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Observability of a class of nonlinear systems: a geometric approach*) 

by 

Henk Nijmeijer 

ABSTRACT 

The purpose of the paper is twofold. Firstly, based on a set of invari-­

ants, a local canonical form for a locally weakly observable system without 

inputs is derived. Secondly a class of nonlinear control systems is intro­

duced for which this set of invariants is unaffected by an arbitrary input 

function. 

KEY WORDS & PHRASES: Nonlinear aontrol systems, observability, (invariant) 

distributions, aanoniaal forms 

*)This report will be submitted for publication elsewhere. 





I. INTRODUCTION 

We consider an affine nonlinear control system of the form (locally) 

(I. I a) 

(I. lb) 

m 
:x = A(X:) + l B. (x)u. := A(x) + B(x)u 

• I 1 1 1= 

y = C(x) 

where x e: M, Mis the analytic state manifold, 
m h . u e: lR , t e input space, 

ye: N, N is the analytic output manifold, 

A,B 1, ••• ,Bm are analytic vector fields on M, 

and C: M + N is an analytic surjective submersion. 

During the last decade two of the basic notions of systems theory, namely 

controllability and observability, have been studied for ~uch systems. From 

a mathematical point of view the nonlinear generalization of these notions 

have been dealt in a rather satisfactory way, see for example the basic 

paper of HERMANN & KRENER [7]. One of the important facts of that paper is 

that nonlinear controllability and observability really can be treated in a 

dual way. This is a well-known fact from linear systems theory. But in study­

ing nonlinear observability (in the sense of [7]) one also encounters a 

phenomena that is completely different from linear systems. Consider the 

linear control system 

(I. 2a) 

(I. 2b) 

i =Ax+ Bu 

y = Cx 

where x e: Rn, u e: ]Rm, y e: lRP and A,B,C, are matrices of appropriate 

dimension. Then the linear systems (l.2a.b) is observable - i.e. from know­

ledge of the input function and output function we can determine the (initial) 

state of the system - if the following geometric condition holds (see e.g. 

[19]) 

(1.3.) 
n-1 
n Ker CAj = O. 

j=O 
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While condition (1.3) is independent of the matrix B we have that if the 

system (1.2a,b) is observable then it is observable for any input. function. 

(Hence observability for some input implies observability.) For the non­

linear system (1.la,b) the situation is completely different. The analytic 

system (l.la,b) is defined to be observable if there exists some input func­

tion such that, based on the knowledge of this input function and its corre­

sponding output function one can exactly determine the initial state 

(locally), see SUSSMANN [17]. A priori it follows that, although the system 

(1.la,b) is observable, we cannot decide whether or not a given input func­

tion distinguishes any two different initial states, which lie in a (small) 

neighbourhood of each other. Fortunately, for analytic systems the situation 

is better; almost every input function is a distinguishing input function 

(cf. [17], see also [15],[1]). From a practical point of view this is of 

course not a very satisfactory solution. What one really wants is that, as 

in the linear case, every input function is a distinguishing input. The ap­

proach we present here illucidates this difference between linear and non­

linear systems. Building blocks in our treatment are involutive distributions. 

It is known from differential geometry that these distributions are in fact 

the nonlinear equivalents of linear subspaces of a given linear space. In 

that sense our paper mimics the geometric approach to linear multivariable 

systems ([19]). In the first part, section 2, we will generalize for the 

system (1.Ia,b) with zero input function, the linear observabilitv condition 

(1.3). This automatically leads us via a nested set of distributions, here 

called the unobservable structure, to a local (nonlinear) canonical form. 

In section 3 we exactly point out which nonlinear systems of the type 

(1.Ia,b) '~lmost' behave locally, as far as observability concerns, as linear 

systems. Finally section 4 contains a discussion of the results obtained. 

2. A CANONICAL FORM FOR LOCALLY WEAKLY OBSERVABLE SYSTEMS 

Let M be a connected analytic n-dimensional manifold. Consider the 

affine control system I on M, locally defined by 
m 

{ 
x(t) = A(x(t)) + I B.(x(t))u.(t) 

i=l i i 

y(t) = C(x(t)) 
(2.1) 
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where A,B, •••• B are analytic vectorfields on Mand C: M ➔ N is an analytic 
m 

outputmap (N is the analytic output manifold). We will assume that C is a 

surjective submersion, so that the rank of C : TM ➔ TN is fixed(= dimension 
* 

of N). Recall the following procedure from HERMANN & KRENER [7]. Define the 

codistribution G on Mas the smallest codistribution that contains c*(T*N) 

and which is closed with respect to Lie differentiating by the vectorfields 

A,B 1, ••• ,Bm. The system l satisfies the observabitity rank aondition if 

dim G = n. 

