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ABSTRACT 

The short term prediction problem is considered for power demand at 

railway energy supply stations of the dutch national railway company. A 
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1. INTRODUCTION 

The purpose of this paper is to present an algorithm for short term 

prediction of power demand at energy supply stations of the dutch national 

railway system. 

The N.V. Nederlandse Spoorwegen, the dutch national railway company, 

uses electrical power for its rolling stock, for safety purposes, and for 

buildings and related objects. Electric power is obtained locally from the 

provincial power companies. At energy supply stations, that are located at 

about every 22 kilometers of the network, the power is converted from AC to 

DC and supplied to the railway power network. This power is mainly used for 

traction, but also for light and heating. The power demand of the railway 

power network at an energy supply station has rather peculiar characteris­

tics. One characteristic is the peak demand in the hours between 7 and 9, 

and 16 and 19, which may run as high as twice the demand at 12 o'clock noon. 

· Another characteristic is the relatively high variance of the data. 

What is the motivation for this investigation? The energy cost that the 

railway company is faced with is based on the total power used, and on the 

peak load used in certain time periods. The price structure varies between 

the different power companies. With the objective to save on energy costs 

the railway company is considering to install energy storage facilities at 

the energy supply stations to store energy in off-peak hours with which to 

flatten the peak loads. The reduced peak demand of the railway company on 

the power network is financially advantageous for the former while increas­

ing the efficiency for the latter. A feasibility study has been started to 

evaluate this plan. One aspect of the scheme is to develop a control algor­

ithm for the energy storage and use. For this, two subproblems have been 

distinguished namely: 1) to develop an algorithm for short term prediction 

of power demand at an energy supply station; 2) to develop a control algor­

ithm for the energy storage. The prediction algorithm is likely to play a 

part in the control algorithm. 

The problem is then to develop an algorithm for short term prediction 

of the power demand at energy supply stations. The short term should be in­

terpreted as ranging from 15 minutes to 3 hours. Moreover, at each time mom­

ent predictions are required for one to say t 1 periods ahead. This type of 
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prediction will be called a multi-step prediction. As a basis for prediction 

only power data are to be used. A general formulation of the algorithms is 

required tbat can be used at the different locations of the railway company. 

The above formulated problem is similar to the prediction problem of 

power demand in a national electric network. For the latter problem there is 

a considerable literature. In general the load is decomposed into a nominal 

and a residual part. The estimation of the nominal part may be done via 

Fourier series expansion including adaptation of the coefficients, exponen­

tial smoothing, Wiener filtering, Kalman filtering, or an application of 

recursive least squares [1,3,4,6,7,13,17,18,21,22]. Estimation of the resi­

dual part may be accomplished via Karhunen-Loeve expansion, Kalman filtering, 

or adaptive Kalman filtering. For the problem under consideration it has 

been decided to use the adaptive prediction approach. 

The adaptive prediction algorithm for power demand data is based on the 

Kalman filter and on an adaptive prediction algorithm for Gaussian systems. 

The problem of constructing and evaluating adaptive prediction algorithms 

for Gaussian systems has received quite some attention recently [1,5,10,11, 

13,19,20,24]. Most of the references quoted consider the stochastic predic­

tion problem for a fixed time increment, while here multistep predictions 

are required. Therefore a new algorithm for adaptive stochastic prediction 

of the~output of a Gaussian system is derived in-which multistep predictions 

are computed in a recursive manner. The state space view is emphasized. 

The problem formulation is presented in Section 2, while the selftuning 

predictor for Gaussian systems is derived in Section 3. A model for power 

demand prediction is developed in Section 4, based on three different time 

scales. The model is an extension of one proposed by BORLIN [1]. A computer 

program for this algorithm has been written, and has been implemented on the 

computer of the railway company. Some numerical results are presented in 

Section 5. 

Acknowledgements are due to Mr. K.G.M. Jeurissen of the N.V. Nederlandse 

Spoorwegen for his cooperation on the problem, and prof. J.C. Willems of the 

University of Groningen for helpful advice. 
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2. PROBLEM FORMULATION 

As explained in Section 1 electric energy is supplied to the railway 

power network at energy supply stations. To produce predictions of the power 

demand in the railway power network one would need, in principle, information 

about the total network. As a first step in model reduction it is therefore 

assumed that energy supply stations only serve a local area and do not inter­

change energy with other stations. A detailed model for the power demand at 

an energy supply station is developed in Section 4. 

