
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

BW 159/82 .

J.K. LENSTRA, A.H.G. RINNOOY KAN, P. VAN EMDE BOAS

AN APPRAISAL OF COMPUTATIONAL COMPLEXITY
FOR OPERATIONS RESEARCHERS

Preprint

~
MC

APRIL

kruislaan 413 1098 SJ amsterdam

P!Unted at .the Ma:themcttlc.ai. Cen.tll.e, 413 Klu.Li.J.,laan, Am6.tvu:l.a.m.

The Ma.thema:ti..c.al Cen.tll.e , 6ounded .the 11-.th 06 FebJc.uM.y 1946, M> a. non
p1r.06li i.n6.tltu.Uon al.mlng at .the pMmo:tlon 06 pWte. ma:thema.ti.C6 and .lt6
a.ppU.cati.on6. 1.t M> l>pon601Led by .the Ne.theJri.a.n.d6 GoveJLnment .th!Lough .the
Ne.theJll.a.nd6 OJLga.vu.za.ti.on 6olL .the Adva.n.c.ement 06 PUILe Re,.t,ea.JLc.h (Z.W.O.).

1980 Math~mat:i,.cs .S~j~ct Cl.ass:i,.f;:i,.cation: 68C25, 90Bxx, 90Cxx

AN APPRAISAL OF COMPUTATIONAL COMPLEXITY FOR OPERATIONS RESEARCHERS

J.K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

P. VAN EMDE BOAS

University of Amsterdam

ABSTRACT

We review recent developments in the theory and practice of computational

complexity, in order to highlight some of the basic concepts and ideas that

have come out of this area. The discussion centers around the progress on

twelve important open problems listed in 1979 by M.R. Garey and D.S. Johnson,

the introduction of probabilistic elements in the analysis and design of

algorithms, the problem classes around P and NP, and the P ~ NP conjecture.

KEY WORDS & PHRASES: computational complexity, polynomial algorithm,

NP-hardness, probabilistic analysis, probabilistic algorithm.

NOTE: This review has been written for publication in the European Journal

of Operational Research at the invitation of the Editors.

.,

1

1. INTRODUCTION

Computational complexity theory as a practical tool for the investigation of

combinatorial optimization problems came into being about ten years ago,

with the publication of two classical papers by S.A. Cook [11] and R.M. Karp

[28]. They together laid the foundation for a technique that can be used to

establish the NP-completeness of certain combinatorial problems. Such problems

are unlikely to be well solvable, i.e., solvable by an amount of computational

effort which is bounded by a polynomial function of problem size.

The rest is history. There is hardly any need here to recall the wealth

of results that were obtained by successful applications of this technique.

It has led to a surprisingly sharp borderline between easy problems (which

are solvable in polynomial time) and hard problems (of which some restricted

version is NP-complete), where minor changes in some problem parameter may

transfer a problem from one class to the other. It has provided increasingly

convincing evidence that the theoretical labels easy and hard are justified

by computational practice, thereby supporting our intuitions about the inher

ent intractability of many notorious combinatorial optimization problems.

And finally, it has spawned an impressive amount of research, ranging from

refinements and extensions of the original complexity measures to theoretical

studies of the performance of approximation algorithms.

We certainly do not intend to give a complete survey of the state of

the art in this area. That task by itself would be virtually impossible, in

view of the thousands of results that would have to be referenced as well as

the ongoing stream of new publications. To the extent that it can be done at

all, it has been carried out in an admirable fashion by M.R. Garey and D.S.

Johnson in their textbook [21] - and they themselves prefer a quarterly

update column [26] to an all-encompassing second edition.

Rather, after a brief review of the basic concepts in Section 2, we

hope to point out some of the most important results and questions that have

emerged from ten years of research. In the course of doing so, we shall con

centrate of those issues that are relevant to an operations research audience.

Although computational complexity theory has contributed significantly to

bring out the joint interests of (practical) operations researchers and

(theoretical) computer scientists in algorithmic problem complexity, there

2

are certain ramifications of the theory that, currently at least, are only

of interest to the latter group.