The system l satisfies the observability rank condition at a point 

x0 EM if dim G(x0) = n. This observabilitv rank condition is related to-the 

concept of toaat weak observabitity (cf. [7]). Roughly speaking local weak 

observability at x0 means that one can instantaneously distinguish x0 from 

its neighbors (see [7] for a precise definition). 

THEOREM 2.1. ([7J) If l satisfies the observabitity rank aondition at x0 , 

. then l is toaatty weakly observabte at x0• 

From the theorem above we see that if l satisfies the observability 

rank condition then l is locally weakly observable. The converse is also 

almost true: 

THEOREM 2.2. ([7]) If l is toaatty weakly observable, then the observabitity 

rank aondition is satisfied on an open and dense submanifold M' of M. 

For deriving a local canonical form we will restrict our attention to 

the case where there are no inputs (see e.g. also AEYELS [1]). In this case 

one automatically gets a condition which is analogous to the linear case 

(compare ISIDORI [9]). So we consider the analytic svstem 

(2. 2) 
J x(t) = A(x(t)) 

l y(t) = C(x(t)) 

where A and Care as in (2.1). The lack of observability can be given in 

the following way: 

DEFINITION 2.3. The unobservable struature of (2.2) is defined as a set of 

distributions on M which are given by 
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(2.3) 
DO:= Ker C* 

Di = {X ~{ Di-l n V00 (M) I [A,X] e: Di_ 1}· 

(Here Vw(M) denotes the set of analytic vectorfields on M). 

We innnediately obtain the following result. which is similar to a 

result of GAUTHIER & BORNARD ([6]). 

PROPOSITION 2.4. 

(i) DO::iDl ::i ••• ::i Dn-1 = Dn = Dn+l = ••• 

(ii) Each distribution D. (i = 0,1,2, ••• ) is invoZutive and has fixed 
l. 

dimension. 

PROOF. 

From the fact that C: M + N is a surjective submersion it follows that D0 
= Ker C* is involutive and has fixed dimension. Now suppose that Dk satisfies 

· the properties of the proposition. Then, for Dk+l = {Xe: Dkn Vw(m) I [A,X]e: Dk} 

we have for any pair X,Y E Dk+l' by using the Jacobi-identity, that 

[A,[X,Y]] = -[X,[Y.A]] - [Y,[A,X]] E Dk. Therefore also [X,Y] e: Dk+l is in­

volutive. Furthermore let P0 be the analytic codistribution on M defined 

* * by P0 := C (T N) _ that is D0 is the annihiZator 01 PO : XE D0 ...,. Vw e: P0 , 

w(X) = O. Then it is easy to see that the analytic codistribution 

Pk+l := P0 + LAP0 + •••+LA ••• LAPO (k+l times LA) is involutive and has 

fixed dimension on an open and dense submanifold ~+l of M. For each point 

in M\~+l the dimension of Pk+l is smaller than the dimension of Pk+l on 

~+l (lower semi-continuity). Now Dk+l is the anaZytic annihilator of Pk+l 

and therefore has fixed dimension (The dimension of an analytic distribution 

on Mis a lower semi-continuous function). D 

REMARK. Theorem 2.2 implies that if the system (2.2) is locally weakly ob-

servable then it follows that there exists an open and dense submanifold 

M' := M n-1 where the codistribution p 
n-1 has dimension n. In the sequel 

several times we refer to this submanifold M' • In this paper we will not con-

sider the observability of points on M\M'. 

Theorem 2.1 reduces to a 'linear' test: 



COROLLARY 2.5. If the system (2.2) is locally weakly observable, then 

Dn-l = Q (= the null-distribution) • . 
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For linear systems corollary 2.5 comes down to the well-known observability 

test: 

(2.4) 
n-1 
n Ker C Aj = 0 

j=O 

and the distribution D. corresponds to a linear subspace V. defined by 
i i 

(2. 5) V. := 
i 

i 

n Ker c AJ. 
j=O 

REMARKS. 