Over which time intervals must predictions be made? The railway company 

has let it be known that a general algorithm is desired because the data pro­

cessing differs between the local power companies. Therefore some remarks on 

prediction intervals follow. 

In a discrete time prediction model one may distinguish four different 

time intervals. These intervals are: 

6s - the time interval over which.data are or become available; 

6t - the time interval between the moments that predictions must be made; 

6f - the time interval between the time of a prediction and the start of the 

prediction interval 6p; 

6p - the time interval for which a prediction must be made. 

t time 

I I 
'-yJ'- y I 
.AS A f ~p 

......_,,_..,, 
At 

Figure 1. Time intervals of the prediction problem 
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As an example one may think of (6s,6t,6f,6p) = (5,15,30,60) minutes see 

figure 1. To simplify the algorithm somewhat the following assumptions are 

made: there exist kt,kf,kp € {0,1,2, ••• } such that 6t = kt6s, 6f = kf6t, 

6p = k 6t. Under these assumptions the prediction algorithm will be designed 
p 

such that it aggregates kt data points of power demand in intervals of 6s 

minutes to 6t minute totals, and at every 6t minutes it predicts from kf + 1 

to kf + kp time periods of 6t minutes ahead. The general problem will then be 

taken to predict at every time step from one to say t 1 time periods ahead. 

As-step prediction, withs€ {1,2, ••• } fixed is defined to be a pre­

dictions steps ahead. AmuZtistep prediction, say with t 1 steps, is defined 

to be a prediction for 1,2, ••• ,t1 steps ahead. 

2.1. PROBLEM. To produce multistep predictions of the power demand at an 

energy supply station on the basis of load data only • 

. 3. ADAPTIVE PREDICTION FOR GUASSIAN SYSTEMS 

The power demand prediction algorithm to be presented in Section 4 is 

based on a selftuning adaptive prediction algorithm for Gaussian systems. 

The latter algorithm will be derived below. 

Let (Q,F,P) be a complete probability space and T = Z = { ••• ,-1,0,1, ••• } 

the time index set. A Gaussian random variable x: Q + Rn with parameters 
n nxn T µ € R and Q € R , satisfying Q = Q ~ O, is denoted by x € G(µ,Q). A 

Gaussian white noise process with intensity V: T + Rnxn, satisfying for all 

t € T, V(t) = V(t) T ~ O, is a stochastic process v: Q x T + Rn such that 

{v(t),t € T} is an independent sequence and for all t € T, v(t) € G(O,V(t)). 

3.1. ASSUMPTION. Let be given a stationary real valued Gaussian process on 

T with zero mean function and covariance function c: T + R. Assume that the 

process has a rational spectral density and that limt-+<» c(t) = O. 

3.2. PROBLEM. The muZtistep stochastic prediction problem for the Gaussian 

process defined in 3.1, denoted by y, is to determine for all t € T and 

s € Z+ an expression for 

E[exp(iuy(t+s)) IF~], 
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where F~ = cr ( {y(-r), \fr :s; t}) is the o--algebra generated by y up to t E T. D 

To solve this problem a representation of the Gaussian process is need­

ed. In stochastic system theory the concept of a stochastic dynamical system 

has been defined. Loosely speaking such a system consists of a state and out­

put process such that for all time moments the past and future of these pro­

cesses are conditional independent given the state at that time moment. In 

the following only the definition of a Gaussian system is needed. 

3.3. DEFINITION. A Gaussian stochastic dynamicaZ system, for short a 

Gaussian system, is a collection 

n k m {T,R ,B ,R ,Bk,R ,B ,A,B,C,D,V} n m 

n where T = z, n,k,m E Z, R, B + n is then-dimensional Euclidean space with 
nxm kxn kxm B: T + R , C: T + R , D: T + R , its Borel a-algebra, A: T + Rnxn, 

mxm V: T + R such that for all t ET, V(t) = V(t)T ~ O. If (&1,F,P) is a com-

plete probability space and v: Q x T + Rm a Gaussian white noise process with 
n k intensity V, then define x: Q x T + R , y: Q x T + R 

x(t+l) = A(t)x(t) + B(t)v(t), 

y(t) = C(t)x(t) + D(t)v(t). 

