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Controlled invariance for nonlinear systems: two worked examples*) 

by 

H. Nijmeijer & A.J. van der Schaft **) 

ABSTRACT 

In this note we present two worked examples of disturbance decoupling 

for nonlinear systems, using the concept of controlled invariance, which was 

recently generalized to nonlinear systems. 

In the first example we explicitly construct a feedback which decouples 

a disturbance from the vertical components of the axes of a rotating rigid 

body, while the second example deals with a particle in a potential field 

subject to a disturbance. 
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disturbance decoupZing 
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0. INTRODUCTION 

The concept of (A,B)-invariant, or controlled invariant, subspaces, 

turns out to be a corner-stone in the solution of various synthesis problems 

in linear systems theory ([II]). Very recently one has obtained a from 

a theoretical point of view rather satisfying - generalization of this con

cept to nonlinear systems, beginning with the papers of ISIDORI et al. [4] 

and HIRSCHORN [3] and continued in [5,7,8]. The derived concept of (C,A,B)

invariance, or measured controlled invariance, has also been successfully 

treated for nonlinear systems ([4,9]). 

The essence of this theory is that a specific synthesis problem, for 

instance, disturbance decoupling, for a nonlinear system can be dealt with 

in an intrinsically nonlinear way. Hence no linearizations or approximations 

have to be made and an exact solution is generated. Of course, the disadvan

tage is that one needs more sophisticated mathematical tools and that some

times the actual calculation and implementation of the solution seem to be 

hard. 

This motivated us to write two examples of the maybe easiest applica

tion of controlled invariance for nonlinear systems, namely disturbance de

coupling. The first example deals with the dynamics of a rigid body con

trolled by two inputs and influenced by a disturbance. We will show how we 

can decouple for instance the vertical components of the axes of the rigid 

body from the disturbance. The second example is of a more pedagogical nature, 

dealing with (measured) controlled invariance for a particle in a potential 

field, subject to a disturbance. 

I . EXAMPLE: THE RIGID BODY 

We can describe the position of a rigid body with respect to an inertial 

set of axes e 1 ,e2,e3 E R
3 by a matrix 

E S0(3). 
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Here the unit vector 

denotes the direction of the first axis of the rigid body: r 1 the component 

in the e
1
-direction, r

2 
the component in the e

2
-direction and r

3 
the compon

ent in the e3-direction. Similarly the unit vectors 

and 

give the directions of the second and third axes of the rigid body. The dy

namics of a rigid body with no external influences are described by (see 

[2,6, 10]) 

(1. I) 

where 

fi = S(w)R 

lJ~ = S(w)Jw 

is the angular velocity with respect to the axes of the rigid body, J is a 

synnnetric positive definite (3,3)-matrix and S(w) is the anti-synnnetric 

matrix defined by: 
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J is called the inertia matrix, the eigenvectors of J are called the princi

paZ axes and we will for simplicity assume that the axes r, sand tare al

ready the principal axes; hence 

0 

a. > O, i = 1,2,3. 
1 

With (1.1) we associate a control system of the form (see [2,6]). 

(1.2) 

where m1, m2 and n are vectors in JR.
3 , u1, u2 E JR are the controls and 

d E lR. is a disturbance (unknown input) working on the system. More specific

cally we will henceforth consider the equations 

R = S(w)R 

(1.3) 

Some nice results concerning controlZabiZity of (1.2) have been obtained in 

[2]. For instance, (1.3) is controllable with the inputs u1, u2 if and only 

if a
1 

'/: a 2 (notice also that (1. 3) is not controllable with respect to the 

disturbance d). Finally we mention that equation (I.I) and (1.2) can be ele

gantly described in a coordinate free way (see [I]). Because R is an element 

of the Lie group S0(3), w is an element of the Lie algebra so(3) ~ JR.
3 • De

fine the left invariant Lagrange function L on TS0(3) c:t S0(3) x JR.
3 by 

L(R,w) = ½wTJw. Then Jw can be naturally considered as an element of 
* 3 so (3) ~ lR.. Therefore (I.I) is a Hamiltonian system on the phase space 

T*so(3) ~ S0(3) x JR.3 with Hamilton function L. Adopting the coordinate free 

description of a control system used in [8] (see the references cited there) 

we obtain for (1.2) (without the disturbance): 
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with M = T*so(3) 

B = T*so(3) x JR.
2 

f 
B 

M 

(state space) 

(input bundle) 

TM 

~ and ~M the obvious projections and f given by equations (1.2) (without the 

disturbances). 

