qcr the second term 

in the left side of (7) can be written as cr 2G(q). The procedure for the modified 
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normal approximation is as follows. 

Step 0. Let r=p with p defined in (9). 

··S;tep 1. Compute s from ( 10)- ( 12) with p replaced by r. 

Step 2. Compute q=(s-µ)/o and G(q)=(1+q2) (1-~(q))-q$(q). The function ~(q) can 

2 3 I I -s be calculated from ~(q)=1-$(q){a1t+a2t +a3t }+e:(q)where e:(q) <10 , 
-1 

t=(1+aq) , a=.33267, a 1=.4361836, a 2= -.1201676 and a 3=.937298. 
-2 

Step 3. Let r=p+cr G(q) and go to step 1 until s has been sufficiently converged, 

i.e. when two successive values of s differ less than 0.10. 

4. Numerical results 

We fi:rst discuss the quality of the normal approximation for the periodic 

review (s,S) inventory model with stochastic lead times and backlogging of excess 

demands. Therefore we have tested a large number of examples in which the one 

period's demand has a negative binomial distribution {f(j), j~0}. Although our 

primary goal is to test the service level of the approximate (s,S) policy, 

we assumed in the examples a fixed set-up cost Kand a linear holding cost 

h=l. For the determination of the approximate reorder points we have chosen 

S-s equal to the positive integer nearest to {2Kµ 1/h. The reorder points 

determined from (10)-(11) was rounded to the integer [s]. The so-obtained 

approximate (s,S) policy was compared in service level (and average holding 

* * and ordering costs) with an (s ,S) policy that resulted from an exact 

Lagrangian approach to find a policy which minimizes the average holding and 

ordering costs within the class of policies satisfying the service constraint 

* * (1). To compute this (s ,S) policy we assumed linear shortage costs pin 

addition to the fixed set-up costs and the linear holding costs, where the 

linear holding and shortage costs are charged against the net inventory at 

the end of a period. For any value of p, we can compute an exact (s ,S) 
p p 

policy which minimizes the total average costs per period. We have done this 

by a specialized policy-iteration algorithm as in [6], but alternatively the 

algorithm of Veinott and Wagner [17] could have been used. The exact service 

level of any (s,S) policy can be easily evaluated as will be shown below. We 

varied the shortage costs p until we found the smallest value of p for which 

the associated (s ,s) policy satisfies the service constraint (1). We believe 
p p * * 

that in most cases the so-obtained (s ,s) policy will minimize the average 

holding and ordering cost per period within the class of policies satisfying 

the service constraint (1). It is interesting to note that the smallest value 
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of pis usually far away from p(S) determined by p(S)/(p(S)+h)=S and that the 

use of the (sp(S)'Sp(S)) policy will in general lead to an erroneous service 

level. 

It remains to indicate how for the inventory model with stochastic lead 

times an average cost optimal (s,S) policy and the service level of that policy 

can be computed in an exact way. Therefore the assumption that orders do not 

cross in time is modeled as in [4] and [9], cf. also p. 911 in [12]. By doing so 

and assuming for ease of notation T=1, it follows from [4] that the inventory 

model with stochastic lead times is equivalent to the inventory model with 

zero lead times and one period's expected holding and shortage costs 

00 

L(k) 
k 

h E 
j=O 

(k-j)n(j) + p E (j-k)n(j), 
j=k 

where k denotes the stock on hand just after ordering and {n(j), j~O} is the 

probability distribution of the total demand in l+L periods. Note that for 

the inventory model with stochastic lead times and no cross-overs of orders 

L(k) represents the expected holding and shortage costs incurred in period 

l+L given that at the beginning of period O the inventory position is k 

just after ordering. The inventory model with zero lead times can be exactly 

solved by standard methods. Similarly, assuming for ease T=l, it follows from 

[4] that in the inventory model with stochastic lead times and no cross-overs 

of orders the service level for a given policy is obtaine~ by computing for 

that policy the average costs in an inventory model with zero lead times and 

one period's costs 

k 
U(k) = E E(j) 

j=O 

00 00 

E (r-k+j)f(j) + µ 1 E E(j), 
r=k-j j=k+1 

where {E(j), j~O} denotes the probability distribution of the total demand in 

the lead time L. Note that in the inventory model with stochastic lead times 

and no cross-overs of orders U(k) represents the expected amount of the demand 

in the period 1+L that is backlogged given that at the beginning of period 0 

the inventory position is k just after ordering. 