The process x will be called the state process and y the output process. A 

time-invariant Gaussian system is a Gaussian system for which A, B, C, D and 

V are time-invariant. □ 

It may be shown that a Gaussian system is a stochastic dynamical system 

as defined above 3.3. The question now is whether the Gaussian process de­

fined in 3.1 can be represented as the output of a Gaussian system? 

3.4. PROPOSITION. Given the Gaussian process specified in 3.1. Then there 

exists a time-invariant Gaussian system 

n k m {T,R ,B ,R ,Bk,R ,B ,A,B,C,D,V} n m 
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(I) 

(2) 

x(t+l) = Ax(t) + Bv(t), 

y(t) = Cx(t) + Dv(t), 

such that the process y defined by (1,2) and the Gaussian process defined in 

3. 1 have the same family of finite dimensional, distnbutions. Then one caZZs 

this Gaussian system a weak Gaussian stochastic realization of the process 

specified by 3. l. FUPtherrnore the dimension n of the state space (Rn ,B ) may n 
be chosen to be minima.Z. For such a minima.Z stochastic realization (A,C) is 

an observable pair, and A is e:r:ponentiaZZy stable. 

PROOF. [8, thm. 3.4; 9, thm. 8.9]. □ 

The stochastic realization (1,2) of the given process is not unique. 

Consider the asymptotic Kalman filter for the Gaussian system (1,2) 

i(t+ll t) = .Ax(tl t-1) + K(y(t) - Ci(tl t-1)) 

where x(t+ll t) = E[x(t+l) I Fi]. This may also be written as 

(3) x(t+11 t) = .Ax(tlt-1) + Kv(t),xco1-1), 

(4) y(t) = cx<tl t-1) + v<t), 

where v: Q x T -+ R is the innovation process which is known to be a Gaussian 

white noise process. Clearly (3,4) is another weak Gaussian stochastic real­

ization of the given process. Since in this realization the state process 

is such that for all t ET, x(t+ll t) is F~ measurable it will be called the 

past-output induced stochastic realization of the process specified in 3.1. 

On the basis of the output process y only the realizations (1,2) and (3,4) 

are indistinguishable. Because our goal is output prediction, attention is 

in the following restricted to the past-output induced stochastic realization 

(3,4). 

What is the solution of the multistep stochastic prediction problem 

for the Gaussian process y having the stochastic realization (3,4)? 



3.5. PROPOSITION. Consid.er the past-ouput induced stochastic realization 

of the Gaussian process &fined in 3. 1, say 

n -{T,R ,B ,R,B,R,B,A,K,C,l,q} n 

x(t+llt) = Ax(tlt-1) + Kv(t), 

y(t) = cx(tl t-1) + v(t). 

The solution to the multistep stochastic prediction problem for the given 

process is given by, fort€ T, s € Z+, 

E[exp(iuy(t+s)) I Fi] = exp(iuy(t+sl t) -½ u2q(t+sl t)) 

where y and q are determined by 

(5) x(t+llt) = Ax(tlt-1) + K(y(t) - cx(tlt-t)) 

(6) Q(t+llt) = o,, 

(7) x(t+s+llt) = Ax(t+slt), x(t+llt), 

(8) Q(t+s+llt) = AQ(t+slt)AT + qKKT, Q(t+llt) = O, 

(9) y(t+slt) = Cx(t+slt), 

(10) q(t+slt) = CQ(t+slt)CT + q. 

7 

PROOF. This follows from applying to (3.4) the Kalman filter [14]. D 

From now on the time index set is taken to be T = {0,1,2, ••• }, and the 

representation (3,4) is initialized at x(OI - I)= O. Because A is stable the 

effect of the initial condition is negligible in the long run. 

In the following an alternative representation of the multistep predic­

tor is needed that is linear in the parameters. 
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3.6. PROPOSITION. 

a) The one-s~ep output prediator or KaZman fiZter 

x(t+tl,t) = Ax(tlt-t) + K(y(t) - ex(tlt-0), x(ol-t) = o, 

y(t+tlt) = cx(t+tlt), 

q < t+ t I t) = q, 

has the equivaZent representation 

(11) 

(12) 

(13) 

h(t+llt) = L h(tlt-1) + M y(tlt-1) + N y(t), h(Ol-1) = o, n n n 

y(t+llt) = h(t+llt)Tp, 

q ( t+ 11 t) = q' 

2n where h: n x T + R 

(14) h(t+llt)T = (-y(tlt-I), ... ,-y(t-n+Ilt-n),y(t), ... ,y(t-n+l)), 

p E R2n is d,ete'Pmined by A, K, and c, the eZements of whiah are &noted 

by 

(15) 

