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ABSTRACT 

We review recent developments in the theory and practice of computational 

complexity, in order to highlight some of the basic concepts and ideas that 

have come out of this area. The discussion centers around the progress on 

twelve important open problems listed in 1979 by M.R. Garey and D.S. Johnson, 

the introduction of probabilistic elements in the analysis and design of 

algorithms, the problem classes around P and NP, and the P ~ NP conjecture. 
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1. INTRODUCTION 

Computational complexity theory as a practical tool for the investigation of 

combinatorial optimization problems came into being about ten years ago, 

with the publication of two classical papers by S.A. Cook [11] and R.M. Karp 

[28]. They together laid the foundation for a technique that can be used to 

establish the NP-completeness of certain combinatorial problems. Such problems 

are unlikely to be well solvable, i.e., solvable by an amount of computational 

effort which is bounded by a polynomial function of problem size. 

The rest is history. There is hardly any need here to recall the wealth 

of results that were obtained by successful applications of this technique. 

It has led to a surprisingly sharp borderline between easy problems (which 

are solvable in polynomial time) and hard problems (of which some restricted 

version is NP-complete), where minor changes in some problem parameter may 

transfer a problem from one class to the other. It has provided increasingly 

convincing evidence that the theoretical labels easy and hard are justified 

by computational practice, thereby supporting our intuitions about the inher

ent intractability of many notorious combinatorial optimization problems. 

And finally, it has spawned an impressive amount of research, ranging from 

refinements and extensions of the original complexity measures to theoretical 

studies of the performance of approximation algorithms. 

We certainly do not intend to give a complete survey of the state of 

the art in this area. That task by itself would be virtually impossible, in 

view of the thousands of results that would have to be referenced as well as 

the ongoing stream of new publications. To the extent that it can be done at 

all, it has been carried out in an admirable fashion by M.R. Garey and D.S. 

Johnson in their textbook [21] - and they themselves prefer a quarterly 

update column [26] to an all-encompassing second edition. 

Rather, after a brief review of the basic concepts in Section 2, we 

hope to point out some of the most important results and questions that have 

emerged from ten years of research. In the course of doing so, we shall con

centrate of those issues that are relevant to an operations research audience. 

Although computational complexity theory has contributed significantly to 

bring out the joint interests of (practical) operations researchers and 

(theoretical) computer scientists in algorithmic problem complexity, there 
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are certain ramifications of the theory that, currently at least, are only 

of interest to the latter group. 

The material has been grouped around four themes. In Section 3, we 

demonstrate the rapidity of the advance in this research area by focusing on 

the twelve open problems that were left as a challenge in Garey and Johnson's 

book; this will serve to illustrate many recent ideas and techniques. In 

Section 4, we discuss the use of probability theory in the analysis and 

design of algorithms. In Section 5, we briefly examine the problem classes 

around P and NP. Finally, in Section 6, we return to the fundamental Pf NP 
conjecture, that has successfully withstood ten years of attack, and indicate 

how this tenacity might be accounted for. 

2. COMPUTATIONAL COMPLEXITY THEORY 

Below, we briefly summarize the basic concepts of computational complexity 

theory. The reader is referred to [28,29,21,461 for details. 

The theory deals primarily with decision problems, which require a 

yes/no answer. Such a problem type is usually formulated as follows: given a 

problem instance (specified in terms of sets, graphs, matrices, vectors, 

numbers etc.), does there exist an associated structure which satisfies a 

certain property? A problem instance is said to be feasible if it leads to a 

yes answer, and a problem type is formally defined as the set of all its 

feasible instances. The size of an instance is the number of bits needed to 

encode .the data, and the running time of an algorithm for its solution is 

the number of elementary operations required. 

A problem type is in the class P if there exists an algorithm that, for 

any instance, determines in polynomial time whether the answer is yes or no, 

i.e., its running time is bounded by a polynomial function of problem size. 

A problem type is in the class NP if there exists an algorithm that, for any 

instance, tests the. validity of a given structure in polynomial time, thereby 

verifying the yes answer. 