To test the quality of the approximations, we distinguish between the cases 

cr/µ~0.5 and cr/µ>0.5 with cr/µ is the coefficient of variation of the total demand 

in the lead time plus review time. We first discuss the performance of the normal 

approximation for the case of cr/µ~0.5. Therefore we consider in the tables 1 and 

2 a set of 90 numerical examples each having a review time T=1 and a negative 



binomial distribution with crf/µ 1=3 for the one period's demand. The average 

demand µ1 has five values, 8, 16, 24, 32 and 48. We consider the following three 

lead time distributions each with an average value of 2, 

(1) Pr{L=l}=l/4, Pr{L=2}=1/2, Pr{L=3}=1/4 (cr 2 {L)=0.5), 

(2) Pr{L=l}=Pr{L=3}=1/2 {cr2 {L)=1), 

(3) Pr{L=0}=Pr{L=2}=Pr{L=4}=0.10, Pr{L=l}=Pr{L=3}=0.35 {cr2 {L)=1.5). 

The service level is varied as S=0.9, 0.95 and 0.99. The set-up cost K has values 

32 and 64 and the linear holding cost h=l. Recall that s-s was chosen as the 

positive integer nearest to {2Kµ 1/h. For the normal approximation {s,S) policies 

computed from {10) -{11) we denote by S {s ,S) the actual value of the service level. 
s· ·1 1 * * * * imi ar Y, S{s ,s) for the {s ,s) policy computed by the Lagrangian approach. 

Although we are primarily interested in testing the service level, it may be of 

some secondary interest to co~_ider the relative difference percentage in costs 
** ** ** .. ~C=l00{C(s,S)-C{s ,s )}/C(s ,s) where C{s,S) and C{s ,s) denote the average 

* * set-up and holding costs under the {s,S) policy and the {s ,S) policy. For the 

above 90 examples we give in the tables 1 and 2 the policies {s,S) and {s*,s*) 

* * together with the performance measures S{s,S), S{s ,s) and ~C. For practical 

purposes it seems reasonable to allow for the approximate (s,S) policies a 

deviation in service of ls<s,S)-Sl=0.01 for S=0.9, 0.95 and of ls<s,S)-Sl=0.005 

for S=0.99. By far most of the 90 examples have a deviation of the tlesired service 

that is within these limits, where the deviation in service becomes occasionally 

as high as 0.0175, 0.0127 and 0.0076for S=0.9, 0.95 and 0.99. We note that 

the demand density n{x) is not unimodal in the above examples with µ 1=8 and cr 2 {L)=½ 

or with µ1~16 and cr2 {L)~1. We also note that in the above examples the average 

time between orders µ; 1'2Kµ 1/h is larger than T. In case this average time is at 

or below T, we suggest to use an {S,S) policy with S determined by the equation 
00 

µ; 1 f {x-S)n{x)dx=l-S, cf. formula (5.2) in 18]. This equation can.be very easily 
s 

solved when n{x) is approximated by a normal density, cf. also Brown [2]. The 

excellent performance of the normal approximation for the case of cr/µ~0.5 was 

also found in the many other examples we have tested where the service level 

S~ 0.9. The normal approximation is not recommended when S< 0.9; for the 

above examples with S= 0.8 we found that the service level of the normal 

approximation may be as much as 0.05 higher than the desired one. However, 

for the case of cr/µ~0.5 the modified normal approximation gives also excellent 

results when S < 0.9. 
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* * TABLE 1. The normal (s,S) approxilllations and (sub) optimal (s ,S ) policies 

K=32 K==M 

µ:l=8 µ =16 
1 

µ =24 
1 

µ =8 
1 

µ =16 
1 

µ =24 
1 

(s, S) (24,47) (48,80) (71,110) (23,55) (45,90) (68,123) o 2 (L)=0.5 
(s* ,s*) (24,49) (47,82) (70,113) (21,56) (43,92) (66,126) S=. 9 
S(s,S) .9011 .9056 .8997 .9150 .9087 .9078 o/µ=.42, 
S(s*,S*) .9075 .9045 .9014 .9005 .9011 .9037 .34, .31 
f;C ( % ) -1. 42 0.81 -0.16 4.32 2.53 1.61 