(16) 

e. E 
J 

L = 
n 

I 0 •••• 0 I 
• I Q 
• I 

In-l O I ---------'--------
• I O •••• 0 

0 I 
I 

1 In-l 0 

R2nx2n 
€ , 

2n 
M =-e ER 

n I ' 
N R2n 

n = en+l E 

2n b . h ' h . R e-z,ng t e J-t un-z,t veator. 

b) The muZtistep prediator (7) - (1 O) has the equivaZent representation 
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(I 7) hh(t+s+llt) = L hh(t+slt)+ (M +N )y(t+slt), hh(t+llt) = h(t+llt), n n n 

(I 8) y(t+s+llt) = hh(t+s+ll t)Tp, 

(19) 

(20) r T -q (t+s+l It) = H(p)Q (t+s+l I t)H(p) + q, 

where, if pis given by (15), then 

(21) 

-a.l+Bl 0 

G(p) -CJ· F(p) = 0 , 

-a. +B 0 ••• 0 
n n 

(22) H(p) = (I 0 O). 

c) The output proaess y ha.s the representation 

(23) 

PROOF. 

a) One has 

T -y(t) = h(tlt-1) p + v(t). 

x(t+llt) = (A-Kc)x(tl t-1) + Ky(t), x(Ol-1) = o, 

y(t+llt) = cx(t+llt). 

Because by 3.4 (A,C) is an observable pair, so is (A-KC,C). Then there 

exists a state space transformation such that the above form is input­

output equivalent to 

r(t+llt) = 

-a. 
n 

0 

0 ••• 0 

f(tl t-1) + CJ y(t), 



b) 

c) 

y(t+llt) = (1 o 

and by a calculation to 

n 
y(t+llt) = - I 

i=l 

O)r(t+l t), 

n 

I o..y(t+l-il t-i) + 
I. i=l 

8.y(t+l-i) 
I. 

The recursion for h then follows from its definition. 

x(t+s+llt) = Ax(t+slt) 

= (A-KC)x(t+slt) + Ky(t+sl t) 

y(t+s+llt) = Cx(t+slt), 

= h(t+llt)Tp. 

and the result follows along the lines of the proof of a). 

The expressions for the variances follows similarly. 

y(t) - h(tlt-t)Tp = y(t) - y(tlt-1) = v<t). D 

The parameters of the past-output induced Gaussian stochastic realiza­

tion (3.4) are n, A, K, C, q, or in the equivalent form (11,12) n, q, p. 

3.7. PROBLEM. Given the Gaussian process specified in 3.1 having the past­

output induced stochastic realization (3,4). Assume that the values of the 

parameters n, q are known but that the value of pis unknown. The adaptive nruZti­

step stoaha.stia prediction problem for the above defined process y is to 

determine for all t ET ands E Z+ an estimate of the conditional distribu-
• ( ) • FY ti.on of y t+s given t" D 

There are several synthesis procedures to solve the above problem. The 

seZftuning synthesis proaedUPe will be used here. This procedure prescribes 

that at each time step an estimate is to be made of the values of the para­

meters of the past-output induced stochastic realization, which estimate is 

then substituted for the parameter in the fo~la's for the predictor, for­

mula's that are obtained with knowledge of the parameters. This approach has 

been introduced by WITTENMARK [24]. The procedure involves a kind of step-
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wise certainly equivalent because the output prediction is used at subse­

quent time moments in the parameter .estimation algorithm, which fact is not 

specified a priori. 

3. 8. ·THEOREM. Consider the representation 

(24) p(t+l) = p(t) + r(t), p(O), 

(25) T -y(t) = h(tlt-1) p(t) + v(t), 

where (25) is the representation of the past-output induaed stoahastia real­

ization of y as derived in 3.6.c, and (24) a representation for the time­

varying parameters. Asswne that p(O) E G(O,v0r 2n), r: n x T -+ R2n is a 

Gaussian white noise proaess with intensity v 1r2n, v 1 ER+, and p(O), r, v 
are independent objeats. The solution to the adaptive stoahastia prediation 

problem via the selftuning synthesis proaedure is then that 

E[exp(iuy(t+s)) I Fi] 

may be approximated by 

(26) exp(iuy(t+slt) - ·~ u2q(t+slt)) 

where y and q are here determined by respeatively the parameter estimation 

algorithm 

(28) p(t+llt) = p(tlt-1) + kp(t)[y(t)-h(tlt-l)Tp(tlt-1)], p(Ol-1) =O, 
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the adaptive Ka Zman fi Zter 