We now come to the formulation of the disturbance decoupling problem. 

First we will pose and solve it for the following system derived from (1.2). 

Let r be the first column of R (sometimes called a Poisson-vector [1]). Equa-

tion (1. 2) gives: 

rl w3r2 - w2r3 0 0 0 . 
r2 -w3rl + wlr3 0 0 0 . 
r3 w2rl - wlr2 0 0 0 

( 1. 4) . J: + -1 ul + u2 + d 
w I blw2w3 al 0 0 . -1 
(J,)2 b2wlw3 0 a2 0 . 

0 
-1 

(J,)3 b3wlw2 0 a3 

where 

a -a -
2 3 

. h b I I 1 h
0 11 1 · 2 3 

· Notice t at ecause r = , t is system actua y ives on S x JR • Define 
-I T -1 T the input vector fields B1 := (O O O a 1 0 O) , B2 := (O O O O a2 0) • In-

troduce z (the to-be-controlled variable) by z := r 3• We will study the 

following Disturbance Decoupling Problem: 

Construct, if possible, a state feedback for (1.4) such that after ,, 
feedback the distUY'bance d d,oes not influence the function z. 



5 

Following the theory mentioned in the introduction we have to find a 

controlled invariant distribution Din the kernel of the function z, which 

contains the disturbance vectorfield (O O O O O a;l)T. It can be rather 

easily seen that the distribution D := span{x
1
,x

2
} where 

0 

0 

0 

does the job. In fact, a tedious calculation following the algorithm in [7] 

shows that this Dis the largest controlled invariant distribution contained 

in Ker dz. Hence at least locally (see [5,7,8]) we can construct the required 

feedback (Notice also that D has no constant dimension, see some connnents 

later on). 

How do we construct this feedback? 

Fi~st we will modify the input vectorfield B
1 

and B
2 

to vectorfields 

B
1 

and B
2 

such that the system after this modification is input insensitive 

([7]), i.e. [B.,D] c D. Notice that 
1. 

(I.Sa) 

0 

0 

0 
-1 

al 
0 

0 

0 

0 

0 
-1 

al 
0 

0 

= o, 

0 

0 

0 

0 
-1 

a2 
0 

0 

0 

0 

0 
-1 

a2 
0 

= 0 
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It is easy to see that possible B. are given by 
1. 

0 0 

0 0 

0 0 
(1.6) B1 (r,w) = , B2 (r,w) = 

(02 w 1 

(1)2 
0 

(see also the remark at the end). Notice that [B.,X.] = O, i = 1,2, j = 1,2. 
1. J 

As a second step for computing the decoupling state feedback, we will 

firstly compute the feedback with respect to these modified input vector

fields. Hence we are looking for functions a(r,w), B(r,w) such that 

~)3r2 - w2r3 0 0 

-w3r I + wlr3 0 0 

(I. 7) w2rl - wlr2 + a(r,w) 0 + B(r,w) 0 ' D CD. 

blw2w3 (02 

b2wlw3 --w 1 

b3wlw2 0 

With respect to the basis {X1,x2} of D this leads to the following two equa

tions 

w3r2 - w2r3 0 0 0 

--w3rl + wlr3 0 0 0 

(1.8) w2rl - wt r2 + a(r,w) 0 + B (r ,w) 0 0 = 

blw2w3 Wz WI 0 

b2wlw3 w2 0 

b3w1w2 0 

0 0 

0 0 
aa (r,w) 0 -~ (r,w) 0 € D = 

- _aw3 ,, aw3 
blw2 c.oz WI 

b2wl -wl (1)2 
0 a 0 
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Therefore: 