The material has been grouped around four themes. In Section 3, we

demonstrate the rapidity of the advance in this research area by focusing on

the twelve open problems that were left as a challenge in Garey and Johnson's

book; this will serve to illustrate many recent ideas and techniques. In

Section 4, we discuss the use of probability theory in the analysis and

design of algorithms. In Section 5, we briefly examine the problem classes

around P and NP. Finally, in Section 6, we return to the fundamental Pf NP
conjecture, that has successfully withstood ten years of attack, and indicate

how this tenacity might be accounted for.

2. COMPUTATIONAL COMPLEXITY THEORY

Below, we briefly summarize the basic concepts of computational complexity

theory. The reader is referred to [28,29,21,461 for details.

The theory deals primarily with decision problems, which require a

yes/no answer. Such a problem type is usually formulated as follows: given a

problem instance (specified in terms of sets, graphs, matrices, vectors,

numbers etc.), does there exist an associated structure which satisfies a

certain property? A problem instance is said to be feasible if it leads to a

yes answer, and a problem type is formally defined as the set of all its

feasible instances. The size of an instance is the number of bits needed to

encode .the data, and the running time of an algorithm for its solution is

the number of elementary operations required.

A problem type is in the class P if there exists an algorithm that, for

any instance, determines in polynomial time whether the answer is yes or no,

i.e., its running time is bounded by a polynomial function of problem size.

A problem type is in the class NP if there exists an algorithm that, for any

instance, tests the. validity of a given structure in polynomial time, thereby

verifying the yes answer.

For example, consider the problem of scheduling n precedence constrained

tasks with individual release dates, processing times and deadlines within a

given time limit. In case there is an unlimited number of processors, a
•

3

straightforward critical path calculation will determine feasibility or

infeasibility in O(n2) time and hence the problem is in P. In case there is

only a single processor available, no such simple algorithm is known; but

any given schedule can be tested for feasibility in O(n2) time and hence the

problem is in NP.
It is clear that Pis a subset of NP. The members of Pare said to be

well solvable or easy. Among the members of NP are many notorious combinato

rial problems which are not known to belong to P, and it is COllJIIlonly conjec

tured that Pis a proper subset of NP.
To obtain further insight into the structure of NP; we introduce the

notion of reducibility. Problem Pis reducible to problem P' (P oc P') if P

can be considered as a special case of P', or more formally, if for any

instance of Pa corresponding instance of P' can be constructed in polynomial

time such that solving the latter solves the former as well. A problem P' is

said to be NP-complete if it is the most difficult problem in NP, i.e., if

P' E NP and P oc P' for all PE NP. If, in turn, P' oc P" for some P" E NP,
then P" is NP-complete as well. Note that, if the P f: NP conjecture is true,

then Pi P for each NP-complete P: the NP-complete problems are unlikely to

be well solvable and the use of approximation algorithms or enumerative

methods for their solution seems to be unavoidable.

In 1971, Cook [11] proved the fundamental result that the SATISFIABILITY

problem is NP-complete. In 1972, Karp f28] showed that SATISFIABILITY is

reducible to many other problems in NP, which are therefore NP-complete as

well. Further applications of this technique created a huge tree of hundreds

of NP-completeness proofs, each vertex of which can be used as the starting

point for new results.

As far as optimization problems are concerned, one usually reformulates

the problem of finding a feasible solution of, say, minimum value as the

problem of deciding whether there exists a feasible solution with value at

most equal to a given threshold. If this decision problem is NP-complete,

then the optimization problem is said to be NP-hard in the sense that it is

at least as difficult as any problem in NP.

4

3. THE OPEN PROBLEMS

The textbook by Garey and Johnson [21] has rapidly become the main reference

for researchers in computational complexity theory. It presents a detailed

treatment of the theory and the proof techniques. But its most useful feature

is probabl~ the list of 320 main NP-completeness and NP-hardness results

(and many more side results), grouped according to twelve areas of applica

tion. A thirteenth group contains twelve problems that were open in 1979,

when the book appeared. These problems and their current status are listed

in Table 1. Six of them have been resolved in the mean time: three have

turned out to be well solvable and three have been proved NP-complete.