For example, consider the problem of scheduling n precedence constrained 

tasks with individual release dates, processing times and deadlines within a 

given time limit. In case there is an unlimited number of processors, a 
• 
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straightforward critical path calculation will determine feasibility or 

infeasibility in O(n2 ) time and hence the problem is in P. In case there is 

only a single processor available, no such simple algorithm is known; but 

any given schedule can be tested for feasibility in O(n2 ) time and hence the 

problem is in NP. 
It is clear that Pis a subset of NP. The members of Pare said to be 

well solvable or easy. Among the members of NP are many notorious combinato

rial problems which are not known to belong to P, and it is COllJIIlonly conjec

tured that Pis a proper subset of NP. 
To obtain further insight into the structure of NP; we introduce the 

notion of reducibility. Problem Pis reducible to problem P' (P oc P') if P 

can be considered as a special case of P', or more formally, if for any 

instance of Pa corresponding instance of P' can be constructed in polynomial 

time such that solving the latter solves the former as well. A problem P' is 

said to be NP-complete if it is the most difficult problem in NP, i.e., if 

P' E NP and P oc P' for all PE NP. If, in turn, P' oc P" for some P" E NP, 
then P" is NP-complete as well. Note that, if the P f: NP conjecture is true, 

then Pi P for each NP-complete P: the NP-complete problems are unlikely to 

be well solvable and the use of approximation algorithms or enumerative 

methods for their solution seems to be unavoidable. 

In 1971, Cook [11] proved the fundamental result that the SATISFIABILITY 

problem is NP-complete. In 1972, Karp f28] showed that SATISFIABILITY is 

reducible to many other problems in NP, which are therefore NP-complete as 

well. Further applications of this technique created a huge tree of hundreds 

of NP-completeness proofs, each vertex of which can be used as the starting 

point for new results. 

As far as optimization problems are concerned, one usually reformulates 

the problem of finding a feasible solution of, say, minimum value as the 

problem of deciding whether there exists a feasible solution with value at 

most equal to a given threshold. If this decision problem is NP-complete, 

then the optimization problem is said to be NP-hard in the sense that it is 

at least as difficult as any problem in NP. 
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3. THE OPEN PROBLEMS 

The textbook by Garey and Johnson [21] has rapidly become the main reference 

for researchers in computational complexity theory. It presents a detailed 

treatment of the theory and the proof techniques. But its most useful feature 

is probabl~ the list of 320 main NP-completeness and NP-hardness results 

(and many more side results), grouped according to twelve areas of applica

tion. A thirteenth group contains twelve problems that were open in 1979, 

when the book appeared. These problems and their current status are listed 

in Table 1. Six of them have been resolved in the mean time: three have 

turned out to be well solvable and three have been proved NP-complete. 

We will discuss the substantial progress which has been made on the 

seven problems that are marked by an asterisk in Table 1; they are the most 

relevant ones in the present context. In addition, we will mention some 

interesting developments with respect to the NP-complete INTEGER PROGRAMMING 

problem. Our presentation is partly based on Johnson's first update column 

[26], and the reader is urged to consult it for further details as well as 

for information on the five problems that are not considered here. 

problem 

* GRAPH ISOMORPHISM 

SUBGRAPH HOMEOMORPHISM (FOR A FIXED GRAPH H) 

GRAPH GENUS 

CHORDAL GRAPH COMPLETION 

* CHROMATIC INDEX 

* SPANNING TREE PARITY 

PARTIAL ORDER DIMENSION 
* PRECEDENCE CONSTRAINED THREE-PROCESSOR SCHEDULING 

* LINEAR PROGRAMMING 
* TOTAL UNIMODULARITY 

* COMPOSITE NUMBER 

MINIMUM-LENGTH TRIANGULATION 

status 

open 

open 

open 

NP-complete [62] 

NP-complete [25] 

well solvable [48,49] 

NP-complete [41,63] 

open 

well solvable [33] 

well solvable [58] 

open 

open 

Table 1. The open problems and their current status. 



