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ABSTRACT

We review recent developments in the theory and practice of computational
complexity, in order to highlight some of the basic concepts and ideas that
have come out of this area. The discussion centers around the progress on
twelve important open problems listed in 1979 by M.R. Garey and D.S. Johnson,
the introduction of probabilistic elements in the analysis and design of
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1. INTRODUCTION

Computational complexity theory as a practical tool for the investigation of
combinatorial optimization problems came into being about ten years ago,
with the publication of two classical papers by S.A. Cook [11] and R.M. Karp
{28]. They together laid the foundation for a technique that can be used to
establish the NP-completeness of certain combinatorial problems. Such problems
are unlikely to be well solvable, i.e., solvable by an amount of computational
effort which is bounded by a polynomial function of problem size.
| The rest is history. There is hardly any need here to recall the wealth
of results that were obtained by successful applications of this technique.
It has led to a surprisingly sharp borderline between easy problems (which
are solvable in polynomial time) and hard problems (of which some restricted
version is NP-complete), where minor changes in some problem parameter may
transfer a problem from one class to the other. It has provided increasingly
convincing evidence that the theoretical labels easy and hard are justified
by computational practice, thereby supporting our intuitions about the inher-
ent intractability of many notorious combinatorial optimization problems.
And finally, it has spawned an impressive amount of research, ranging from
refinements and extensions of the original complexity measures to theoretical
studies of the performance of approximation algorithms.

We certainly do not intend to give a complete survey of the state of
the art in this area. That task by itself would be virtually impossible, in
view of the thousands of results that would have to be referenced as well as
the ongoing stream of new publications. To the extent that it can be done at
all, it has been carried out in an admirable fashion by M.R. Garey and D.S.
Johnson in their textbook [21] - and they themselves prefer a quarterly
update column [26] to an all-encompassing second edition.

Rather, after a brief review of the basic concepts in Section 2, we
hope to point out some of the most important results and questions that have
emerged from ten years of research. In the course of doing so, we shall con-
centrate of those issues that are relevant to an operations research audience.
Although computational complexity theory has contributed significantly to
bring out the joint interests of (practical) operations researchers and

(theoretical) computer scientists in algorithmic problem complexity, there
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are certain ramifications of the theory that, currently at least, are only
of interest to the latter group. .

The material has been grouped around four themes. In Section 3, we
demonstrate the rapidity of the advance in this research area by focusing on
the twelve open problems that were left as a challenge in Garey and Johnson's
book; this will serve to jillustrate many recent ideas and techniques. In
Section 4, we discuss the use of probability theory in the analysis and
design of algorithms. In Section 5, we briefly examine the problem classes
around P and NP. Finally, in Section 6, we return to the fundamental P # NP
éonjecture, that has successfully withstood ten years of attack, and indicate

how this tenacity might be accounted for.

2. COMPUTATIONAL COMPLEXITY THEORY

Below, we briefly summarize the basic concepts of computational complexity
theory. The reader is referred to [28,29,21,46] for details.

The theory deals primarily with decision problems, which require a
yes/no answer. Such a problem type is usually formulated as follows: given a
problem instance (specified in terms of sets, graphs, matrices, vectors,
numbers etc.), does there exist an associated structure which satisfies a
certain property? A problem instance is said to be feasible if it leads to a
yes answer, and a problem type is formally defined as the set of all its
feasible instances. The size of an instance is the number of bits needed to
encode the data, and the running time of an algorithm for its solution is
the number of elementary operations required. ‘

A problem type is in the class P if there exists an algorithm that, for
any instance, determines in polynomial time whether the ansWer is yes or no,
i.e., its running time is bounded by a polynomial function of problem size.

A problem type is in the class NP if there exists an algorithm that, for any
instance, tests the wvalidity of a given structure in polynomial time, thereby
verifying the yes answer.