(30) h(t+Ilt) = L h(tlt-1) + M f(tlt-1) + N y(t), h(Ol-1) = o, n n n 

(32) q(t+llt) = q; 

and the adaptive muZtistep predictor: 

(33) hh (t+s+I It) = L hh(t+slt) + (M +N )y(t+slt), hh(t+slt) = h(t+Ilt), n n n 

(34) y(t+s+l It) = hh(t+s+llt)Tp(t+llt), 

(35) Qr (t+s+l It) = F(p(t+llt))Qr(t+slt)F(p(t+llt))T 

- T Qr(t+slt) + qG(p(t+l lt))G(p(t+llt)) ' = o, 

(36) q(t+s+llt) = H(p(t+llt))Qr(t+s+llt)H(p(t+llt))T + q. 

PROOF. The proof is by induction. Suppose one is at t ET having obtained 

p(tlt-1), qP(tlt-1) and h(tlt-1) as functions of (y(O), ... ,y(t-1)). The self­

tuning synthesis procedure now prescribes to estimate anew the value of the 

parameter p. The assumptions imply that the representation (24,25) is like 

a Gaussian system, the difference with such a representation being that 

h(tlt-1) is dependent on (y(O), ... ,y(t-1)). Using the conditional Kalman 

filter, see [15, II thm. 13.4], for which the formula's are similar to the 

standard Kalman filter, one obtains the parameter estimation algorithm (27, 

28,29). The selftuning synthesis procedure prescribes next to substitute 

the estimate p(t+II t) for pin the formula's for the prediction algorithm 

as given in 3.6. The result then follows. 

REMARKS. 

1. What is new in the adaptive stochastic prediction algorithm is the re­

cursive computation of the-estimates and the variances. In nost of the 

references quoted in section 1 the prediction of y(t+s) given Fi for a 

□ 
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fixed s E Z+ is considered. HOLST [13], considers also multistep predic­

tions but his implementation consists of a predictor for every increment 

of s E Z+· This in general leads to a rather high demand on computer mem­

ory and in addition has a very serious theoretical disadvantage, see 

remark 4. BOHLIN [1] does not consider multistep predictions explicitly. 

2. It is possible to use other parameter estimation algorithms in the adap­

tive stochastic prediction algorithm. The formula's easily follow from 

3.6 using the selftuning synthesis procedure. 

3. It has been suggested [16] to include in the parameter estimation algori­

thm a stability test on the eigenvalues of (A-KC), or on the zeroes of 

the polynomial E~=O aizn-i, with aO = 1. Stability is a sufficient condi­

tion for convergence of the parameter estimates. Under the assumption 

3.1 and a minimal stochastic realization, stability is ensured. In the 

algorithm for power demand prediction no stability test has been incor­

porated. No instabilities have been noticed. 

· 4. HOLST [13] suggests another multistep adaptive stochastic prediction 

algorithm based on the following derivation. For each time increment of 

s E Z+ another predictor is constructed. Then, along the lines of the 

proof of 3.6, 

y(t+slt) 
T 

= h(t+slt) p, 

n n 
y(t+slt) = I a.y(t+s-ilt-i) + I 

i=l 1 i=l 

T + ;(t), = h(t+slt) p 

t-1 
;(t) = v(t) + I CAt-r-lKv(r). 

r=t-s+l 

= 

B,y(t+l-i) + v(t), 
1 

Ifs> 1 then vis not Gaussian white noise. Yet HOLST [13] suggests to 

ignore this fact and to apply the least-squares system identification 

algorithm to estimate p. It is well known that estimates obtained this 

way may not eonverge. Therefore this approach to the adaptive stochastic 

prediction problem is doubtful. 

5. In 3.8 the contribution of the variance of the parameter prediction error 

on the variance of the output prediction error has been neglected. The 
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selftuning synthesis procedure does not prescribe to account for this. 

6. The algoritlnn 3.8 has the parameters vO, v 1, q. The value of vO is not 

very critical since its influence decreases when time proceeds. The values 

of v 1, q are initially unknown. Here the stochastic approximation-like 

algorithm suggested by BORLIN [1, p.454] to estimate a multiplicative 

factor in v 1, q is useful. 