We will discuss the substantial progress which has been made on the

seven problems that are marked by an asterisk in Table 1; they are the most

relevant ones in the present context. In addition, we will mention some

interesting developments with respect to the NP-complete INTEGER PROGRAMMING

problem. Our presentation is partly based on Johnson's first update column

[26], and the reader is urged to consult it for further details as well as

for information on the five problems that are not considered here.

problem

* GRAPH ISOMORPHISM

SUBGRAPH HOMEOMORPHISM (FOR A FIXED GRAPH H)

GRAPH GENUS

CHORDAL GRAPH COMPLETION

* CHROMATIC INDEX

* SPANNING TREE PARITY

PARTIAL ORDER DIMENSION
* PRECEDENCE CONSTRAINED THREE-PROCESSOR SCHEDULING

* LINEAR PROGRAMMING
* TOTAL UNIMODULARITY

* COMPOSITE NUMBER

MINIMUM-LENGTH TRIANGULATION

status

open

open

open

NP-complete [62]

NP-complete [25]

well solvable [48,49]

NP-complete [41,63]

open

well solvable [33]

well solvable [58]

open

open

Table 1. The open problems and their current status.

GRAPH ISOMORPHISM: Given two graphs G = (V,E) and G' = (V' ,E'), is there a

one-to-one onto function f: V ➔ V' such that {v,w} EE if and only if

{£(v),f(w)} EE'?

Status: open.

This remains one of the most vexing open problems. The question can be

answered in polynomial time for a large number of special cases, the most

notable of which is the case in which the maximum vertex degree is bounded

by a constant [50]. This result relies heavily on ideas from the theory of
-

5

permutation groups, thus providing an excellent demonstration of the growing

influence of pure mathematics on algorithmic combinatorics; see COMPOSITE

NUMBER and INTEGER PROGRAMMING below for other examples. The techniques from

[50] have been used to obtain an algorithm for the general case that requires

O(exp(lvi 213)) time [2,64] - still exponential, but much better than the

crude 0(!VI!) bound.

We note that knowledge about well-solvable special cases imposes con

straints on the construction of an NP-completeness proof for the general

case. We conjecture that the present constrai·nts are too strong and that

GRAPH ISOMORPHISM is not NP-complete.

CHROMATIC INDEX: Given a graph G = (V,E) and an integer k, can Ebe parti

tioned into at most k disjoint sets (color classes) such that no two edges

in the same set have a common endpoint?

Status: NP-complete.

The reader should distinguish between this edge coloring problem and

the more familiar vertex coloring problem. The chromatic number of a graph

is the minimum number of colors to be assigned to its vertices such that no

two adjacent vertices get the same color; CHROMATIC NUMBER is one of the

war-horses in the NP-complete repertoire [28,21]. The chromatic index of a

graph is the minimum value of k for which the above question has a positive

answer. We know, by Vizing's Theorem [8], that it is equal to either m or

m+1, where mis the maximum vertex degree in G; CHROMATIC INDEX is thus the

problem of choosing between these two values. This decision problem has been

proved NP-complete by I. Holyer [25], even form= 3.

3.•

6

SPANNING TREE PARITY: Given a graph G = (V,E) and a partition of E into dis

joint pairs of edges, is there a spanning tree of G such that, for each pair,

either both edges are in the tree or neither of them is?

Status: well solvable.

This problem has turned out to be solvable in polynomial time by a very

complicated algorithm due to L. Lovasz [48,49]. His method in fact solves

the more general matroid parity problem for the case that the matroid is

representable (i.e., its independent sets correspond to the independent sets

in a linear space) and such a representation is given. The latter condition

can even be dropped [39]. In the case that no special structure of the matroid

is known and one needs to call a subroutine (or oracle) to determine whether

any given set is independent or not, an exponential number of calls may be

required, and hence the general matroid parity problem is not well solvable

[49].