(1.9) 

or 

2 2 

(I. IOa) aa (r,w) (I-bl) 
w2 WI 

= 2 2 + ( I + b2) aw3 2 2 
wl+w2 wl+w2 

(I. I Ob) ~ (r,w) 
(btb2)wlw2 

= 
aw3 2 .2 

wtw2 

And also 

w3r2 - w2r3 0 0 r2 

-w3rl + wlr3 0 0 -rl 

w2rl - w2r2 + a(r,w) 0 + B(r,w) 0 0 = 

blw2w3 w2 WI w2 

b2wlw3 -wl w2 -wl 

b3wlw2 0 0 0 

0 0 0 

0 0 0 

= 0 - x2 (a(r,w)) 0 - x2 (B(r,w)) 0 E D 

(b 1+b2)w 1w
3 w2 WI 

-(bl+b2)w2w3 -wl w2 
2 2 0 0 b3 (wl-w2) 

Therefore: 

( I. I 2) 
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thus: 

(I. 13a) x2 (a(r,w)) aa 
(r,w) - wI 

aa (r,w) 
2 (b I +b 2) w I w 2w 3 = w -- aw2 

= 2 aw I 2 2 
wl+w2 

(1. 13b) x2 (r3(r,w)) as (r,w) - w1 
as (r,w) 

(b 1+b2)w3 (w~-w;) 
= w -- = 

2 aw I aw2 2 2 
WI+ w2 

Now an easy integrating procedure, as described in [8], leads to the follow

ing (not unique) solutions 

( I. 14a) a(r,w) = 

(I. 14b) S(r,w) = 
-(btb2)wiw2w3 

2 2 
wl + w2 

The feedback given by (1.14) is expressed with respect to the vector fields 

B1 and B2• The feedback a and 8 with respect to the original input vector

field B1 and B2 respectively can be computed by using the relations B
1 

= 
~ a 1w2B1 - a2w1B2 and B2 = a 1wIBI + a2w2B2: 

(I. I5a) 

(I. 15b) 

We see that the state feedback ul = a(r,w), u2 = B(r,w) defined by (1.15) is 

globally well-defined, although the modification of the input vectorfields 

(see (1.6)) is not everywhere of full rank. So for open loop feedback we can 

apply 

(1. 16) 

where v 1'and v 2 denote the new inputs. With this feedback we obtain from 

(1.4) the following system in decoupled form 
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w3r2 - w2r3 0 0 0 

-w3rl +wlr3 0 0 0 

(1. 17) = w2rl -wlr2 + 0 V 1 + 0 V2 + 0 d. 
-I -1 

W2W3 w2al wlal 0 
-1 -1 0 -wlw3 -wla2 w2a2 

-1 
b3wlw2 0 0 a3 

Notice that the input vector field of (1.17) is zero at points where w1 = 

w2 = 0. Once more we emphasize that the singularities in (1.10), (1.13) and 

(1.14) do not effect the global feedback of (1.15) and (1.16). 

It is interesting to see if there are cases for which (1.4) is already 

in disturbance decoupled form and therefore we don't have to apply feedback. 

From (1. 15) it follows that this happens if 1 - b 1 = 0 and 1 + b2 = 0. Using 

the definition of b 1 and b2, this gives a3 = 0. So our rigid body reduces to 

a rigid plane! 

Following [8] there exists an integrable connection in the input bundle 

of (1.4), i.e. s2 
x JR.

3 
x JR.

2
, which corresponds to the feedback (1.16). 

Actually this connection is only uniquely determined above the distribution 

D (corresponding to the non-uniqueness of the decoupling feedback). Follow

ing the notation of [8] the connection above Dis given by 

a a 
X. (r,w) + K. (r,w)v-::;-- + h. (r,w) "v , 

1 1 oV 1 o 

where v = (v 1) denotes the input space JR.
2• 

v2 
From (1.5) it follows that 

K1 (r,w) = K2(r,w) = 

0 

(: :) . 
-a2 

al 

From (1.9) and (1.2) it follows that 

and 

i = 1,2 

al 
-
a2 

0 



In conclusion: the feedback (1.16) solves the disturbance decoupling 

problem for (1.4). We now deliver the coup de grace: 

Instead of using r in equation (1.4) we could also have used the two 

other axes of the rigid body sand t. Posing for sand t the same distur

bance decoupling problem (with z = s 3 , respectively z = t 3) gives the same 

feedback (1.16), because this feedback only depends on w
1

, w2 and w3! 