7. The convergence analysis of the adaptive stochastic predictor 3.8 has not 

yet been completed. A first question is what should converge? Two views 

have been taken on this question. L. LJUNG [16], considers the convergence 

of the estimates of the values of the parameters. Another view is to con­

sider the difference between the predictions with known parameters and 

the adaptive predictions, see [11]. The references quoted contain suffi­

cient conditions for convergence. 

8. What is an optimal adaptive stochastic predictor? Since by definition an 

adaptive stochastic predictor is an approximation, the optimality is not 

clear. Consider the error between the prediction with known parameters 

and the adaptive predictor. It seems that an optimal adaptive predictor 

should at least satisfy two conditions: 1) the above defined error pro­

cess must converge in some sense; 2) the adaptive predictor should have 

minimal asymptotic variance for the above error process. 

4. THE LOAD MODEL AND PREDICTION ALGORITHM 

As explained in section 1 energy is supplied to the railway power net­

work at energy supply stations. In this section a model for the power demand 

at an energy supply station is proposed and a prediction algorithm derived. 

Several time intervals that are relevant for prediction have been men­

tioned in section 2. In the following it is assumed that time is discretized 

in intervals of length 6t, thus each time moment a prediction must be made. 

It will be supposed that if data are available over intervals of length 6s 

with 6s < 6t and 6t = kt6s, kt E Z+, then these are aggregated to totals of 

length 6t. 

The power demand data are clearly nonstationary. Several periods in the 

data may be distinguished such as an hour due to the railway schedule, a 

day with a difference between weekdays and weekenddays, a week and a year. 
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There may also be a trend throughout the years. It has been dec'ided to separ­

ate out the week and day periods for special treatment. In addition atten­

tion is given to short term fluctuations. The variations between the seasons 

will be taken care of through the adaptive nature of the model. The full 

model has thus three time scales, a week, a day, and a short term period. 

The week model 

Assume that the power demand data y may be modelled as 

(38) y(t) = w (t mod T) + u(t), 
s w 

where (Q,F,P) is a probability space, s € T = {0,1,2, ••• },, is the number 
w 

of /J.t periods in one week, w0 : Q ➔ R'w, w0 € G(11wo,qwo), r: QxT-+- R'w is a 

Gaussian white noise process with intensity v 1I,w' v 1 € R+, t = s,w + t 1, 

I :s; t 1 :s; 'w so t 1 = tmod 'w' u: Q x T-+- R is a Gaussian white noise process 

with intensity v2 € (0, 00), w: QxT-+- R'w defined by formula (37), and w0 , v, 

u are independent objects. Fors€ T, w will be called the week pattern of 
s 

the load demand in weeks, and y(t) the power demand at time t = s,w + t 1• 

The week model (37,38) is such that for each period of the week there 

is a first order model driven by a Gaussian white noise process. At each 

period of the week the value of the week pattern of that period is read out 

with a certain noise component u. There is no interaction between the periods 

of the week; this point is taken care of by the day and the short term model. 

The asymptotic Kalman filter for the representations (37,38) is, for 

t € {(s-1), +l, .•. ,(s-1), +,} 
w w w 

(39) 

(40) w I 1 (t mod T ) s s- w 

+kw[y(t) -w I 1 (t mod T ) ], s s s- w 
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(41) w 
qs+l Is = + V -I 

w 2 w -1 
(q I I) [q I I + v2] ' s s- s s-

Note that the gain kw and the variance qw are real valued and need to 

be computed only once a week. By choosing v 1 and v2 appropriately the above 

algorithm will approximately follow the seasonal fluctuations. In applica­

tions the algorithm is initialized with the first week of data. 

The day model 

Next a model is proposed for the difference between the power demand 

data and the estimate of the week pattern. This model has a multiplicative 

form with a period of a day and is supposed to model the effect of meteoro­

logical factors on the data. Multiplicative models have been considered 

earlier [12]. 