For example, consider the problem of scheduling n precedence constrained
tasks with individual release dates, processing times and deadlines within a

given time limit. In case there is an unlimited number of processors, a
&



straightforward critical path calculation will determine feasibility or
infeasibility in O(n2) time and hence the problem is in P. In case there is
only a single processor available, no such simple algorithm is known; but
any given schedule can be tested for feasibility in O(n2) time and hence the
problem is in NP.

It is clear that P is a subset of NP. The members of P are said to be
well solvable or easy. Among the members of NP are many notorious combinato-
rial problems which are not known to belong to P, and it is commonly conjec-
tured that P is a proper subset of NP.

To obtain further insight into the structure of NP, we introduce the
notion of reducibility. Problem P is reducible to problem P' (P « P') if P
can be considered as a special case of P', or more formally, if for any
instance of P a corresponding instance of P' can be constructed in polynomial
time such that solving the latter solves the former as well. A problem P' is
said to be NP-complete if it is the most difficult problem in NP, i.e., if
P' € NP and P « P' for all P € NP. If, in turn, P' « P" for some P" ¢ NP,
then P" is NP-complete as well. Note that, if the P # NP conjecture is true,
then P ¢ P for each NP-complete P: the NP-complete problems aré unlikely to
be well solvable and the use of approximation algorithms or enumerative
methods for their solution seems to be unavoidable.

" In 1971, Coock [11] proved the fundamental result that the SATISFIABILITY
problem is NP-complete. In 1972, Karp [ 28] showed that SATISFIABILITY is
reducible to many other problems in NP, which are therefore NP-complete as
well. Further applications of this technique created a huge tree of hundreds
of NP-completeness proofs, each vertex of which can be used as the starting
point for new results.

As far as optimization problems are concerned, one usually reformulates
the problem of finding a feasible solution of, say, minimum value as the
problem of deciding whether there exists a feasible solution with value at
most equal to a given threshold. If this decision problem is NP-complete,
then the optimization problem is said to be NP-hard in the sense that it is

at least as difficult as any problem in NP.



3. THE OPEN PROBLEMS

The textbook by Garey and Johnson [21] has rapidly become the main reference
for researchers in computational complexity theory. It presents a detailed
treatment of the theory and the proof techniques. But its most useful feature
is probably the list of 320 main NP-completeness and NP-hardness results
(and many more side results), grouped according to twelve areas of applica-
tion. A thirteenth group contains twelve problems that were open in 1979,
when the book appeared. These problems and their current status are listed
in Table 1. Six of them have been resolved in the mean time: three have
turned out to be well solvable and three have been proved NP-complete.

We will discuss the substantial progress which has been made on the
seven problems that are marked by an asterisk in Table 1; they are the most
relevant ones in the present context. In addition, we will mention some
interesting developments with respect to the NP-complete INTEGER PROGRAMMING
problem. Our presentation is partly based on Johnson's first update column
[26], and the reader is urged to consult it for further details as well as

for information on the five problems that are not considered here.

problem v status

GRAPH ISOMORPHISM” open

SUBGRAPH HOMEOMORPHISM (FOR A FIXED GRAPH H) open

GRAPH GENUS open

CHORDAL GRAPH COMPLETION NP-complete [62]
CHROMATIC INDEX NP-complete [25]
SPANNING TREE PARITY well solvable [48,49]
PARTTAL ORDER DIMENSION NP-complete [41,63]
PRECEDENCE CONSTRAINED THREE-PROCESSOR SCHEDULING  |open

LINEAR PROGRAMMING well solvable [33]
TOTAL UNIMODULARITY" well solvable [58]
COMPOSITE NUMBER®W ' open
MINIMUM~-LENGTH TRIANGULATION open

Table 1. The open problems and their current status.



GRAPH ISOMORPHISM: Given two graphs G = (V,E) and G' = (V',E'), is there a
one~to~one onto function f: V = V' such that {v,w} € E if and only if
{f(v),£(w)} € E'?