Therefore feedback (1.16) is a decoupling feedback for the full system 

(1.3), which decouples the whole last row (r3,s3,t3) of the matrix R of the 

disturbance. 

CONCLUSION: Consider the system (1.3). The feedback (1.16) 

decouples the last row (r3,s3,t3) of R (i.e. the components of the axes of 

the body in the e3-direction) from the disturbance. 

2. EXAMPLE: A PARTICLE IN A POTENTIAL FIELD 

The following example will serve as a mathematical illustration of 

the notion of measured controlled invariance (cf. [9]). Consider the follow

ing mechanical model 

qi = pl . 
q2 = P2 

(2. 1) . av 
(ql ,q2) P1 =-- + u 

oql 

. av 
P2 = aq

2 
(qt ,q2) + d 

* 1 1 Where (q
1 

,q2 ,p
1 
,p2) E T (S x lR), V: S x lR + lR is a smooth function and u 

and d represent the input and the disturbance respectively. So we are deal-,, 
ing with a particle (of unit mass) moving on a cylinder according to a 
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potential force given by the potential function V. 

Together with (2.1) we consider the two 'output' functions 

(2. 2) * I C: T (S X JR) ➔ ]R 

and 

(2. 3) 

The variable y represents the measurement or output of the system and z is 

the so-called to-be-controlled variable. With the bundle approach of [9] 

(see also [8]) we obtain the following diagrams 

* 1 T (S x]R) x]R ----- JR x ]R 
(C,id) 

(2.4a) · l l· 
T* (S 1 x]R),----- JR 

C 

and 

f 
r* (S 1x]R)xlR-----+T(T* (S 1xlR.)) 

(2.4b) 

• ~ T* JB) 
where f is given by (2.1) and pis the canonical projection. 

We will study the following problem: 

DistUY'banae DecoupUng with Measurements: Is it possible to construct an 

ou-tput feedback - i.e. a state feedback which only depends on the ou-tput 

y - such tha.t the distUY'banae dis isolated from the to be controlled vari

able z? 

Following [9] we will first solve the easier D.D.P. and afterwards in

vestigate D.D.P.M. 

We notice that 
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(2.5) 

and a straightforward calculation shows that (cf. [4,7]) 

(2.6) 

Now the disturbance enters via the vector field a/ap2, so we see that D.D.P. 

is solvable (see [3,4]). 

From the bundle description given by (2.4a,b) it follows that for 

D.D.P.M. we need to check the conditions (ii) and (iii) of Theorem 3.2 of 

[9]. 

Notice that 

(2. 7) D n Ker d C = Span{~} 
op2 

and so we have 

pl 0 

P2 0 
(2. 8a) av 

(ql,q2) 0 
aql 
av 

(q 1 ,q2) ·aq2 

and 

0 0 

(2.8b) 0 0 0 E D = 
1 0 

0 

0 

a 
= = -- E D 

0 aq2 

0 

Therefore condition (ii) of Theorem 3.2 of [9] is satisfied. Finally we see 

that the last condition of this theorem is satisfied if and only if there 

exists a function k: lR -+ lR such that: 

(2.9) only depends on q1• 
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This leads to the following representation for the potential function V: 

(2. IO) 

for some functions g,h: lR + lR and f: s 1 
+ lR. 

CONCLUSION: D.D.P.M. is solvable if the potential function can be represented 

as in (2. IO). 

REMARK. For this example we have shown that the distribution D = v*Ker C 

satisfies the properties for measured controlled invariance. In principle 

it might be necessary to shrinken the distribution D such that it becomes 

measured controlled invariant. It is not necessarily true that there exists 

a supremal measured controlled invariant distribution, as already can be 

illustrated by a linear control system. 
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