(i) The equations (2.5) and (2.4) together with (2.3) show why we call the 

distributions DO ~ D1 ~ ••• ~ Dn-l the unobservable structure, namely 

D. corresponds exactly to those states which we cannot distinguish 
i G. l) 

based on knowledge of y(t), y(t), ••• ,y i- (t). 

(ii) The analyticity is a necessary condition in the whole procedure given 

in the definition of the unobservable structure. For smooth systems the 

dimension of the distribution D. can change at singular points. This 
i 

comes fr,om the fact that for an analytic function the infinite jet at 

a point completely specifies the function (see also [5]). 

For example consider the following systems on :JR4 : 

xi X3 

x2 a(x4) 
( Y1 \ ( xl \ = y = } = \ } x3 X4 Y2 x2 

X4 0 
2 

0 

{ 
exp(-1/x4) X4 > 

where a(x4) = 
0 X4 ::;; 0 

then dim DO = 2 for all x E ]R4 

dim D1 = 0 for X4 > 0 

= for X4 < o. 
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If Dn-I 'f O, then the system (2.2) is unobservable; Dn-l corresponds to the 

unobservability ideal of FLIESS ([5]), and the output C is identical for those 

initial conditions which lie on the same integral manifold of D. Another way 

of expressing this is given by the invariantness condition. Namely the un­

observability distribution D of (2.2) is the largest involutive distribution 

D of fixed dimension in Ker C* which is invariant under A (see ISIDORI et al. 

[II]). So Dis supremal with respect to 

{ D c Ker C* n v"'(M) 

[A,D] CD. 
(2. 6) 

For deriving a canonical form for the system (2.2) we will restrict our 

attention to systems that are locally weakly observable. This is a rather 

usual assumptions, especially for realization purposes. 

Based on proposition 2.4 we define the following indices which are the duals 

of the usual observability indices. 

DEFINITION 2. 6. ,The dual obsewabi Zi ty indices K. ( i = 0, ••• , n-1) of the 
l. 

system (2.2) are given by 

(2. 7) n - dim D. =: K. 
l. l. 

i = O,I, ••• ,n-1. 

REMARK. 

(i) KO = p, p = dim N 

(ii) KO< Kl ••• ~Kn-I= n (by the fact that the system (2.2) 1.s locally 

weakly observable), 

We are now able to derive a canonical form for (2.2) in those points where 

the observability rank condition is met, i.e. on the open and dense sub­

manifold M' of M given by theorem 2.2. Before we will do this we quote a 

lennna from JAKUBCZYK & RESPONDEK([l2]): 

LEMMA 2.7. Locally around each point EM we can find a coordinate system 

on M such that 

DO Span{ 
a a , a! } = , 

' ... ax ax K0+1 K0+2 n 

D. = Span{ ax a ' a~ J l. 
... 

K,+] n 
l. 

D = o. n-1 
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THEOREM 3.8. For a ZocaUy weakly observable system (2.2) we can find around 

each point pin M' a coordinate syst'em on M' and a coordinate system around 

C(p) in N such that there exist functions ai such that (2.2) has the foY'/11 

(2. 8) d 
dt: 

• 

X 
K,+K. 2-K.+} 

]. l.+ ]. 

X 
K.+K. 2-K.+l+l ]. 1.+ ]. 

X 
n 

X 
Kl 

~ ~ (x I ' • • • 'XK / 

2 
a 2 (x 1, ••• ,x ) 

K -K -K K 
I O 2 2 

X 
K. I + i+ 
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(2. 9) 

t0 be caUed the:· obe1ePVabLe canonical, foY'rn. 

PROOF. 

From [16] we know that around each point p EM (and thus p EM') and C(p) EN, 

there exist coordinate systems such that the map C: M + N takes the form 

described by equation (2.9). Note that the distribution D0 has the form as given 

given in lernma 2.7: 

DO= Span{axa , •••, a!}• 
K0+J n 

Denoting the components of the output map (in these local coordinates) by 

c1, ••• ,CK and using lernma 2.7 we obtain that the function 
0 

R ➔ R 2KO 

has fixed rank (namely this rank equals K1). We may also choose the coor­

dinate systeim on M' as in lernma 2. 7 and we may set (eventually after only 

a permutation on y 1, ••• ,yKO and shrinking the coordinate neighborhood on M') 

Furthermore we have by definition of D1 that LACj(x) only depends on 

xi, ••• ,xK (j = KI - Ko+ I, ••• ,Ko). Therefore we define 
I 

The above construction exactly yields the first KO rows of the vector field 

A as in equation (2.8). Repetition of the above procedure clearly leads to 

the canonic.al form given by equations (2.8) and (2.9). D 
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REMARKS. 
(i) Fo~ KO= 1 this cano~ical form can be found in GAUTHIER & BORNARD [6]. 