Assume that for all time periods in day r ET 

y(t) = g(r)w I l(tmod-r ). s s- w 

Let -rd be the number of 6t periods in one day. A least-squares approach to 

estimate g(r) yields: 

Td Td 

(43) g(r) = [tt y(t)wsls-l(tmod-rw)]/[tt wsls-l(tmod-rw)2] 

where the sum is over all time periods in day r. Assume further that 

{g(r)-1, r ET} can be modelled as a Gaussian process, specifically as the 

output of a Gaussian system of order nd. One may then associate with this 

process the representations (3,4). Let v3 , v4 be respectively the variances 

(v1,q) in (24,25). The one-step adaptive stochastic predictor of {g(r)-1, 

r ET} is then 

(44) d d d d T d d -1 k (r) = Q (rlr-l)h (r!r-l)[h (rlr-1) Q (rlr-l)h (rlr-1) +v4J , 

(45) pd(r+llr) = pd(rlr-1) +kd(r)[g(r) - l-hd(rlr-l)T*pd(rlr-1)], 

pd(Ol-1) = 0, 
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(46) d d d d 
Q (r+l Ir) = Q (rlr-1) +v3r2nd -Q (rlr-l)h (rlr-1)* 

d T ~ d -1 *[h (rlr-1) Q (rlr-l)h (rlr-1) +v4J * 

d T d *h (rlr-1) Q (rlr-1), 

(47) hd(r+llr) = L hd(rlr-1) + M (g(r)-1) + N (g(r)-1), h(Ol-1) =0, 
nd nd nd 

(48) g(r+l Ir) = hd(r+l lr)Tp(r+l Ir)+ 1. 

Here Lnd' Mud, Nnd are as defined in 3.6. 

The short term model 

Short term fluctuations, of the order of several time periods, are 

modelled next. Let the prediction error process after the application of the 

week and day prediction algorithm be, for the s-th week and the r-th day, 

e: n X T ➔ R 

(49) e(t) = y(t) - g(rlr-l)w I l(tmod-r ). s s- w 

Assume that e is a Gaussian process satisfying the assumptions of 3.1, 

and that the order of the associated Gaussian system (3,4) is ne E Z+. De­

note the variances (v1,q) in the representation (24,25) in this case by v5 , 

q. Then 3.8 yields the following multistep adaptive prediction algorithm 

(52) Qe(t+llt) = Qe(tlt-1) +v5r2n -Qe(tlt+l)he(tlt-1)* 
e 
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(53) he(t+II t) = L h(tlt-1) + M e(tlt-1) + N e(t), he(Ol-1) = o, n n n e e e 

(55) q(t+llt) = q, 

(56) hhe(t+s+II t) = L hhe(t+s1t) + (M +N )e(t+slt), n n n e e e 

The formula's for the variance of the prediction error of e(t+s+11t) follow 

as in 3.8. 

The final prediction of the power demand in weeks, in day r, at time 

. t, is then 

(58) y(t+,lt) = g(rlr-l)w I l((t+.)mod L) + e(t+,lt) s s- w 

for. E Z+ and with the associated variance as the variance cf the predic­

tion error of e(t+,lt). In this algorithm the effect that occurs at a day 

change has been neglected. The complete adaptive stochastic prediction algor­

ithm for power demand is formed by (39-58). 

The above model and algorithm differ from those suggested by HOLST [13] 

and BOHLIN [I]. The difference with [13] is in the estimation of the week 

pattern via the Kalman filter rather than via exponential smoothing, in the 

multiplicative model with the time scale of a day, and in the recursive com­

putation of the multistep predictions. The difference with [I] is in the 

adaptive stochastic prediction algorithm for Gaussian systems, in the full 

week model, the day model, and in the somewhat more general short term model. 

Yet the model and algorithm are very much inspired by BOHLIN [I] and [2]. As 

mentioned in section 3 one may add an algorithm to recursively estimate a 

multiplicative factor in the variance of the innovation process. 
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5. NUMERICAL RESULTS 

Data from several energy supply stations in a region of the Netherlands 

have been made available for the investigation by the railway company. The 

data are of the total power demand in 15 minute intervals. Initially data 

have been used over 4 months of 1979, about 11000 data points. In the latter 

part of the investigation data of the full year 1979 have been used, about 

35000 data points. 

A computer program has been written that generates predictions accord­

ing to the algorithm presented in section 4. The software has been imple­

mented on the computer of the railway company. The computer program produces 

predictions in the form: fort ET, ands= 1,2, ••• ,t1, {t+s,y(t+slt), 

q(t+sl t)½}, and for evaluation purposes y(t), y(tlt-1), y(t) -y(tlt-1), 

q(tlt-1)½. 