Status: open.

This remains one of the most vexing open problems. The question can be
answered in polynomial time for a large number of special cases, the most
notable of which is the case in which the maximum vertex degree is bounded
by a constant [50]. This result relies heavily on ideas from the theory of
permutation groups,uthus providing an excellent demonstration of the growing
influence of pure mathematics on algorithmic combinatoriés; see COMPOSITE
NﬁMBER and INTEGER PROGRAMMING below for other examples. The techniques frdm
[50] have been used té obtain an algorithm for the general case that requires

O(exp(]VIz/3

)) time [2,64]1 - still exponential, but much better than the
crude O(|V]!) bound.

We note that knowledge about well-solvable special cases imposes con-
straints on the construction of an NP-completeness proof for the general
case. We conjecture that the present constraints are too strong and that

GRAPH ISOMORPHISM is not NP-complete.

CHROMATIC INDEX: Given a graph G = (V,E) and an integer k, can E be parti-
tioned into at most k disjoint sets (color classes) such that no two edges
in the same set have a common endpoint?

Status: NP-complete.

The reader should distinguish between this edge coloring problem and
the more familiar vertex coloring problem. The chromatic number of a graph
is the minimum number of colors to be assigned to its wvertices such that no
two adjacent vertices get the same color; CHROMATIC NUMBER is one of the
war-horses in the NP-complete repertoire [28,211. The chromatic index of a
graph is the minimum value of k for which the above question has a positive
answer. We know, by Vizing's Theorem [ 8], that it is equal to either m or
mt+1, where m is the maximum vertex degree in G; CHROMATIC INDEX is thus the
problem of choosing between these two values. This decision problem has been
proved NP-complete by I. Holyer [25], even for m = 3.
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SPANNING TREE PARITY: Given a graph G = (V,E) and a partition of E into dis—
joint pairs of edges, is there a spanning tree of G such that, for each pair,
either both edges are in the tree or neither of them is?

Status: well solvable.

This problem has turned out to be solvable in polynomial time by a very
complicated algorithm due to L. Lovasz [48,49]. His method in fact solves
the more general matroid parity problem for the case that the matroid is
representable (i.e., its independent sets correspond to the independent sets
in a linear space) and such a representation is given. The latter condition
¢an even be dropped [39]. In the case that no special structure of the matroid
is known and one needs to call a subroutine (or oracle) to determine whether
any given set is independent or not, an exponential number of calls may be
required, and hence the general matroid parity problem is not well solvable
[491.

PRECEDENCE CONSTRAINED THREE-PROCESSOR SCHEDULING: Given n unit-time jobs,
arbitrary precedence constraints between them»and a deadline 4, can the jobs
be scheduled on three identical parallel machines such that the precedence
constraints are respected and each job is processed in the interval [0,d]?

Status: open.

An inordinate amount of research effort has been spent on a more general
version of this problem, where the number of machines is an input variable
rather than a given constant. NP-completeness has been established for many
exotic types of precedence constraints, and many other equally exotic cases
can be solved in polynomial time; see [26,40] for details.

In spite of all this, the three-processor problem has stayed out of
reach. It is one of the foremost open problems in a class of several thousands
of scheduling problems, which is surveyed in [40] and catalogued in [37,38].
These investigations have led to precise insights into the location of the
borderline between easy and hard scheduling problems and, as a result, into
the problem features that account for border hopping.

Another area that calls for a similarly detailed complexity analysis is
location theory, where one finds a proliferation of polynomial algorithms
and NP-hardness results. In a third important application area, that of

routing and distribution problems, almost all problems are NP-hard [47].



