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ABSTRACT 

Necessary and sufficient con_ditions are derived for the solution of 

the Disturbance Decoupling Problem for general nonlinear control systems. 

Some conceptual algorithms needed are discussed. 
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1 • INTRODUCTION 

Consider the linear system 

=Ax+ Bu+ Eq 
(1. 1) 

= Hx 

with state x E lR.n, input u E lR.m, disturbance q E lR.r and the to-be-control

led variable z E lR.p. A, B, E and ·H are matrices of appropriate dimensions. 

The Disturbance Decoupling Problem (D.D.P.) consists of finding a state feed

back u = Fx + v which decouples the disturbance from the to-be-controlled 

variable z. Equivalently, after feedback the transfer function from q to z 

has to be zero. The solvability of- D.D.P. can be constructively checked in 

the following way (cf. [8]). 

(i) 

(ii) 

Construct the maximal controlled invariant subspace in the kernel of 
* H: V.k H 0 

er * 
Check if ImE C vkerH" 

Recently a similar theory has been developed for nonlinear systems 

where the inputs and the disturbances enter linearly in the equations (cf. 

[2,3]). 

(1.2) 

Jx = A(x) + 

lz = H(x). 

m 

I 
i=l 

B. (x)u. + 
1 1 

r 
r 

j=l 
E. (x)q. 

J J 

The procedure is the same: construct the maximal controlled invariant dis

tribution contained in ker dH, call this D~er dH" Then D.D.P. is locally solv

able if and only if span{E1, ••• ,Er} c D~er dH" Applications of these results 

can be found in [1,7]. 

In our previous paper [5] we treated controlled invariance for a gen-
• eral nonlinear system x = f(x,u). With the aid of this we can treat the 

D.D.P. for the system 

(1.3) 

fi: = f (x,u) + 

i = H(x). 

r 
r 

j=l 
E. (x)q. 

J J 
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In fact,·D.D.P. is locally solvable if and only if there exists a controlled 

invariant distribution D (w.r.t. x = f(x,u)) such that span{E 1, ••• ,Er} c D. 

In this paper we will treat the most general case where also the dis

turbances enter in a nonlinear way: 

(1. 4) {
x = f(x,u,q) 

z = H(x). 

To give a coordinate free description of the Disturbance Decoupling Problem 

in this case we first have to generalize the definition of a control system 

as in [5], to the definition of a control system with disturbances. Then the 

local solution will readily follow. 

Furthermore, just as in the linear case, we will give some algorithms 

for checking solvability of D.D.P. (section 3). 

2. CONTROLLED INVARIANCE FOR NONLINEAR CONTROL SYSTEMS WITH DISTURBANCES 

As in our previous paper [5] we use the following setting for a non

linear control system. Let M be a smooth n-dimensional manifold, denoting 

the state space. Let~: B ➔ M be a smooth fiber bundle, whose fibers repre

sent the state-dependent input spaces. Then a aontroZ system E(M,B,f) is de

fined by the commutative diagram 

where TM denotes the tangent bundle of M, with natural projection ~Mand f 

is a smooth map. 

In local coordinates x for M, (x,u) for B, this coordinate free defini

tion comes down to x = f(x,u). 

We now want to formalize the situation that our control system also 

contains disturbances (which also can be interpreted as unknown inputs). 

This leads to the following definition: 

DEFINITION 2.1. A aontroi system with disturbanaes E = E(M,B,B,f) is given 
,. 
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~ by the following. Let E(M,B,f) be a control system. Let;: B + B and ,r : B + M 

be fiber bundles, where the fibers of ,r: B + M represent the state-dependent 
~ ~ · input spaces and the fibres of ,r: B + B represent the state- and input-

~ dependent disturbance spaces. If we let ,r' := ,ro,r then the fibers of the 

bundle ,r': B + M represent the state-dependent input and disturbance spaces. 

So a control system with disturbances is given by the following commutative 

diagram 

f B --------➔ TM l; 
B 

l· 
M 

In local coordinates x for M, (x,u) for B (u for the inputs) and (x,u, 

q) for B (q for the disturbances) this definition simple comes down to . 
x = f(x,u,q). 

In this framework state-feedback is given by the following procedure: 

Let a. be a fiber-preserving diffeomorphism on B such that the diagram 

a. 
B-------B 

-~/· 
M 

commutes. Consider an arbitrary fiber preserving diffeomorphism ';;'. on B such 

that we also have that the diagram 

B-------B 



commutes. Then the system E(M,B,B,f) after state feedback~ is given by 

E(M,B,B,f) with f = foa (compare with [6]). 