(ii) The observable canonical form derived here is not the usual one that 

(2.10) 

(2. 11) 

is considered in linear systems theory, see for instance BRUNOVSKY [41, 

POPOV [13] and related other work on canonical forms. For example for 

a single output observable linear system x = Ax, y = Cx one has as 

canonical fonn 

C = ( 1 0 • • • • • 0) and 

* 

A= . 
0 . 

* 0 

whereas we obtain 

C = (1 0 . 
0 

A= 

0 
* . . 

. 

. . 

0 

. . . 

0 

. • 

1 

0 

0) 

* 

The main drawback of (2.11) compared to (2.10) is that (2.11) is not 

very useful for feedback purposes.(output injection!) For linear sys­

tems the transformation which brings (2.11) in the form given by (2.10) 

may be found in the original paper of BRUNOVSKI [3]. At this moment 

it is unclear if a similar nonlinear transfonnation for (2.8) can be 

found. 

(iii) We emphasize once more that in the above coordinate system the distri­

butions Di take the form described by lemma 2.7. 

(iv) In a similar way we can also derive a canonical form for the unob­

servable case. Then, according to corollary 2.5 and also equation (2.6) 

there ·--~is.ts a d.is·tribution · 0 I- ·D = D. • for a ~erta:i:n i e· { 0, l , ••• , n-2} 
1 ' 

such that [A,D] c D. Analogously we can prove that in a coordinate 

system as in lennna 2.7 we obtain that 
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1 where A represents the first K. rows of the vector field A (in this 
1. 

coordinate system) and we have that 

1 1 

(
A (x)) = (A (x 1, ••• ,xKi)\ 

2 2 ) . 
A (x) A (xl' ••• ,xn) 

1 Furthermore A (x 1 , ••• ,xK.) is structured as in the above theorem. 
1. 

3. NONLINEAR CONTROL SYSTEMS WITH A UNIFORM UNOBSERVABLE STRUCTURE 

In this section we return to the analytic system (2. 1) : 
m 

{ 
x(t) = A(x(t)) + I B. (x(t)) u. (t) 

(2. 1) i=l 1. 1. 

y(t) = C(c(t)) 

and we will .assume that this system is locally weakly observable. It is 

well known from recent work - see e.g. SONTAG [15], SUSSMANN [17], AEYELS 

[I] - that local weak observability leads to the existence of a universal 

distinguishing input function, i.e. each two different states give, using 

this input, different output functions. Furthermore it is known from the 

references quoted above that the set of universal distinguishing inputs are 

dense in the set of all analytic inputs (in the cw topology). A drawback of 

this result is that for practical purposes such a generic property is not 

very useful (constructive). Motivated by this Prodip Sen gives, for bilinear 

systems, a constructive procedure for a universal distinguishing input 

(c.f. [14]), which is as close as required to a given input. Another way to 

overcome this problem is, for single output systems, given in GAUTHIER & 

BORNARD [6], where each (constant) input function distinguishes different 

states. Our work is more or less in the spirit of their approach. 

Each constant input function u = (u 1, ••• ,um) in (2.1) gives rise to 

a system of the type (2.2), namely 

(3. 1) { x = 

y = 

A(x) + 

C(x). 

m 

I 
i= 1 

B. (x)u. 
1. 1. 
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One way to study the observability of the system (2.1) is by investigating 

the unobservable structure of (3.1) for each constant input function. If for 

the system (2.1) each constant input function leads to the same unobservable 

structure then we are in a nice situation; the observability properties of 

the system can be·studied by using the observability properties of the 'free' 

system (2.2). Therefore we define: 

DEFINITION 3.1. The system (2.1) has a uniform unobservable structUPe if for 

all constant input functions ;:;: the associated system (3. 1) has the same un­

observable structure. 

REMARKS. 

(i) We see that for a system (2.1) with a uniform unobservable structure, 

the unobservable structure is completely specified by that of the 

'free' :system (2.2) (see definition 2.3). 

(ii) It is easy to see that a linear system x =Ax+ Bu, u = Cx has a uni­

form unobservable structure, defined by (2.5). 