PRECEDENCE CONSTRAINED THREE-PROCESSOR SCHEDULING: Given n unit-time jobs,

arbitrary precedence constraints between them and a deadlined, can the jobs

be scheduled on three identical parallel machines such that the precedence

constraints are respected and each job is processed in the interval [O,d]?

Status: open.

An inordinate amount of research effort has been spent on a more general

version of this problem, where the number of machines is an input variable

rather than a given constant. NP-completeness has been established for many

exotic types of precedence constraints, and many other equally exotic cases

can be solved in polynomial time; see [26,40] for details.

In spite of all this, the three-processor problem has stayed out of

reach. It is one of the foremost open problems in a class of several thousands

of scheduling problems, which is surveyed in [40] and catalogued in [37,38].

These investigations have led to precise insights into the location of the

borderline between easy and hard scheduling problems and, as a result, into

the problem features that account for border hopping.

Another area that calls for a similarly detailed complexity analysis is

location theory, where one finds a proliferation of polynomial algorithms

and NP-hardness results. In a third important application area, that of

routing and distribution problems, almost all problems are NP-hard [47] •
•

7

The recent developments in these three areas provide good examples of the

interaction between complexity theory and the design and analysis of heuris

tics. NP-completeness theory offers some immediate insights (such as the

incompatibility of "strong" NP-completeness and the existence of a fully

polynomial approximation scheme [21]) and some less immediate ones (such as

the worst case performance of polynomial heuristics as implied by certain

problem reductions). The rise of complexity theory has coincided very fortu

nately with the emergence of analytical (rather than empirical) techniques

for studying the quality of fast heuristics for hard problems.

LINEAR PROGRAMMING: Given an integer mxn-matrix A, an integer m-vector b,

an integer n-vector c and an integer d, is there a rational n-vector x such

that Ax~ band ex~ d?

Status: well solvable.

The most impressive result in the mathematics of operations research

over the past few years is the development of a polynomial algorithm for

LINEAR PROGRAMMING, the ellipsoid method due to L.G. Khachiyan [33] (see [20]

for an alternative presentation and [10] for a survey of recent research into

the ellipsoid method). It was well known that the problem is easy to solve in

practice by the simplex method, and it was equally well known that the simplex

method can exhibit exponential running time in the worst case [34]. The

ellipsoid method confirms our intuition that LINEAR PROGRAMMING should admit

of a polynomial algorithm - but it does so in a disconcerting manner. More

often than not, the method seems to require its worst case number of itera

tions; this number is proportional to the number of bits needed to store all

coefficients of A, b, c and d and hence is very large indeed. Here is a

theoretically polynomial algorithm that is practically no good at all, thereby

undermining the justification of our basic concepts.

The major role of the ellipsoid method, however, seems to be to establish

that certain problems belong to P and to clear the way for really efficient

algorithms. As such, it has become an important tool in the resolution of

many combinatorial optimization problems [22,32]. It is fair to say that the

episode has led to a less dogmatic attitude towards polynomial solvability

as well as to more appreciation for the contributions from nonlinear and non

differentiable optimization to combinatorial optimization.

8

TarAL UNIMODULARITY: Given an mxn-matrix A with entries from the set {-1,0,1},

is A not totally unimodular, i.e., is there a square submatrix A' of A such

that det(A') i {-1,0,1}?

Status: well solvable.

Note that, in the above formulation, the problem is obviously in NP. Its

membership of P follows from a theorem due to P.D. Seymour [58]. The interest

in this problem stems from the well-known fact that, if A is totally unimodu

lar, then LINEAR PROGRAMMING has an integer solution x, if there is any

solution at all (or, in other words, the integrality restriction on x in

INTEGER PROGRAMMING is superfluous). Further work has resulted in polynomial

algorithms for linear programs on totally unimodular matrices [17,52,61],

which are more efficient than the ellipsoid method.

COMPOSITE NUMBER: Given a positive integer n, are there positive integers

p,q > 1 such that n = p•q?