(s, S) (26,49) (52 ,84) (79,118) (24 .,56) (49,94) (75,130) o 2 (L)=1 
(s*,S*) (25,52) (51,87) (78,121) (23,59) (47 ,98) (73,134) S=.9 
S(s,S) .9012 .8992 .9018 .9064 .9045 .9052 o/µ=.49, 
S(s*,s*) .9030 .9009 .9036 .9061 .9016 .9030 .42, .39 
f;C ( % ) 0.39 0.20 -0 .14 0.92 1.58 1.13 

(s,S) (28,51) (57,89) (86,125) ( 26, 58) (53,98) (81,136) a2 (L) =1. 5 
(s*,S*) (26,54) (54,92) (82,128) (24,61) (50,102) (76,141) S=.9 

f3 (s,S) .9064 .9106 .9105 .9120 .9102 .9104 o/µ=.54, 
S(s*,s*) .9016 .9037 .9027 .9054 .9039 .9008 .48, .46 
t;c ( % l 2.72 3.18 3.22 2.93 2.82 3.73 

(s,S) (28,51) (54,86) (81,120) (27,59) (52,97) (77,132) o 2 (L)=0.5 
(s*,s*) (29 f 53) (55,88) (81,122) (27,61) (52,99) (78,135) S=.95 
S(s,S) .9415 . 9440 .9483 .9491 .9489 .9476 o/µ=.42, 
S(s*,s*J .9508 . 9501 .9504 .9517 .9507 .9524 .34, . 31 
f;C ( % ) -3.80 -2.69 -0.97 -0.77 -0.60 -1.92 

(s,S) (31,54) (60,92) (90,129) (29,61) (57,102) (86,141) o 2 (L)=1 
(s*,S*) (31,57) (60,94) (89,128) ( 29, 63) (57,104) (85,142) S=.95 
S(s,S) .9464 .9486 .9537 .9475 .9488 .9523 o/µ=.49, 
S (s*,s*) .9515 .9509 . 9501 .9501 .9506 .9503 .42, . 39 
f;C ( % ) -l. 91 -0.88 1. 54 -0.72 -0.54 0.82 

(s, S) (33,56) (65,97) (98,137) (31,63) (62,107) (93, V,8) o 2 (L) =1. 5 
(s*,S*) (33,58) (64,99) (95,138) (31,66) (61,110) (91,151) S=.95 
S(s,S) .9471 .9513 .9559 .9489 .9527 .9536 o/µ=.54 
f3 (s* ,S*) .9505 .9507 .9507 .9527 .9524 .9513 .48, .46 
t;c ( % ) -1. 14 0.58 2.64 -1.09 0.44 1. 21 

(s, S) (36,59) (67,99) (98,137) (35,67) (65,110) (95,150) o 2 (L)=0.5 
(s* ,s*) (40,63) (71,102) (102,138) (38,70) (68,113) (99,152) S=.99 
S(s,S) .9824 .9854 .9871 .9844 .9861 .9870 o/µ=.42, 
S(s*,s*) .9911 .9907 .9905 .9904 .9901 .9907 .34, .31 
f;C ( % ) -9.96 -6.63 -4.46 -6.31 -4.43 -4.31 

(s, S) (39,62) (75,107) (110,149) (38,70) j72,117) (107,162) o 2 (L)=1 
(s * ,s*) (42,66) (76,106) (108,144) (41,74) (73,117) (105,157) S=.99 
S(s,S) .9834 .9899 .9926 .9852 .9890 .9922 o/µ=.49, 
S(s*,s*) .9902 .9907 .9902 .9912 .9900 .'9900 .42, .39 
f;C ( %) -7.54 -0.97 3.61 -6.20 -1.17 2.69 

(s,S) (42,65) (81,113) (121,160) (41, 73) (79,124) (117,172) o 2 (L) =1. 5 
(s*,s*) (45,69) (82,114) (119,157) (43,77) (79,125) (115,170) S=.99 
S(s,S) .9842 .9891 .9921 .9862 .9898 .9915 o/µ=.54, 
S(s*,S*) .9903 .9902 .9905 .9902 .9900 .9900 .48, .46 
f;C ( % ) -7.04 -1.46 2.55 -4.36 -0.21 1.97 