. 
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REMARK. In local coordinates this means that the system x = f(x,u,q) is modi-

fied by the state feedback (u,q) = ~(x,v,q') = (a(x,v),q(x,v,q')) to the sys-
• ~ ~ ~-1 ~-t tem x = f(x,a(x,v),q(x,v,q')), where q(x,v,•): ,r (x,v) + ,r (x,v) is an 

arbitrary diffeomorphism (induced by~). 

From the above discussion of 'this notion of state feedback a.nd from [5], 

the next definition should be clear: 

DEFINITION 2.2. An involutive distribution D, of fixed dimension, on M, is 

Zoaally controlled invariant for the aontrol system with disturbances E(M,B, 

B,f), if locally around each point x0 € M there exist fiber respecting coor

dinates (x,u) for B such that for all fiber respecting coordinates (x,u,q) 

for B we have that for every fixed u and q [f(•,u,q),D] c D. 

REMARK. This implies that for every time function u(•) and q(•) also 

[f<•,u,q),nJ c n. 

What are the conditions that a distribution Dis locally controlled in

variant for the control system with disturbances? The next theorem, which is 

a combination of the results of [5] and [6] exactly yields the solution. 

THEOREM 2.3. Let E = E(M,B,B,f) be a control system with disturbances. Let 

Q := Ker 'ir* and R := Ker ir;. Then an invoZutive distribution D of fixed 

dimension, is ZoaaZZy aontroZZed invariant for the aontroZ system with dis

turbanaes if and onZy if the foZZowing three aonditions hold. 

( i) f ( ,r ' - l (D) ) c D + f (R) 
* * * 

(ii) f * (Q) C D 

(iii) D + f*(R) and f*(Q) have fixed dimension. 

REMARK. For the definition of D we refer to [5] or [6]. 

PROOF OF THEOREM 2.3. The proof resembles that of theorem 3.1 of [6]. We 

note that from (i) it follows that we can locally construct a state feedback 

for the system E(M,B,f) (cf. [5]). But in principle this feedback depends on ,. 



5 

~ the input space of the bundle~': B + M; i.e. the state feedback .can also 

depend on the disturbances. Following [SJ we know that the condition (i) is 

also equivalent to the existence of a distribution Dlift on B generated by an 

integrable connection on the bundle~': B + M. In local coordinates this dis

tribution Dlift is generated by the vector fields: 

(2. 1) a a a 
-~- + h.(x,u,q)-;-- + g.(x,u,q)-;-, ax. 1. au 1. aq 

1. 

i = 1, ••• ,k 

whereas Dis generated by the vector fields (Frobenius) 

(2.2) a 
ax. ' 

1. 

i = l, ••• ,k 

and the coefficients h. and g. in (2.1) satisfy certain integrability condi-
1. 1. 

tions (equation (4.30) of [5]). Now the second condition, (ii), in fact im-

plies that we are able to choose the coefficients h. in (2.1) such that h. 
1. 1. 

does not depend on q. Namely as in [6] we have that 

(2.3) ~ a a a 
Dlift + Q = Span{ax. + hi (x,u,q) au, aq; i = 1, ••• ,k} . 

1. 

and then from (ii) it follows that 

(2.4) 

Now (2.4) - which is equivalent to the fact that i*(Dlift) is a well-defined 

distribution on B - implies after an easy computation that h.(x,u,q) is in-
1. 

dependent from q! Knowing this we locally can construct a state feedback in-

dependent of q for E(M,B,B,f) similarly as in [6]. 0 

3. ALGORITHMS 

In this section we will prove that every involutive distribution on the 

state space contains a maximal locally controlled invariant distribution. 

Furthermore we will give (conceptual) algorithms to compute this maximal 

locally controlled invariant distribution, and apply these to the general 

Disturbpnce Decoupling Problem. First we will start with the affine system 



locally given by 

(3. 1) 
m 

~ = A(x) + I 
i=l 

Following [4] we define 

u.B. (x), 
]. ]. 

x EM (a manifold) 
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-1 and l::. (l!.
0 

+ D) := {X a smooth vector field on M such that [l::.,X] c t::.
0 

+ D}. 