The recent developments in these three areas provide good examples of the
interaction between complexity theory and the design and analysis of heuris-—
tics. NP~completeness theory offers some immediate insights (such as the
incompatibility of "strong" NP-completeness and the existence of a fully
polynomial approximation scheme [21]) and some less immediate ones {such as
the worst case performance of polynomial heuristics as implied by certain
problem reductions). The rise of complexity theory has coincided very fortu-
nately with the emergence of analyfical (rather than empirical) techniques

for studying the quality of fast heuristics for hard problems.

LINEAR PROGRAMMING: Given an integer mxn-matrix A, an integer m-vector b,
an integer n-vector ¢ and an integer 4, is there a rational n-vector x such
that Ax < b and ¢cx = 4d?

Status: well solvable.

The most impressive result in the mathematics of operations research
over the past few years is the development of a polynomial algorithm for
LINEAR PROGRAMMING, the ellipsoid method due to L.G. Khachiyan [33] (see [20]
for an alternative presentation and [10] for a survey of recent research into
the ellipsoid method). It was well known that the problem is easy to solve in
practice by the simplex method, and it was equally well known that the simplex
method can exhibit exponential running time in the worst case [34]. The
ellipsoid method confirms our intuition that LINEAR PROGRAMMING should admit
of a polynomial algorithm - but it does so in a disconcerting manner. More
often than not, the method seems to require its worst case number of itera-
tions; this number is proportional to the number of bits needed to store all
coefficients of A, b, ¢ and d and hence is very large indeed. Here is a
theoretically polynomial algorithm that is practically no good at all, thereby
undermining the justification of our basic concepts.

The major role of the ellipsoid method, however, seems to be to establish
that certain problems belong to P and to clear the way for really efficient
algorithms. As such, it has become an important tool in the resolution of
many combinatorial optimization problems [22,32]. It is fair to say that the
episode has led to a less dogmatic attitude towards polynomial solvability
as well as to more appreciation for the contributions from nonlinear and non-

differentiable optimization to combinatorial optimization.
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TOTAL UNIMODULARITY: Given an mxn-matrix A with entries from the set {-1,0,1},
is A not totally unimodular, i.e., is there a square submatrix A' of A such
that det(a') ¢ {-1,0,1}?

Status: well solvabie.

Note that, in the above formulation, the problem is obviously in NP. Tts
membership of P follows from a theorem due to P.D. Seymour [58]. The interest
in this problem stems from the well-known fact that, if A is totally unimodu-
lar, then LINEAR PROGRAMMING has an integer solution x, if there is any
solution at all (or, in other words, the integrality restriction on x in
INTEGER PROGRAMMING is superfluous). Further work has resulted in polynomial
algorithms for linear programs on totally unimodular matrices [17,52,61],

which are more efficient than the ellipsoid method.

COMPOSITE NUMBER: Given a positive integer n, are there positive integers
p,g > 1 such that n = p-g?

Status: open.

This prdblem is unlikely to be NP-complete. Highly sophisticated ideas

from number theory have led to a 0(&° log log £

) algorithm {(where £ = log n
is the problem size) [1,44], which is not only very close to polynomial but
also very fast in practice.

If a number n passes the test, we know that n is composite but we do
not get its prime factors. The factorization problem seems to be much harder
than the basic decision problem, and a similarly efficient algorithm for its

solution would immediately endanger the safety of many cryptographic codes.

INTEGER PROGRAMMING: Given an integer mXn-matrix A, an integer m-vector b,
an integer n-vector c¢ and an integer d, is there an integer n-vector x such
‘that Ax < b and cx 2 d? ‘

Status: NP-complete.

This is one of the most widely studied problem types in combinatorial
optimization. It is extremely useful in the formulation of many practical
operations research problems, and several commercial computer codes are
available for its solution.

The problem is also extremely difficult: many highly restricted special

cases are NP-complete. However, the case in which the number n of variables



is fixed has turned out to be solvable in polynomial time by an algorithm
due to H.W. Lenstra [43]. His method is based on ideas from the geometry of
numbers. As a corollary, the case in which the number m of constraints is
fixed is solvable in polynomial time as well. If the condition x 2 0 (repre-
senting n constraints) is added to the problem statement, then the case of
fixed m can be solved in "pseudopolynomial” time [547.