(2K/hµ 
1 

2.83 2 1.63 4 2.83 2.31 
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* * TABLE 2. The normal (s,S) approximations and (sub)optimal (s ,s) policies 

K=32 K=64 

µ1=32 µ1=48 µ =32 
1 

µ =48 1 
(s,S) (96,141) (144,199) (91,155) (138,216) cr2 (L)=0.5 
Cs* ,s*) (94,143) (143,207) (89, 158) (135,214) S=.9 
S(s,S) .9023 .8923 .9071 .9087 cr/µ=.29, .28 
a (s* ,s*) .9007 .9017 .9031 .9001 
/:,.C (%) 0.84 -2.58 1.52 2.76 

(s ,S) (106,151) (161,216) (101,165) (154,232) cr2 (L)=1 
Cs* ,s*) (104,154) (160,221) (99,169) (151,231) S=.9 
S(s,S) .9003 .8970 .9056 .9095 cr/µ=.38, .36 
a (s* ,s*) .9007 .9006 .9028 .9017 
/:,.C (%) 0.17 -0.71 1.08 2.01 

(s, S) (116,161) (176,231) (110,174) (168,246) cr2 (L) =1. 5 
(s*,S*) (110, 163) (168,235) (104,178) (159,246) S=.9 
S(s,S) .9117 .9087 .9140 .9175 cr/µ=.44, .43 
f3(s*,s*) .9014 .9012 .9018 .9007 
/:,.C(%) 3.80 3.10 4.31 5.30 

(s ,S) ( 107, 152) (160,215) (103,167) (155,233) cr2 (L)=0.5 
(s* ,S*) (108,154) (162,223) (103, 168) (155,230) S=.95 
f3(s,S) .9459 .9414 .9497 .9524 cr/µ=.29, .28 
f3(s*,s*) . 9501 .9503 .9501 .9500 
/:,.C (%) -2.02 -4.21 -0.18 1.13 

(s,S) (120, 165) (180,235) (115,179) (174,252) cr2 (L)=1 
(s* ,S*) (118,164) (177,236) (114,177) (170,244) $=.95 
f3(s,S) .9558 .9554 .9553 .9627 cr/µ=.38, .36 
f3(s*,s*) .9509 .9509 .9521 .9509 
/:,.C (%) 2.08 1.94 1.22 4.64 

(s ,S) (131,176) (198,253) (125,189) (190,268) cr 2 (L) =1. 5 
(s*,S*) (127,175) (190,254) (122,190) (183,261) S=.95 
f3(s,S) .9573 .9581 .9566 .9617 cr/µ=.44, .43 
f3 (s* ,s*) .9506 .9503 .9516 .9503 
/:,.C(%) 3.27 4.12 2.27 5.17 

(s ,S) (129,174) (191,246) (126,190) (187,265) cr 2 (L)=0.5 
(s*,s*) (132,176) (191,220) (129,186) (189,259) f3=.99 
f3(s,S) .9878 .9876 .9887 .9909 cr/µ=. 29, .28 
f3(s*,s*) .9902 .9902 .9905 .9903 
&c (%) -3.12 -2.88 -2.03 1.14 

(s, S) (146,191) (218,273) (142,206) c212;290> cr 2 (L)=1 
(s* ,S*) ( 140, 183) (202,228) (137,193) (200,268) f3=.99 
S(s,S) .9946 .9964 .9943 .9970 cr/µ=.38, • 36 
f3(s*,s*) .9901 .9904 .9904 .9901 
/:,.C(%) 7.27 12.44 5.63 11.98 

(s ,s) (160,205) (240,295) (156,220) (2'.34,312) cr2 (L) =1. 5 
(s*,s*) (155,200) (229,289) (151,212) (224,295) f3=.99 
f3(s,S) .9930 .9941 .9931 .9951 cr/µ=.44, .43 
f3(s*,s*) .9900 .9902 .9901 .9902 
/:,.C (%) 4.63 6.63 4.41 8.00 

12K/hµl 1.41 1.15 2 1.63 
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Next we discuss the approximations for the case of cr/µ> 0.5. Since for a 

normal distribution the probability of negative values cannot be neglected 

for larger values of cr/µ, it will be clear that in general the normal 

approximation cannot be used for cr/µ> 0.5. As alternative the demand densities 

n(x} and s(x) can be approximated by gannna densities by matching the first two 

moments. Then the relations (7) and (8) require the evaluation of incomplete 

gamma integrals. We found that the simplified relation (8) with a gamma density 

fitted to n(x) leads in general to approximations with an erroneous service. 