Then we can state 

THEOREM 3.1. 

a. Let D
1 

and D
2 

be aontroZZed invariant distributions on M for the affine 

system (3. 1). Then D
1

+D
2 

(the invoZutive aZosure of D
1 

+ D2) is again aon

troZZed invariant. 

b. Let K be an invoZutive distribution on M of dimension k. Then K_aontains 

a ma:JJimaZ aontroZZed invariant distribution. Moreover, define 

m=0,1, •••• 

Then lim Dm = Dk, and when we assume that Dk has fixed dimension Dk is 
In7"" 

the maJJJimaZ aontroZZed invariant distribution in K. 

PROOF. 

a) The essential part in the proof of a) is the Jacobi identity [X,[Y,Z]] + 

[Y;[Z,X]] + [Z,[X,Y]] = 0 (see [2,3]). 

b) From a) it follows that K contains a maximal locally controlled invariant 

distribution (see [2,3]). The algorithm above is given in [4] (see for a 

related algorithm [3]). 

Next we will consider the situation for a general nonlinear system 

E(M,B,f). 



We define the extended system (see [5] for references) of I:(:M:,B,f) as 

the affine system on B given by: 

e 
/J. (x,u) := { X e: T ( ) B I 'IT X = f (x, u) } 

x,u * 

i.e. in local coordinates simple 

t = f(x,u) 

= V 

(v is the new input). 
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THEOREM 3.2. Let n1 and n2 be ZocaZZy contr-oZZed inval'iant distT'ibution on 
M for- the system I: (M,B, f) ( see section 2). Then 'i> 1 + n2 is aZso ZocaZ Zy con

tr-oZZed inval'iant. Ther-efor-e, given an invoZutive distT'ibution Kon M ther-e 
exists a ma:JJimaZ ZocaZZy controZZed inval'iant.distr-ibution contained in K • 

. 1 
PROOF. From [5] we know that there exist involutive distributions Dlift and 

2 
Dlift on B such thAt 

(3. 2) 

(3 .3) e i ] 
[/J. ,Dlift 

i = 1,2. 

Di + 6e 
C lift 0 i = 1,2. 

When we define D := D~ift+Diift it is clear from (3.2) that 'IT*D = n
1
+n

2
• From 

(3.3) it follows, by using the Jacobi-identity that [!J.e,D] c D + a;. There

fore n1+n2 is locally controlled invariant (the connection above D1+D2 is 

determined by D). 

The algorithmic side becomes very simple by reducing it to the extended 

system: 

ALGORITHM 3.3. Let K be an involutive distribution on M. Consider the extend

ed system (6e,!J.;) of I:(M,B,f) and define the following distributions on B: 
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m=0,1, •••• 

m k O · -k 
Then lim~ D = D (k is the dimension of D ), and when we assume that D 

has· fixed dimension, Dk is the maximal locally controlled invariant distribu-
0 · e -k e -k tion in D for the extended system. Furthermore because t60 ,D] c 60 + D, 

~*Dk is a well defined distribution on M. In fact ~wDk is the maximal locally 

controlled invariant distribution for E(M,B,f) contained in K. 

PROOF. The algorithm is just the algorithm of Theorem 3.1 for the (affine) 

extended system. That ~*Dk is the maximal controlled invartant distribution 

contained in K follows from the one-to-one correspondence between locally 

controlled invariant distributions of E(M,B,f) and its extended system (see 

[SJ). 

REMARKS. 

(i) (Compare [8, exercise 4.6J.} Notice that while the algorithm 3.3 applies 

at first instance to the case that we have an output function H: M + Z 

and K = ker dH, it can also be applied to the case that H: B + Z. For in

stance, we can consider the disturbance decoupling problem where the to-be

controlled variable z equals H(x,u). In this case we only have to change in 

the algorithm DO= K + 6~ to DO= ker dH, with H: B + Z. 

(ii) Note that theorem 3.2 is not valid for measured controlled invariance 

(i.e. controlled invariance by static output feedback, see [6]). In fact in 

general a maximal measured controlled invariant distribution does not exist. 

COROLLARY 3.4. Consider a aontrol system with distu!'banaes E(M,B,B,f) (see 

seation 2). Let H: M + z be a smooth function, t»ith z = H(x) the to-be

aontrolled variable. Then apply algorithm 3.3 to aonstruat the maximal loaal
ly aontrolled•invariant distribution contained in K := ker dH for the control 

system E(M,B,f) (i.e. we eompute aontPoUed in'l)a.Pi,a,nee with respect to the 

whole input space R). Cail this dist:t'ibution D. Then the Disturbance Deaoup

ling Problem is solvable if and only if f*Q c D, or equivalently, if and 
only if Dis loaally controlled invariant for the system with disturbanaes 
I:(M,B,B,f) •. 
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