GRAPH ISOMORPHISM: Given two graphs G = (V,E) and G' = (V' ,E'), is there a 

one-to-one onto function f: V ➔ V' such that {v,w} EE if and only if 

{£(v),f(w)} EE'? 

Status: open. 

This remains one of the most vexing open problems. The question can be 

answered in polynomial time for a large number of special cases, the most 

notable of which is the case in which the maximum vertex degree is bounded 

by a constant [50]. This result relies heavily on ideas from the theory of 
-
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permutation groups, thus providing an excellent demonstration of the growing 

influence of pure mathematics on algorithmic combinatorics; see COMPOSITE 

NUMBER and INTEGER PROGRAMMING below for other examples. The techniques from 

[50] have been used to obtain an algorithm for the general case that requires 

O(exp(lvi 213 )) time [2,64] - still exponential, but much better than the 

crude 0( !VI!) bound. 

We note that knowledge about well-solvable special cases imposes con

straints on the construction of an NP-completeness proof for the general 

case. We conjecture that the present constrai·nts are too strong and that 

GRAPH ISOMORPHISM is not NP-complete. 

CHROMATIC INDEX: Given a graph G = (V,E) and an integer k, can Ebe parti

tioned into at most k disjoint sets (color classes) such that no two edges 

in the same set have a common endpoint? 

Status: NP-complete. 

The reader should distinguish between this edge coloring problem and 

the more familiar vertex coloring problem. The chromatic number of a graph 

is the minimum number of colors to be assigned to its vertices such that no 

two adjacent vertices get the same color; CHROMATIC NUMBER is one of the 

war-horses in the NP-complete repertoire [28,21]. The chromatic index of a 

graph is the minimum value of k for which the above question has a positive 

answer. We know, by Vizing's Theorem [8], that it is equal to either m or 

m+1, where mis the maximum vertex degree in G; CHROMATIC INDEX is thus the 

problem of choosing between these two values. This decision problem has been 

proved NP-complete by I. Holyer [25], even form= 3. 

3.• 
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SPANNING TREE PARITY: Given a graph G = (V,E) and a partition of E into dis

joint pairs of edges, is there a spanning tree of G such that, for each pair, 

either both edges are in the tree or neither of them is? 

Status: well solvable. 

This problem has turned out to be solvable in polynomial time by a very 

complicated algorithm due to L. Lovasz [48,49]. His method in fact solves 

the more general matroid parity problem for the case that the matroid is 

representable (i.e., its independent sets correspond to the independent sets 

in a linear space) and such a representation is given. The latter condition 

can even be dropped [39]. In the case that no special structure of the matroid 

is known and one needs to call a subroutine (or oracle) to determine whether 

any given set is independent or not, an exponential number of calls may be 

required, and hence the general matroid parity problem is not well solvable 

[49]. 

PRECEDENCE CONSTRAINED THREE-PROCESSOR SCHEDULING: Given n unit-time jobs, 

arbitrary precedence constraints between them and a deadlined, can the jobs 

be scheduled on three identical parallel machines such that the precedence 

constraints are respected and each job is processed in the interval [O,d]? 

Status: open. 

An inordinate amount of research effort has been spent on a more general 

version of this problem, where the number of machines is an input variable 

rather than a given constant. NP-completeness has been established for many 

exotic types of precedence constraints, and many other equally exotic cases 

can be solved in polynomial time; see [26,40] for details. 

In spite of all this, the three-processor problem has stayed out of 

reach. It is one of the foremost open problems in a class of several thousands 

of scheduling problems, which is surveyed in [40] and catalogued in [37,38]. 

These investigations have led to precise insights into the location of the 

borderline between easy and hard scheduling problems and, as a result, into 

the problem features that account for border hopping. 

Another area that calls for a similarly detailed complexity analysis is 

location theory, where one finds a proliferation of polynomial algorithms 

and NP-hardness results. In a third important application area, that of 

routing and distribution problems, almost all problems are NP-hard [47] • 
• 
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The recent developments in these three areas provide good examples of the 

interaction between complexity theory and the design and analysis of heuris

tics. NP-completeness theory offers some immediate insights (such as the 

incompatibility of "strong" NP-completeness and the existence of a fully 

polynomial approximation scheme [21]) and some less immediate ones (such as 

the worst case performance of polynomial heuristics as implied by certain 

problem reductions). The rise of complexity theory has coincided very fortu

nately with the emergence of analytical (rather than empirical) techniques 

for studying the quality of fast heuristics for hard problems. 