A recent improvement in the method from [43] yielded, as a surprising
byproduct, a polynomial algorithm for the problem of factoring univariate

polynomials with rational coefficients [42].

4. PROBABILISTIC ASPECTS

NP-Completeness theory is essentially concerned with the worst case analysis
of problems and algorithms. Such an analysis has to account for the isolated
time consuming problem instance, and hence the results can be overly pessi-
mistic and generally give a very misleading picture of the average case.
This'point is strongly supported by an abundance of empirical evidence. Thus
the ultimate analytical explanation of why algorithms behave as they do must
be of a probabilistic nature.

A probabilistic analysis requires first of all the specification of a
probability distribution over the set of all problem inétances. For example,
a random graph can be obtained by specifying a fixed probability that any
vertex pair constitutes an edge or, alternatively, by distributing a fixed
number of edges uniformly over all vertex pairs. Both notions have been well
studied, especially in representing complex counting argquments [18]. For
many other combinatorial structures, the choice of a reasonable probability
model is far less obvious.

Moreover, the technical difficulties encountered in a probabilistic
analysis are formidable. The main reasons for this are the wvery special
structure of problem instances and solutions, as well as the interdependence
between the various steps of an algorithm. What happens at a node of a search
tree, for example, depends highly on what happened at its predecessors, and
no real way has been found around the resulting mathematical obstacles [45].

Nevertheless, progress has been made on various fronts. One of these is
v
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probabilistic running time analysis, an approach that is now more or less
standard for the basic algorithms in computer science such as sorting,
searching and selection. It has been shown that, in the second probability
model for random graphs mentioned above, GRAPH ISOMORPHISM (see Section 3)
is solvable by an algorithm that runs in linear expected time [3]. The great
challenge here remains the explanation of the success of the simplex method
for LINEAR PROGRAMMING (see Section 3): polynomial expected behavior has
been established, but only under assumptions concerning the method rather
than the underlying problem [12,53], which is not satisfactory at all. A
similar challenge is to give rigid proofs of the polynomial expected running
time of some tree search methods, in order to confirm informal analyses
(such as for the traveling salesman algorithm in [7]) or empirical evidence
(such as for the knapsack algorithm in [5]). So far, all precise results in
this direction have been negative, in the sense that within a certain proba-
bility model for some NP-hard problem any tree search method of a certain
type can be proved to require almost always superpolynomial time [30].
Secondly, there is the area of probabilistic error analysis, where the
error refers to the difference between an approximate solution value and the
optimum. Again, the empirical behavior of heuristics suggests that the worst
case is seldom met in practice, but analytical verification remains very
difficult. Most research of this type is actually based on probabilistic
value analysis, the third and perhaps most surprising area. Many hard combi-
natorial optimization problems, notably those with a Euclidean structure
such as routing and location problems in the plane, allow a simple probabil-
istic description of their optimal solution value as a function of problem
parameters. The shining example here is the planar traveling salesman prob-
lem: the length of a shortest tour through n cities, uniformly distributed
over a circle of area 1, is almost surely equal to BVE) wheré B is a constant
that can be estimated numerically [6,23,59]; the analysis of Karp's parti-
tioning heuristic for the problem [31,60] is based on this theorem. Similar
results have been obtained for the planar K-median problem [19,24]. They
find application in the analysis of hierarchical planning systems for multi-

stage scheduling and distribution problems [14,15,51].

There ig a second way in which probability theory has entered complexity



11

theory. This is through the notion of a probabilistic algorithm, i.e., an
algorithm that flips a coin at certain points in order to decide how to pro-
ceed [56]. A decision problem is in the class RP if there exists a probabil-
istic algorithm that runs in polynomial time and, if the answer is yes, pro-
duces that answer with probability greater than 3. (This probability can, in
fact, be brought up to any value smaller than 1.) The most prominent member
of RP is COMPOSITE NUMBER (see Section 3) [57]; the rejection of a number by
Rabin's algorithm yields virtual certainty that it is a prime.