However, for most practical situations good approximations can be obtained by 

using the relation (7) in which gamma densities are fitted to the demand 

densities n(x} and s(x) by matching the first two moments. These approximations 

can be further improved when relation (7) with the true demand densities n(x) 

s(x) can be used. Clearly, in practice it is often only possible to use a two 

moments method. As illustration we consider in table 3 a set of 24 examples 

each having a review time of T=l and a negative binomial distribution with 

mean µ1=8 for the one period's demand. We take for crf/µ 1 the four values 5, 10, 

15 and 25. We consider the following two lead time distributions each with an 

average value of 2 , (i) Pr{L=l}=Pr{L=3}=~(cr(L}=l) and (ii) Pr{L=0}=Pr{L=4}=~ 

(cr(L)=2).The service level is varied as S=0.9, 0.95 and 0.99. We choose the 

set-up cost K=64 and the linear holding cost h=l. We mention that the demand 

densities n(x) and s(x) are not unimodal when crf/µ 1=5 and cr(L)=2. In table 3 

we give the (s,S) policies computed by the Lagrangian approach and the approximate 

(s,S) policies computed from (7) with the true demand densities and with the 

fitted gamma densities respectively. Also, we give the normal approximation 

(s,S) policies. The various (s,S) policies and their associated service 

levels S(s,S) are denoted by Lagr., True, Gamma and Norm., respectively. 

We can conclude from our numerical investigation that for the case of 

cr/µ~0.5 (say) the normal approximation gives excellent results when the service 

S~0.9, while for $<0.9 the modified normal approximation is recommended. For the 

case of cr/µ>0.5, good approximations can be obtained for most practical situations 

by using relation (7) in which gamma densities are fitted to the probability 

densities of the demand in the lead time plus review time and the demand in 

the lead time by matching the first two moments. 

Similar conclusions can be drawn from our numerical experience with 

the continuous review (s,S) inventory system with backlogging. For 

the case of cr/µ~0.5 the normal approximation and the modified normal 

approximation are now recommended for S~0.97 (say) and $<0.97 respectively. 

For the case of cr/µ>0.5 good approximations can be obtained by relation (7) 

where gamma densities are fitted to the demand densities n(x} and s(x) by 

matching the first two moments. As illustration, we consider in the tables 
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TABLE 3. Approximations for the case of o/µ>0.5 

of/µ1 5 10 15 25 

o/µ .565 .726 .858 1.074 

{ s, S) S{s,S) {s, S) S{s,S) {s ,S) S{s,S) {s ,S) S{s,S) 

Lagr. (25,62) .9041 (31,69) .9042 (36,76) .9011 (48,89) .9013 
True (26,58) .9010 (33,65) .9046 ( 40, 72) .9066 (54,86) .9090 
Gamma (26,58) .9010 (33 ,65) .9046 (40, 72) .9066 (54, 86) .9090 
Norm. (27,59) .9095 (32,64) .8982 (36,68) .8854 (44, 76) .8691 

Lagr. (33,68) .9528 (41,79) .9509 (50,88) .9507 (67,107) .9502 
True (33 ,65) .9491 (43,75) .9515 (53 ,85) .9530 (73,105) .9549 
Gamma (34,66) .9541 (43,75) .9515 (53 ,85) .9530 (74,106) .9566 
Norm. (32,64) .9438 (38,70) .9315 (43,75) .9201 (52 ,84) .9021 

Lagr. (47,82) .9901 (63,100) .9900 ( 79,117) .9902 (110,150) .9902 
True (47,79) .9894 (64,96) .9897 (81,113) .9901 (115,147) .9908 
Gamma (50,82) .9927 (67,99) .9918 {84,116) .9917 {117,149) .9915 
Norm. (42,74) .9808 (50 ,82) .9706 (57,89) .9621 {69,101) .9477 

of/µ1 5 10 15 25 

o/µ .808 .928 1.034 1.21Q 

{s, S) S{s,S) (s, S) S(s,S) (s,S) S(s,S) (s,S) S(s,S) 