LINEAR PROGRAMMING: Given an integer mxn-matrix A, an integer m-vector b, 

an integer n-vector c and an integer d, is there a rational n-vector x such 

that Ax~ band ex~ d? 

Status: well solvable. 

The most impressive result in the mathematics of operations research 

over the past few years is the development of a polynomial algorithm for 

LINEAR PROGRAMMING, the ellipsoid method due to L.G. Khachiyan [33] (see [20] 

for an alternative presentation and [10] for a survey of recent research into 

the ellipsoid method). It was well known that the problem is easy to solve in 

practice by the simplex method, and it was equally well known that the simplex 

method can exhibit exponential running time in the worst case [34]. The 

ellipsoid method confirms our intuition that LINEAR PROGRAMMING should admit 

of a polynomial algorithm - but it does so in a disconcerting manner. More 

often than not, the method seems to require its worst case number of itera

tions; this number is proportional to the number of bits needed to store all 

coefficients of A, b, c and d and hence is very large indeed. Here is a 

theoretically polynomial algorithm that is practically no good at all, thereby 

undermining the justification of our basic concepts. 

The major role of the ellipsoid method, however, seems to be to establish 

that certain problems belong to P and to clear the way for really efficient 

algorithms. As such, it has become an important tool in the resolution of 

many combinatorial optimization problems [22,32]. It is fair to say that the 

episode has led to a less dogmatic attitude towards polynomial solvability 

as well as to more appreciation for the contributions from nonlinear and non

differentiable optimization to combinatorial optimization. 
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TarAL UNIMODULARITY: Given an mxn-matrix A with entries from the set {-1,0,1}, 

is A not totally unimodular, i.e., is there a square submatrix A' of A such 

that det(A') i {-1,0,1}? 

Status: well solvable. 

Note that, in the above formulation, the problem is obviously in NP. Its 

membership of P follows from a theorem due to P.D. Seymour [58]. The interest 

in this problem stems from the well-known fact that, if A is totally unimodu

lar, then LINEAR PROGRAMMING has an integer solution x, if there is any 

solution at all (or, in other words, the integrality restriction on x in 

INTEGER PROGRAMMING is superfluous). Further work has resulted in polynomial 

algorithms for linear programs on totally unimodular matrices [17,52,61], 

which are more efficient than the ellipsoid method. 

COMPOSITE NUMBER: Given a positive integer n, are there positive integers 

p,q > 1 such that n = p•q? 

Status: open. 

This problem is unlikely to be NP-complete. Highly sophisticated ideas 

from number theory have led to a 0(tc log log t) algorithm (where t = log n 

is the problem size) [1,44], which is not only very close to polynomial but 

also very fast in practice. 

If a number n passes the test, we know that n is composite but we do 

not get its prime factors. The factorization problem seems to be much harder 

than the basic decision problem, and a similarly efficient algorithm for its 

solution would immediately endanger the safety of many cryptographic codes. 

INTEGER PROGRAMMING: Given an integer mxn-matrix A, an integer m-vector b, 

an integer n-vector c and an integer d, is there an integer n-vector x such 

that Ax~ band ex~ d? 

Status: NP-complete. 

This is one of the most widely studied problem types in combinatorial 

optimization. It is extremely useful in the formulation of many practical 

operations research problems, and several commercial computer codes are 

available for its solution. 

The problem is also extremely difficult: many highly restricted special 

cases are NP-complete. However, the case in which the number n of variables 
' 
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is fixed has turned out to be solvable in polynomial time by an algorithm 

due to H.W. Lenstra [43]. His method is based on ideas from the geometry of 

numbers. As a corollary, the case in which the number m of constraints is 

fixed is solvable in polynomial time as well. If the condition x ~ 0 (repre

senting n constraints) is added to the problem statement, then the case of 

fixed m can be solved in "pseudopolynomial" time [54]. 