It is clear that P is a subset of RP, and the two classes might well be
the same. If a problem belongs to RP, that provides circumstantial evidence
against its NP-completeness. Moreover, the polynomial probabilistic algorithm

for its solution might be quite practical.

5. AROUND P anD NP

Many problem classes have arisen around P and NP. The class RP defined above
is one of them. Some of the others will be briefly discussed here.

Of some relevance to operations researchers is the class co-NP. A prob-
lem is in co-NP if its complement is in NP. For example, the HAMILTONIAN
CIRCUIT problem (given a graph, does it contain a Hamiltonién circuit?)
belongs to NP, and therefore its complement NO HAMILTONIAN CIRCUIT (given a
graph, does it contain no Hamiltonian circuit?) belongs to co-NP. The latter
problem is not known to be in NP: there is no obvious structure corresponding
to the non~existence of a Hamiltonian circuit, let alone a polynomial algo-
rithm for its verification. It is conjectured that the only problems in NP
as well as in co-NP are precisely those in P. Hence, if a problem and its
complement are both in NP, this provides a strong indication for the existence
of a polynomial algorithm. Because of duality theory, LINEAR PROGRAMMING is
such a problem, and the indication has been correct. COMPOSITE NUMBER is
another one [55]; as we have seen before, the problem might very well turn
out to belong to P.

Other examples are the class DLOGSPACE of problems that (in addition to
the space used for the input) require no more than logarithmic space for their

solution, and the class PSPACE of problems that require polynomial space. It
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is not hard to see that DLOGSPACE ¢ P c NP c PSPACE, and it is conjecturéd
that each of these inclusions is a proper one. LINEAR PROGRAMMING has been
shown to be log-space complete for P in the sense that all other problems in
P are transformable to it in logarithmic space [16]; hence, DLOGSPACE = P if
LINEAR PROGRAMMING would belong to DLOGSPACE, but that would represent a
dramatic improvement over the ellipsoid method.

Beyond the problems in PSPACE, there are the intractable problems, for
which superpolynomial worst case time requirement is not merely conjectured
but has been proved.

For a detailed discussion of these and still other problem classes, we
refer to [21,Ch.7]. The basic distinction between solvability in polynomial
time and NP-hardness provides sufficient terminology for everyday practice

in combinatorial optimization.

6. P vERsus NP

A puzzling aspect of the state of the art in computational complexity is the
very fact that the concentrated effort of so many researchers has failed to
settle the P # NP conjecture. The equality P = NP is after all very unlikely
to hold in the real world of computation. If it would be true, then our
impression that the empirical notions of easy and hard had found their theo-
retical counterpart would have been a sad mistake.

Why should this problem be as hard as it seems to be? The basic notion
of complexity, leading to the simple distinction between solvability in
polynomial time and NP-hardness, appears to be too complex to be described
and understood by the use of formal mathematics. Several lines of attack to
the problem are reviewed below. Each of them has yielded a lot of fruitful
insights, but has failed to settle the conjecture, thereby confirming that

its true implications have not yet been grasped.

Originally, the merit of Cook's result that SATISFIABILITY is NP-complete
[11] seemed to be that it reduced the effort needed to settle the conjecture.
To verify that P # NP, one only had to prove the nonexistence of a polynomial

algorithm for SATISFIABILITY -~ and if someone would unexpectedly come up with
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such an algorithm, then P = NP would follow. The thousands of NP-completeness
results obtained in the past decade should have improved the chance of one

of the two events to occur. However, the situation has not changed at all,
since it has been shown that all known NP-complete problems are essentially
the same: they are polynomially isomorphic in the sense that they are reduci-
ble to one another by means of one-to-one surjective transformations [9].