Lagr. (32, 71) .9029 (37, 77) .9030 (41,83) .9030 (52 ,94) .9006 
True (34,66) .9015 (40,72) .9037 (46,78) .9051 (60,92) .9119 
Gamma (30,62) .8689 (37,69) .8868 (44,76) .8964 (58,90) .9059 
Norm. (36,68) .9156 (40, 72) .9037 (44, 76) .8964 (50 ,82) .8778 

Lagr. (41,78) .9506 (49,88) .9502 (57 ,97) .9502 (73,115) .9506 
True (42, 74) .9490 (52,84) .9521 (61,93) .9525 (80,112) .9550 
Gamma (40,72) .9393 (49,81) .9426 (58,90) .9453 (78,110) .9518 
Norm. (42,74) .9490 (47,79) .9353 (51,83) .9242 (59 ,91) .9089 

Lagr. (58,92) .9904 (74,112) .9902 {90,128) .9902 (119,161) .9901 
True (58,90) .9899 (76,108) .9903 {93,125) .9906 (126,158) .9910 
Gamma (59,91) .9910 (74,106) .9889 {90,122) .9890 {122,154) .9897 
Norm. (55,87) .9860 (62,94) .9747 (67,99) .9645 (77,109) .9502 

4 and 5 a set of 48 examples each having a constant lead time of L=l and a 

negative binomial distribution for the demand per customer. The mean demand 

per customer has two values µ1=5 and 10. The arrival rate of customers has 

the values A=2 and 10. For A=10 we consider the values 0 21;µ =2.5, 5 and 7 
' 1 

so that o/µ:s;0.5, while for A=2 we consider the values of/µ 1=5, 10, 15 and 25 

so that o/µ>0.5. The service level is varied as S=0.9, 0.95 and 0.99. The 

set-up cost K=32 and the linear holding cost h=l and we have chosen s-s equal 

to the integer nearest to ✓2KAµ 1 /h. In table 4 with A=10 we give the (s*,s*> 

policies computed by an exact Lagrangian approach and approximate {s,S) 

policies together with their associated service levels, where the approximate 

(s,S) policies correspond to the modified normal approximation when S=0.9, 

0.95 and to the normal approximation when S=0.99. In table 5 with A=2 we give 

O{L) 

=1 

S= 
.9 

S= 
.95 

S= 
.99 

cr {L) 

=2 

S= 
.9 

S= 
.95 

S= 
.99 
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TABLE 4. Approximate (s,S) policies for the eontinuous review inventory system 

µ1:;::5 µ1=10 
2 

cr/µ1 2.5 5 7.5 2.5 5 7.5 A= 

cr/µ .358 .417 .468 .325 .358 .388 10 

(s ,SJ (58,115) (61,118) (65,122) (119,199) (124,204) (128,208) 8= 
(s* ,s*> (55,122) (59,127) (63,132) (115,214) (119,219) (123,225) .9 
8(s,S) .9039 .8963 .8961 .8976 .8979 .8955 
8<s*,s*) .9002 .9013 .9029 .9020 .9006 .9006 
tic(%) 2.62 0.65 0.14 1.27 1.74 1.11 

(s, S) (67,124) (11,128) (76,133) (135,215) (140,220) ··(146,226) 8= 
(s* ,S*) (66,131) (71,139) (77,145) (133,229) (140,237) (146,244) .95 
8(s,S) .9484 .9417 .9401 .9460 .9423 .9417 
8(s*,s*) .9509 .9503 .9512 .9502 .9513 .9509 
tic<%> 0.16 -1.87 -3.03 -0.09 -1.92 -2.11 

(s,S) (87,144) (95,152) (101,158) (170,250) (179,259) (187,267) 8= 
cs* ,s*) (86,149) (96,161) (105,171) (168,260) (179,272) (189,284) .99 
8(s,S) .9901 .9884 .9856 .9900 .9889 .9876 
8(s*,s*) .9902 .9904 .9901 .9902 .9903 .9902 
tic(%) 0.42 -1.93 -4.67 0.38 1.07 -2.47 