A recent improvement in the method from [43] yielded, as a surprising 

byproduct, a polynomial algorithm for the problem of factoring univariate 

polynomials with rational coefficients [42]. 

4. PROBABILISTIC ASPECTS 

NP-Completeness theory is essentially concerned with the worst case analysis 

of problems and algorithms. Such an analysis has to account for the isolated 

time consuming problem instance, and hence the results can be overly pessi

mistic and generally give a very misleading picture of the average case. 

This point is strongly supported by an abundance of empirical evidence. Thus 

the ultimate analytical explanation of why algorithms behave as they do must 

be of a probabilistic nature. 

A probabilistic analysis requires first of all the specification of a 

probability distribution over the set of all problem instances. For example, 

a random graph can be obtained by specifying a fixed probability that any 

vertex pair constitutes an edge or, alternatively, by distributing a fixed 

number of edges uniformly over all vertex pairs. Both notions have been well 

studied, especially in representing complex counting arguments [18]. For 

many other combinatorial structures, the choice of a reasonable probability 

model is far less obvious. 

Moreover, the technical difficulties encountered in a probabilistic 

analysis are formidable. The main reasons for this are the very special 

structure of problem instances and solutions, as well as the interdependence 

between the various steps of an algorithm. What happens at a node of a search 

tree, for example, depends highly on what happened at its predecessors, and 

no real way has been found around the resulting mathematical obstacles [45]. 

Nevertheless, progress has been made on various fronts. One of these is ,, 
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probabilistic running time analysis, an approach that is now more or less 

standard for the basic algorithms in computer science such as sorting, 

searching and selection. It has been shown that, in the second probability 

model for random graphs mentioned above, GRAPH ISOMORPHISM (see Section 3) 

is solvable by an algorithm that runs in linear expected time [3]. The great 

challenge here remains the explanation of the success of the simplex method 

for LINEAR PROGRAMMING (see Section 3): polynomial expected behavior has 

been established, but only under assumptions concerning the method rather 

than the underlying problem [12,53], which is not satisfactory at all. A 

similar challenge is to give rigid proofs of the polynomial expected running 

time of some tree search methods, in order to confirm informal analyses 

(such as for the traveling salesman algorithm in [7]) or empirical evidence 

(such as for the knapsack algorithm in [5]). So far, all precise results in 

this direction have been negative, in the sense that within a certain proba

bility model for some NP-hard problem any tree search method of a certain 

type can be proved to require almost always superpolynomial time [301. 

Secondly, there is the area of probabilistic error analysis, where the 

error refers to the difference between an approximate solution value and the 

optimum. Again, the empirical behavior of heuristics suggests that the worst 

case is seldom met in practice, but analytical verification remains very 

difficult. Most research of this type is actually based on probabilistic 

value analysis, the third and perhaps most surprising area. Many hard combi

natorial optimization problems, notably those with a Euclidean structure 

such as routing and location problems in the plane, allow a simple probabil

istic description of their optimal solution value as a function of problem 

parameters. The shining example here is the planar traveling salesman prob

lem: the length of a shortest tour through n cities, uniformly distributed 

over a circle of area 1, is almost surely equal to 8/ri", where 8 is a constant 

that can be estimated numerically [6,23,59]; the analysis of Karp's parti

tioning heuristic for the problem [31,60] is based on this theorem. Similar 

results have been obtained for the planar K-median problem [19,24]. They 

find application in the analysis of hierarchical planning systems for multi

stage scheduling and distribution problems [14,15,51]. 

There i~ a second way in which probability theory has entered complexity 



11 

theory. This is through the notion of a probabilistic algorithm, i.e., an 

algorithm that flips a coin at certain points in order to decide how to pro

ceed [56]. A decision problem is in the class RP if there exists a probabil

istic algorithm that runs in polynomial time and, if the answer is yes, pro

duces that answer with probability greater than½- (This probability can, in 

fact, be brought up to any value smaller than 1.) The most prominent member 

of RP is COMPOSITE NUMBER (see Section 3) [57]; the rejection of a number by 

Rabin's algorithm yields virtual certainty that it is a prime. 