It is not known whether this statement is true for all NP-complete
problems. That conjecture implies that P # NP, by the following trivial
argument: if P = NP, then all problems in P are NP-complete and hence iso-
morphic; but P contains problems with a finite as well as with an infinite

number of feasible instances, which cannot be isomorphic;

A standard tool that has been used to prove intractability and even undecid-
2,...) be
;/-.-) be a list of all their

ability of problems is the diagonalization construction. Let (P1,P
a list of all problems in P, and let (Il'I2
instances in some standard encoding and enumeration scheme. A problem Q which
is guaranteed to be not in P is then easily defined by Q = {IiIIi £ P i=
1,2,...}. So all that remains to be done in order to prove P # NP is to orga-
nize the lists in such a way that the resulting problem Q belongs to NP. No
one has been able to do this so far.

There are indications that such an approach is doomed to fail. They are
based on the observation that the above argument is hardly related to the
real world of computation and carries through in other worlds. One way to
create such a world is relativization of our concepts with respect to a given
problem P, by the use of an oracle machine. An oracle machine has a special
instruction to test in unit time whether any given instance is feasible for
problem P. For a model of computation extended with this feature one can
define classes PP and NPP, analogous to P and NP. For example, if P = @, then
PP = P and NP® = NP; if P = SATISFIABILITY, then P* > NP (since SATISFIABILITY
is NP-complete).

If one could prove P # NP by diagonalization, then this might suggest
that the proof would continue to work after relativization, so that PP # NPP
for arbitrary P. It has been shown, however, that PP = NPP for some problems
P whereas PQ # NPQ for other problems Q [4]. This does not imply that P # NP

cannot be proved by diagonalization, but it does imply that such a proof

&
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must be based on a model of computation for the real world, so that relativ-
ization to an arbitrary problem is impossible. We refer to [35] for further

developments in this direction.

Another way to proceed is to start from the assumption that P = NP (or P #
NP) and to see whether it leads to a contradiction. A typical result along
this line is as follows: under the hypothesis that P # NP, there are problems
in NP that are neither in P nor NP-complete; in fact, there would be an
infinite hierarchy of distinct equivalence classes between P and the class
of NP-complete problems [36]. This approach suggests some really weird prob-
lems in NP, but does not answer the P # NP conjecture.

This type of investigation is comparable to the efforts undertaken in
the eighteenth century by researchers in Euclidean geometry, who tried to
prove the parallel postulate. Living in the twentieth century, we know that
the parallel postulate is independent of the other axioms in geometry: one
can construct perfectly reasonable models of geometry in which it is wvalid
and others in which it is not, and non—Euclidéan geometry is now a well-es-
tablished branch of mathematics.

One could imagine that the P # NP conjecture will ultimately achieve
the same status in the theory of computation over the natural numbers as the
parallel postulate in geometry, i.e., that it turns out to be independent of
the underlying axiom system. Combinatorial computations are founded on a
formal theory known as Peano arithmetic, and the natural guestion to ask is
whether both P = NP and P # NP can be consistent with this theory.

A partial result in this direction [13] is that the P = NP assumption
is consistent with ET, a theory which is weaker than Peano arithmetic. There
are far more models of ET than of Peano arithmetic. On closer analysis [27],
some of these appear to behave in a very strange way which does not reflect
our intuitions about the real world at all. An extreme example is that some
models of ET allow computations which have bounded running time but fail to
halt! Altogether, the result from [13] does not imply that P = NP is a valid
assumption in the real world, which is believed to be a model of Peano

arithmetic.

?
Research into the P = NP question is going on. We do not expect that it will
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yield an immediate answer, but rich side benefits will be obtained. In a
broader sense, computational complexity will continue to fascinate a wide
spectrum of researchers, stretching from pure mathematicians to those engaged

in practical problem solving.
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