An evaluation of the performance of the prediction algorithm has been 

made. The following properties of the prediction errors have been determined: 

1) the sample mean; 2) the sample variance; 3) the relative sample variance 

t2 
s = [ l ((y(t) -y(tlt-1))/y(t)//t2]½*100; 

% t=1 

4) the correleogram; 5) an estimate of the distribution. In addition an 

hypothesis test on the correleogram and the sample distribution of the pre­

diction errors has been made. 

For a certain energy supply station some numerical results are mention­

ed in table 1. The statistics are of the prediction errors in: 1) the 4 

month period minus the first three weeks; 2) the same but only for the hours 

of 6 to 22 of a day; 3)monday mornings from 6 to 10 hours; 4) friday after­

noons from 15 to 20 hours. In figure 2 is displayed the power demand on an 

arbitrary day, and in figure 3 a sample prediction. Monday morning and fri­

day afternoon have been selected because in these time periods the highest 

power demand occurs. 
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Hours Sample Sq.rt. sample Relative Range of 
means variance variance% data 

0 -24h. 34.9 kw 334.7 kw 41.44% (0 ,5500) kw 

6 -22h. 4.6 kw 353.8 kw 16.18% (1500,5500) kw 

6 -l0h. mondays -18.4 kw 355.4 kw 10.23% (2000,5000) kw 

15-20h. fridays 17.3 kw 419.0 kw 12.47% (2000,5500) kw 

Table 1. Evaluation of the one-step prediction for an energy supply station. 

3 6 9 ,2. 15 18 
TIME 

Figure 2. The power demand at an energy supply station on an arbitrary day. 
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Figure 3. One step adaptive prediction of power demand at an energy supply 
station. 

The relative sample variance is not very useful as an evaluation measure 

of the algorithm when considering data over 24 hours a day. At night, when 

due to irregular freight traffic the power demand is rather erratic and of 

rather low value, the relative prediction errors are high and consequently 



22 

contribute disproportionately to the relative sample variance. During day 

hours the relative sample variance is useful. 

Multistep predictions have been generated based on the selftuning adap­

tive prediction algorithm mentioned in remark 4 of section 3. For the above 

mentioned energy supply station the square root of the sample variance in 

statistic I) increases over I to 12 periods ahead from about 360 to 420 kw. 

The parameters of the algorithm have been varied. Based on the variance 

of the prediction error the choices nd = 2 and ne = 2 have been made. No 

specific order test has been used. The performance of the algorithm as mea­

sured by the sample variance of the prediction error proved to be rather 

sensitive for the ratio v 1/v2• Finally the choice v 1 = 15 and v2 = 500 has 

been made. With this choice the algorithm seems to follow the seasonal fluc­

tuation rather well. The variances v3, v4 in the day model have been chosen 

to be 0 resp. I. Finally in the short term model v5 has been chosen to be 

zero. In both the day and the short term model a stochastic approximation­

like algorithm for the variance has been tried, see [13, p. 127]. This corre­

sponds to taking v3,v5 > 0 in the algorithm presented here. These measures 

resulted in a slight improvement of the variance of the prediction error. 

A summary of the evaluation follows. The variance of the prediction 

error is relatively high. During peak hours the square root of the relative 

sample variance is of the order of 12%. The correlogram showed that the pre­

diction errors are approximately uncorrelated. The empirical distribution 

of the prediction errors has a normal shape, but an hypothesis test at 95% 

indicated a deviation from normality. Special holidays are an additional 

problem. 

Some causes for the high relative sample variance of the prediction 

errors have been suggested by persons at the railway company. These causes 

are: I) the driving style of the machinist; 2) meteorological factors, pri­

marily wind; 3) deviations from the railway schedule; 4) and composition of 

the trains. Apparently the high relative sample variance is just a character­

istic of the data. 

Predictions have also been generated for several other energy supply 

stations, for a station with data aggregated to 1 hour totals, and for 15 

minute data of the sum of several stations. The results of these predictions 

for the aggregated data are considerably better than those mentioned above 
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for one station. 

To conclude this evaluation, the predictions produced by the algorithm 

are of reasonable quality considering the characteristics of the data. The 

self tuning prediction algorithm needed only little tuning and performed 

quite well. 

6. CONCLUSIONS 

An adaptive stochastic prediction algorithm has been presented for short 

term prediction of power demand at an energy supply station of the dutch 

railway company. The algorithm is based on a new multistep adaptive predic­

tion algorithm for Gaussian systems. 
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