It is clear that Pis a subset of RP, and the two classes might well be 

the same. If a problem belongs to RP, that provides circumstantial evidence 

against its NP-completeness. Moreover, the polynomial probabilistic algorithm 

for its solution might be quite practical. 

5. AROUND P AND NP 

Many problem classes have arisen around P and NP. The class RP defined above 

is one of them. Some of the others will be briefly discussed here. 

Of some relevance to operations researchers is the class co-NP. A prob

lem is in co-NP if its complement is in NP. For example, the HAMILTONIAN 

CIRCUIT problem (given a graph, does it contain a Hamiltonian circuit?) 

belongs to NP, and therefore its complement NO HAMILTONIAN CIRCUIT (given a 

graph, does it contain no Hamiltonian circuit?) belongs to co-NP. The latter 

problem is not known to be in NP: there is no obvious structure corresponding 

to the non-existence of a Hamiltonian circuit, let alone a polynomial algo

rithm for its verification. It is conjectured that the only problems in NP 
as well as in co-NP are precisely those in P. Hence, if a problem and its 

complement are both in NP, this provides a strong indication for the existence 

of a polynomial algorithm. Because of duality theory, LINEAR PROGRAMMING is 

such a problem, and the indication has been correct. COMPOSITE NUMBER is 

another one [55]; as we have seen before, the problem might very well turn 

out to belong to P. 
Other examples are the class DLOGSPACE of problems that (in addition to 

the space used for the input) require no more than logarithmic space for their 

solution, and the class PSPACE of problems that require polynomial space. It ,, 



12 

is not hard to see that DLOGSPACE c Pc NP_::_ PSPACE, and it is conjectured 

that each of these inclusions is a proper one. LINEAR PROGRAMMING has been 

shown to be log-space complete for Pin the sense that all other problems in 

Pare transformable to it in logarithmic space [16]; hence, DLOGSPACE = P if 

LINEAR PROGRAMMING would belong to DLOGSPACE, but that would represent a 

dramatic improvement over the ellipsoid method. 

Beyond the problems in PSPACE, there are the intractable problems, for 

which superpolynomial worst case time requirement is not merely conjectured 

but has been proved. 

For a detailed discussion of thes~ and still other problem classes, we 

refer to [21,Ch.7]. The basic distinction between solvability in polynomial 

time and NP-hardness provides sufficient terminology for everyday practice 

in combinatorial optimization. 

6. P VERSUS NP 

A puzzling aspect of the state of the art in computational complexity is the 

very fact that the concentrated effort of so many researchers has failed to 

settle the Pf NP conjecture. The equality P = NP is after all very unlikely 

to hold in the real world of computation. If it would be true, then our 

impression that the empirical notions of easy and hard had found their theo

retical counterpart would have been a sad mistake. 

Why should this problem be as hard as it seems to be? The basic notion 

of complexity, leading to the simple distinction between solvability in 

polynomial time and NP-hardness, appears to be too complex to be described 

and understood by the use of formal mathematics. Several lines of attack to 

the problem are reviewed below. Each of them has yielded a lot of fruitful 

insights, but has failed to settle the conjecture, thereby confirming that 

its true implications have not yet been grasped. 

Originally, the merit of Cook's result that SATISFIABILITY is NP-complete 

[11] seemed to be that it reduced the effort needed to settle the conjecture. 

To verify that Pf NP, one only had to prove the nonexistence of a polynomial 

algoritj1m for SATISFIABILITY - and if someone would unexpectedly come up with 
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such an algorithm, then P = NP would follow. The thousands of NP-completeness 

results obtained in the past decade should have improved the chance of one 

of the two events to occur. However, the situation has not changed at all, 

since it has been shown that all known NP-complete problems are essentially 

the same: they are polynomially isomorphic in the sense that they are reduci

ble to one another by means of one-to-one surjective transformations [9]. 