(iii) If a system (2.1) has a uniform unobservable structure then for every 

analytic time-varying input function we obtain the same unobservable 

structure. 

The following proposition relates the concept of a uniform unobservable 

structure to recent work in invariant distributions. The notion of an invari­

ant distribution is the generalization of an invariant subspace for linear 

systems and has been used for solving the nonlinear Disturbance Decoupling 

(see e.g. ISilDORI et al. [JO], HIRSCHORN [8]). 

PROPOSITION 3.2. Suppose that the system (2.1) is locally weakly observable. 

Then the system has a uniform unobservable structUPe of distributions 

D0 => D1 => ••• => Dn-l = 0 defined according to (2.3), if the input vector 

fields B. (i = I, ••• ,m) satisfy 
1 

(3.2) [B.,D.]cD. 
1 J J 

i = 1, ••• ,m 

J = 0, ••• , n-1. 
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PROOF. 

Define the distributions D. (j = O, ... ,n-1) as in (2.3) and assume that 
J · 1 I 

Dn-l = O. So the 'free' system (2.2) is locally weakly observable on M (M 

defined as in theorem 2.2). Now if the input vector fields'B. satisfy (3.2) 
l. 

then we have for each constant input function~= (~ 1, ••• ,~m) that 

m m 
[A+LB-~.,D.]c[A,D.]+ l [B.,D.]u. 

i=l 1. 1. J J i=l 1. J 1. 

c: D. 1 + D. c D. for j = l, ••• ,n-1. 
J- J J-1 

Therefore the! system (2.1) has a uniform unobservable structure. 0 

REMARK. In the coordinate systems of theorem 2.8 the condition [B.,D.] c D. 
l. J J 

i = l, ••• ,m, j = l, ••• ,n-1 implies that the vector fields B. have the form: 
l. 

i i i 
B.(x1, ••• ,x )= (8 1(x 1, ••• ,x ), ••• ,(3 (x 1, ••• ,x ),8 +l(x1, ••• ,x ), ••• 

1. n KO KO KO KO Kl 
i T 

••• ,f3 (x 1, ••• ,x ), ••• ) • 
Kl Kl 

From the proof of this proposition we see that condition (3.2) is too strong 

for a uniform unobservable structure. At a first glance already [B. ,D.] c D. 1 l. J J-
j = I, ••• ,n-1, i = l, ••• ,m, is a sufficient condition. Tha this is not true 

can easily be! shown by an example. 

2 
EXAMPLE 3.3. Consider the bilinear system on 1R : 

Then we have that DO 
Furthermore 

but for u = -·l the system is not observable. D 

Before we can go to a necessary condition for a uniform unobservable 

structure we need one more definition. 



DEFINITION 3.4. Let D0 and D1 be two analytic involutive distributions of 

fixed dimension on M with D0 ::::, D1• Then for A E: v(\M) define rank 

([A,D 1 ]mod D0) in the following way. Choose local coordinates as in lemma 

2.7 such that 

Now 

DCI = Span{~, ••• ," 0 , •. ~ ,~}, D1 = Span{~, ••• ,~}. 
oXK oXl oXn oXl oXn 

a a a 
rank ([A,-" -]mod(-"-, ••• ,-"-)) (x) 

• o k ox. ox. ox 
J =.{_,, •• • , J K n 

(Note: this definition does not depend on the coordinate system.) 
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Now.we obtai.n the. following result, which is, if we ex"lude singulari­

ties in the rank conditions, on an open and dense submanifold of Ma neces­

sary and sufficient condition for a uniform unobservable structure. 

THEOREM 3.5. Suppose there is given a:n analytic system (2.1) and let 

D0 ::::, D::::, ••• ::::, Dn-l be the unobservable structure of the associated free 

system (2.2). Then the system (2, I) has a uniform unobservable structure if 

(3.3) [B.,D.] c D. 1' 
1 J J-

1 = 1, ••• ,m, J = 1, ••• ,n-1 

and for every constant input function u = (~ 1, ••• ,~m) 