TABLE 5. Approximate ls,S) policies for the continuous review inventory system 

2 
0 1/µ1 5 10 15 25 µ1 

cr/µ .745 .943 1.106 1.374 =5 

(s, S) 8(s,S) (s, S) 8(s,S) (s, S) 8 (s, S) (s ,s) B(s,S) A=2 

True (18,43) .8988 (25,50) .9073 (31,56) .9060 (45,70) .9111 B= 
Gamma (18,43) .8988 (25,50} .9073 ( 31, 56) .9060 (45,70) .9111 .9 

True (25, 50) .9515 (34,59) .9528 (43 ,68) .9532 (62,87) .9552 B= 
Gamma (25,50) .9515 (34,~9) .9528 (43 ,68) .9532 (e;3,88) .9570 .95 

True (39 ,64) .9904 (54, 79) .9903 (70,95) .9907 (102,127) .9910 8= 
Gamma (39 ,64) .9904 (55, 80) .9910 (71,96) .9912 (104,129) .9917 .99 

2 
cr/µ1 5 10 15 25 µ1 

cr/µ .624 .745 .850 1.027 =10 

(s, S) 8(s,S) (s ,S) 8(s,S) (s, S) 8 (s,S) (s, S) B(s,S) A=2 

True (35, 71) .9000 (42,78) .9036 (49,85) .9060 ,(63,99) .9089 B= 
Gamma (34, 70) .8934 (41,77) .8986 (48,84) .9019 (63,99) .9089 .9 

True (46,82) .9523 (55,91) .9517 (65,101) .9535 (84,120) .9541 B= 
Gamma (44,80) .9452 (54,90) .9490 (64,100) .9513 (84,120) .9541 .95 

True (67,103) .9903 (83, 119) .9905 (99 I 135) .9905 (132,168) .9909 B= 
Gamma (66, 102) .9895 (82,118) .9899 (99,135) .9905 (133,169) .9913 .99 

the approximate (s,S) policies obtained from (7) with the true demand 

densities n(x) and ~(x), the approximate (s,S) policies obtained from (7) with 

gamma densities fitted to the demand densities and the associated service 
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TABLE 6. Approximate (s,S) policies for the continuous review inventory system. 

2 
crl/111 2.5 5 7.5 cr (L) = 

cr/µ .457 .481 .504 .354 

(s, S) 13 (s, S) (s, S) 13(s,S) (s ,S) 13(s,S) 

True (139,219) .9037 (144,224) .9057 (148,228) .9053 13= 
Gamma (136,216) .8955 (141,221) .8981 (146,226) .9006 .9 
Norm. (136,216) .8955 (140,220) .8955 (144,224) .8957 

True (162,242) .9514 (168,248) .9515 (174,254) .9518 13= 
Gamma (161,241) .9498 (167,247) .9501 (174,254) .9518 .95 
Norm. (156,236) .9413 (161,241) .9406 (165,245) .9385 

True (206,286) .9901 (216,296) .9901 (226,306) .9901 13= 
Gamma (211,291) .9919 (221,301) .9917 (232,312) .9919 .99 
Norm. (207,287) .9905 (214,294) .9893 (220,300) .9880 

2 
crilµ1 2.5 5 7.5 cr (L) = 

cr/µ .644 .662 .679 .612 

(s,S) 13(s,S) (s ,S) 13(s,S) (s, S) 13(s,S) 

True (169,249) .9077 (173,253) .9081 (177,257) .9086 13= 
Gamma (159,239) .8844 (163,243) .8864 (168,248) .8906 .9 
Norm. (163,243) .8941 (166,246) .8933 (169,249) .8927 

True (195,275) .9524 (201,281) .9526 (208,288) .9541 13= 
Gamma (191,271) .9469 (196,276) .9463 (202,282) .9471 .95 
Norm. (189,269) .9440 (192,272) .9407 (196,276) .9393 

True (246,326) .9903 (256,336) .9902 (266,346) .9902 13= 
Gamma (252,332) .9922 (261,341) .9917 (271,351) .9916 .99 
Norm. (263,343) .9948 (269,349) .9936 (274,354) .9923 