It is not known whether this statement is true for all NP-complete 

problems. That conjecture implies that Pf NP, by the following trivial 

argument: if P = NP, then all problems in Pare NP-complete and hence iso

morphic; but P contains problems with a finite as well as with an infinite 

number of feasible instances, which cannot be isomorphic. 

A standard tool that has been used to prove intractability and even undecid

ability of problems is the diagonalization construction. Let (P
1

,P
2

, ••• ) be 

a list of all problems in P, and let (I
1
,r

2
, ••• ) be a list of all their 

instances in some standard encoding .and enumeration scheme. A problem Q which 

is guaranteed to be not in Pis then easily defined by Q ={I.Ir. i P., i = 
J. 1 J. 

1,2, ... }. So all that remains to be done in order to prove Pf NP is to orga-

nize the lists in such a way that the resulting problem Q belongs to NP. No 

one has been able to do this so far. 

There are indications that such an approach is doomed to fail. They are 

based on the observation that the above argument is hardly related to the 

real world of computation and carries through in other worlds. One way to 

create such a world is relativization of our concepts with respect to a given 

problem P, by the use of an oracle machine. An oracle machine has a special 

instruction to test in unit time whether any given instance is feasible for 

problem P. For a model of computation extended with this feature one can 

define classes rand Nr, analogous to P and NP. For example, if P =¢,then 

Pp= P and NPP = NP; if P = SATISFIABILITY, then r ~ NP (since SATISFIABILITY 

is NP-complete). 

If one could prove P =f NP by diagonalization, then this might suggest 

that that Pp .J. NPP the proof would continue to work after relativization, so r 

PP = NrP for arbitrary P. It has been shown, however, that for some problems 

P whereas PQ f NPQ for other problems Q [4]. This does not imply that P =f NP 
cannot be proved by diagonalization, but it does imply that such a proof 
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must be based on a model of computation for the real world, so that relativ

ization to an arbitrary problem is impossible. We refer to [35] for further 

developments in this direction. 

Another way to proceed is to start from the assumption that P = NP (or Pf 
NP) and to see whether it leads to a contradiction. A typical result along 

this line is as follows: under the hypothesis that Pf NP, there are problems 

in NP that are neither in P nor NP-complete; in fact, there would be an 

infinite hierarchy of distinct equivalence classes between P and the class 

of NP-complete problems [36]. This approach suggests some really weird prob~ 

lems in NP, but does not answer the Pf NP conjecture. 

This type of investigation is comparable to the efforts undertaken in 

the eighteenth century by researchers in Euclidean geometry, who tried to 

prove the parallel postulate. Living in the twentieth century, we know that 

the parallel postulate is independent of the other axioms in geometry: one 

can construct perfectly reasonable models of geometry in which it is valid 

and others in which it is not, and non-Euclidean geometry is now a well-es

tablished branch of mathematics. 

One could imagine that the Pf NP conjecture will ultimately achieve 

the same status in the theory of computation over the natural numbers as the 

parallel postulate in geometry, i.e., that it turns out to be independent of 

the underlying axiom system. Combinatorial computations are founded on a 

formal theory known as Peano arithmetic, and the natural question to ask is 

whether both P = NP and Pf NP can be consistent with this theory. 

A partial result in this direction [13] is that the P = NP assumption 

is consistent with ET, a theory which is weaker than Peano arithmetic. There 

are far more models of ET than of Peano arithmetic. On closer analysis [27], 

some of these appear to behave in a very strange way which does not reflect 

our intuitions about the real world at all. An extreme example is that some 

models of ET allow computations which have bounded running time but fail to 

halt! Altogether, the result from [13] does not imply that P = NP is a valid 

assumption in the real world, which is believed to be a model of Peano 

arithmetic. 

? 
Research into the P NP question is going on. We do not expect that it will 

fi 
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yield an immediate answer, but rich side benefits will be obtained .• In a 

broader sense, computational complexity will continue to fascinate a wide 

spectrum of researchers, stretching from pure mathematicians to those engaged 

in practical problem solving. 
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