(3. 4) rank([A+ B~,D.]mod D. 1) = dim D. l - dim D., 
J J- J- J 

J = 1 , ••• , n-1 • 

PROOF.The proof mimics the proof of theorem 2.8. As in theorem 2.8 we have 

to work on an open and dense submanifold M' of Mon which the observability 

rank condition holds for the free system, Again we will use a coordinate 

system as in lermna 2.7. First we see that from the output function we can 

exactly determine (of course locally) the coordinates x 1, ••• ,x .• From 
KQ 

[Bi,Dl] c DO and rank([A+ B~,D 1]mod D0) = dim D0 - dim D1 = n- KO- (n- K1) = 

K0 - Kl we then exactly can det~rmine the coordinates x 1, ••• ,xK 1• (In fact 

we use here information of ~,y(t),y(t).) Continuing this procedure we exact-

ly determine the coordinates x 1, ••• ,xK (Probably D 1 # 0). Finally we 
n-1 n- -

note that the above description means that for each constant input function 
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u we have that (on M'): 

namely condition (3.3) implies that 

(3.5) [A+ Bu,n. J c n. 1 J J-
j = 1, ••• ,n-1 

and from condition (3. 4) we see that each of the D. (j = 1, ••• ,n-1) is really 
J 

supremal with respect to the property (3.5). 0 

From this theorem we obtain the following crucial corollary. 

COROLLARY 3.6. Suppose that the ana.Zytia system (2.1) is ZocaZZy weakZy ob­

servabZe and that the system has a uniform unobservabZe stPuature. Then on 

an open and dense submanifoZd M' of M we have that evecy ana.Zytic input 

function is a ZocaZ distinguishing input function. 

REMARK. For a single output system this result reduces to a result of [6]. 

In fact in a sense the converse as in [6] also holds for the systems of 

corollary 3.6 (see also remark 4.a). 

We want to conclude this paper with some further analysis of locally 

weakly observable systems, which satisfy proposition 3.2. This is of course 

a restriction of the systems satisfying theorem 3.5, and clearly of locally 

weakly observable systems, but it reveals how a further study of observa­

bility aspects of nonlinear systems might go. Especially for realization 

and identification purposes it seems quite natural to do such investigations. 

It is a surprising fact that a (local) analysis of systems satisfying the 

conditions of proposition 3.2 almost follows the well-known study of canoni­

cal forms of linear systems (see e.g. [4], [13]). 

So, let us assume that there is given a nonlinear control system (2.1) 

which is locally weakly observable and which satisfies the condition 

[B.,D.] c D., i = 1, ••• ,m, j = o, ••• ,n-1, where Do~ DI~ ••• ~ D l is the 
1 J J n-

unobservable structure of the associated free system (2.2). Note that 

D 1 = O. Choose arbitrary local coordinates around p EM' and C(p) E N. n-
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Then the following procedure is a straightforward extension of a pyramidical 

basis for linear systems (see e.g. [~]). A loaal pyramidiaal basis (related 

to these coordinate systems) consists of a family of function-sets S. 
l. 

(i = 
(i) 

(ii) 

(iii) 

0,1, ••• ,n-1) such that 

S. contains K. functions from the set 
l. l. 

(1) (1) (i) (i) 
{yt,•••,Y 'Y1 , ••• ,y , ••• ,yl , ••• ,y } Ko Ko Ko 

(y(i) is the i-th derivative of the function y(t)) 

The kernel of the K. functions of s. coincides with the distribution 
l. l. 

D. (i = 0,1, ••• ,n-1) on the local chart. 
l. 

If y~k) € sk then y~l) € s v.e < k. 
l. k 

So with such a local pyramidical basis is associated a scheme of the 

form 

output yj (j = 1, ••• ,K0) 

2 • . KO 

derivatives 0 * * * * * * * 
(i) 1 * * * * * y. 
J 

2 * * * * 
* 
* 
* 

Here we can determine from the first i rows which functions are in the set 

s .. 
l. 

REMARK. For each local pyramidical basis s0 c s 1 c ••• c Sn-I we have that 

the K 1 = n functions in S 1 exactly determine the state of the system n- n-
(in a local fashion). Note that we also have excluded possible singularities 

(i) in the functions yj (by the claim (ii)). 

Now we have 

THEOREM 3.6. Suppose there is given a nonlinear aontrol system (2.1) whiah 

is loaally weakly observable and whiah satisfies the aondition CB.,D.] c D., 
l. J J 

(i = 1, ••• ,m, j = o, ... ,n-1) where n0 ~ n1 ~ ••• ~ Dn-l = O is the unob-
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servabl,e stzauature of (2. 2). Then every l,oaal, pyramidiaal, basis on M' for 

the system (2.2) is for any (aonstant) input funation u a l,oaal, pyramidiaal, 
- . - -

basis for the system (2.1). 