levels 13(s,S). Finally, we give in table 6 a set of 18 examples each havinq 

an arrival rate of A=lO customers and a negative binomial distribution with 

mean µ1=10 for the demand per customer, where cr~/µ 1 is varied as 2.5, 5 and 

7.5. We consider the stochastic lead times (i) Pr{L=½}=Pr{L=1~}=1/4, Pr{L=lj= 

=~ with EL=l and cr(L)=.354, and (ii) PdL=O}=Pr'I.L=l}=PdL=2J=0.1, Pr{L=l:d= 

Pr{L=l~}=0.35 with EL=l and cr1L)=~612. For the examples with cr(L)=.354 the 

demand density ~(x) is bimodal, while for the examples with cr(L)=.612 both 

demand densities n(x) and ~(x) are trimodal and bimodal Tespectively for 

crf/µ 1=2.5, 5 and crf/µ 1=7.5 respectively. We choose s-s equal to the nearest 

integer to {2KAµ 1/h}~ where K=32 and h=l. In table 6 we give the true and 

the gamma approximations both from (7) for 13=0.9, 0.95 and 0.99, the 

modified normal approximation for 13=0.9, 0.95 and the normal approximation 

for 13=0.99. 



17 

REFERENCES 

1. Archibald, B. and Silver, E., "(s,S) Policies under Continuous Review and Discrete 

Compound Poisson Demand", Management Sci. 24, 899-909, 1978. 

2. Brown, R.G. Decision Rules for Inventory Management, Holt, Rinehart & Winston, 

New York, 1967. 

3. cox, D.R., Renewal Theory, Methuen, London, 1962. 

4. Ehrhardt, R., "The Power Approximation for Computing (s ,S) Inventory Policies", 

Managerrent Sci. 25, 777-786, 1979. 

5. Ehrhardt, R., "(s,S) Policies for a Dynamic Inventory Model with Stochastic 

Lead Times", Technical Report No. 17, University of North Carolina at Chapell 

Hill, 1980. 

6. Federgruen, A., Groenevelt, H. and Tijms, H.C., "Coordinated Replenishments in a 

Multi-ItE:m Inventory System with Compound Poisson Demands and Constant Lead 

Times", Report No. 60, Dept. of Actuarial Sciences and Econometrics, Free 

University, Amsterdam, 1980. 

7. Freeland, J.R. and Porteus, E.L., "Evaluating the Effectiveness of a New Method 

for Computing Approximately Optimal (s,S) Inventory Policies", Operations Res. 

28, 353-363, 1980. 

8. Hadley, G. and Whitin, T.M., Analysis of Inventory Systems, Prentice-Hall, 

Englewood Cliffs, N.J., 1963. 

9. Kaplan, R.S., "A Dynamic Inventory Model with Stochastic Lead Times", Management 

Sci. 16, 491-507, 1970. 

10. Naddor, E., "Optimal and Heuristic Decisions in Single- and Multi-Item Inventory 

Systems, Management Sci. 21, 1234-1249, 1975. 

11. NaddOr, E., "Sensitivity to Distributions in Inventory Systems", Management 

Sci. 24, 1769-1772, 1978. 

12. Nahmias, s. ,, "Simple Approximations for a Variety of Dynamic Leadtime Lost-Sales 

Inventory Models, Operations Res. 27, 904-924, 1979. 

13. Porteus, E. ,. "An Adjustment to the Norman-White Approach to Approximating 

Dynamic Programs", Operations Res. 27, 1203-1208, 1979. 

14. Roberts, D . .M. , "Approximations to Optimal Policies in a Dynamic Inventory Model", 

in: Studies in Applied Probability and Management Science, K. Arrow, s. Karlin 

and P. Suppes (eds.), Stanford University Press, Stanford, 1962. 

15. Schneider, H., "Methods for Determining the Reorder Point of an (s,S) Ordering 

Policy when a Service Level is Specified", J. Opl. Res. Soc. 12, 1181-1193, 1978. 

16. Schneider, H., Servicegrade in Lagerhaltungsmodelle, Gunter .Marchal und 

Hans-Jochen Matzenbacher Wissenschaftsverlag, Berlin, 1979. 



18 

17. Veinott, A.F. Jr. and Wagner, H.M., "Computing Optimal (s,S) Inventory 

Policies", Management Sci. 11, 525-542, 1965. 

18. Wagner, H., O'Hagan, M. and Lundh, B., "An Empirical Study of Exactly and 

Approximately Optimal Inventory Policies", Management Sci. 11, 690-723, 1965. 

19. Werner, H., Steer, J. and Bommas, W., "Rational Chebyshev Approximation", 

Numerische Math. 10, 289-306, 1967. 