PROOF. Choose a pyramidical basis for the free system (2.2). If we now apply 

an arbitrary analytic input function u(t) then a function y~i) in S. also 
- J 1. 

will depend on this input function u(t). The surprising fact of this theorem 

is that the same functions may be used for locally determining the state. 

In the first step of a local pyramidical basis we see that we can locally 

determine M(mod D0) by the· functions in s0 , no matter what input we choose. 

Now from [Bi,DO] c D0 (i = 1, ••• ,m) we obtain that the vector fields Bi 

restricted to M(mod D0) only depend on M (mod D0) (see also the remark after 

proposition J.2). But this means that the first order derivatives of the 

function yi (i = 1, ••• ,K0) only depend on the input function u(t) as u(t) 

times a function on M (mod D0). So the new state-information in y(t), namely 

the local knowledge of the 'state' M (mod D1)\M(mod D0) is not affected by 

the input function. Said in another way this means that in the coordinate 

system of theorem 2. 8 we have that y(t) implies knowledge of (x1, ••• ·,xK ) 

and for y(t) = C*(A(x(t)) + C*(B(x(t)))u we know that C*(B(x(t)))u(t) O 

only depends on x 1, ••• ,xK and C (A(x(t))) implies knowledge of xK +1, ••• ,xK, 
0 * 0 1 

while we already know x 1, ••• ,xK0 • So the input function does not influence 

the new state-information we obtain in y(t). Analogously we prove that 

[B.,D.] CD. 
+ J J 

y~1.) in S. we 
J 1. 

(i = 1, ••• ,m 

' 
j = 1, ••• ,n-1) implies that from the functions 

obtain the local state-information of M(mod D.)\M(mod D. 1), 
1. ].-

no matter which input function we apply. Therefore the local pyramidical 

basis for the system (2.2) can be used for determining the state for each 

analytic input function. D 

The above theorem gives a nice characterization. If we have sufficient 

information for u = 0 from the output function y(t), namely then functions 

in the set S 1, then we can use the same n functions for locally deter­
n-

mining the state for each analytic input function. Note that this is not 

true for the systems satisfying theorem 3.5. 
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4. DISCUSSION· 

We conclude this paper with some comments on the results obtained. 

a. The whole idea behind local weak observability at the regular points of 

M, i.e. on M', is that in local coordinates one can detennine the initial 

state x0 as a mapping (see also [18]) 

• (n-1) (n-1) (u(O),u(O), ••• ,u (O), y(O), ••• ,u (0)) 4 x0 • 

In fact, although we will not prove it here, the systems satisfying the 

conditions (3.3) and (3.4) of theorem 3.5 exactly have this property 

(called uniform observability [6], [18]) on M'. To get some feeling for 

these conditions, we will give an example where the unobservable struc­

ture really changes. Consider the bilinear system 

x2 = 0 0 I x 2 \ + 0 -1 0 x2 • u , (
x 1)' (0 -1 0) (xl \ (0 0 -) (xl \ 
x3 1 0 0 x3 ) 0 0 0 x3 ) 

y = (1 0 O)x 

Th "f f 11 . ..._ f 11. f . h" h . f • 1 2 en i o · ows t~1at or a input unctions w ic satis y u = - + u 

we cannot determine the state completely. In other words then the mapping 

(u(O),u(O),u(O),y(O),y(O),y(O)) 1-+ xO is not injective any more. On the 

other hand we see that for a constant input function u(t) = u the unob­

servable structure is globally defined as 

From this representation of the unobservable structure we see that the 

free system (u = O) is observable as well as for any other constant in­

put function u. But the mapping (u(O),u(O),u(O),y(O),y(O),y(O)t-+ xO is 
... f h. f. h "f• I 2 w not inJective or t ose input unctions tat satis y u = - + u. e see 

that for uniform observability the unobservable structure is not allowed 

to change. (Note that uniform observability also means that every ana­

lytic input function is a distinguishing input function.) 

b. The observability indices, introduced in definition 2.6, are a set of 

invariants for the free system (2.2). The analysis of section 3 deals 

with those control systems for which these invariants remain unchanged 
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u~der an arbitrary input function. In that sense the results of section 3 

can be interpreted as a dual of [2] and [12]. What one really needs for 

· a cotap,lete. dual -,t-~eatment of' those papers.., is a· good understanding of the 

notion of output injection. 
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