Status: open.

This problem is unlikely to be NP-complete. Highly sophisticated ideas

from number theory have led to a 0(tc log log t) algorithm (where t = log n

is the problem size) [1,44], which is not only very close to polynomial but

also very fast in practice.

If a number n passes the test, we know that n is composite but we do

not get its prime factors. The factorization problem seems to be much harder

than the basic decision problem, and a similarly efficient algorithm for its

solution would immediately endanger the safety of many cryptographic codes.

INTEGER PROGRAMMING: Given an integer mxn-matrix A, an integer m-vector b,

an integer n-vector c and an integer d, is there an integer n-vector x such

that Ax~ band ex~ d?

Status: NP-complete.

This is one of the most widely studied problem types in combinatorial

optimization. It is extremely useful in the formulation of many practical

operations research problems, and several commercial computer codes are

available for its solution.

The problem is also extremely difficult: many highly restricted special

cases are NP-complete. However, the case in which the number n of variables
'

9

is fixed has turned out to be solvable in polynomial time by an algorithm

due to H.W. Lenstra [43]. His method is based on ideas from the geometry of

numbers. As a corollary, the case in which the number m of constraints is

fixed is solvable in polynomial time as well. If the condition x ~ 0 (repre

senting n constraints) is added to the problem statement, then the case of

fixed m can be solved in "pseudopolynomial" time [54].

A recent improvement in the method from [43] yielded, as a surprising

byproduct, a polynomial algorithm for the problem of factoring univariate

polynomials with rational coefficients [42].

4. PROBABILISTIC ASPECTS

NP-Completeness theory is essentially concerned with the worst case analysis

of problems and algorithms. Such an analysis has to account for the isolated

time consuming problem instance, and hence the results can be overly pessi

mistic and generally give a very misleading picture of the average case.

This point is strongly supported by an abundance of empirical evidence. Thus

the ultimate analytical explanation of why algorithms behave as they do must

be of a probabilistic nature.

A probabilistic analysis requires first of all the specification of a

probability distribution over the set of all problem instances. For example,

a random graph can be obtained by specifying a fixed probability that any

vertex pair constitutes an edge or, alternatively, by distributing a fixed

number of edges uniformly over all vertex pairs. Both notions have been well

studied, especially in representing complex counting arguments [18]. For

many other combinatorial structures, the choice of a reasonable probability

model is far less obvious.

Moreover, the technical difficulties encountered in a probabilistic

analysis are formidable. The main reasons for this are the very special

structure of problem instances and solutions, as well as the interdependence

between the various steps of an algorithm. What happens at a node of a search

tree, for example, depends highly on what happened at its predecessors, and

no real way has been found around the resulting mathematical obstacles [45].

Nevertheless, progress has been made on various fronts. One of these is ,,

10

probabilistic running time analysis, an approach that is now more or less

standard for the basic algorithms in computer science such as sorting,

searching and selection. It has been shown that, in the second probability

model for random graphs mentioned above, GRAPH ISOMORPHISM (see Section 3)

is solvable by an algorithm that runs in linear expected time [3]. The great

challenge here remains the explanation of the success of the simplex method

for LINEAR PROGRAMMING (see Section 3): polynomial expected behavior has

been established, but only under assumptions concerning the method rather

than the underlying problem [12,53], which is not satisfactory at all. A

similar challenge is to give rigid proofs of the polynomial expected running

time of some tree search methods, in order to confirm informal analyses

(such as for the traveling salesman algorithm in [7]) or empirical evidence

(such as for the knapsack algorithm in [5]). So far, all precise results in

this direction have been negative, in the sense that within a certain proba

bility model for some NP-hard problem any tree search method of a certain

type can be proved to require almost always superpolynomial time [301.

Secondly, there is the area of probabilistic error analysis, where the

error refers to the difference between an approximate solution value and the

optimum. Again, the empirical behavior of heuristics suggests that the worst

case is seldom met in practice, but analytical verification remains very

difficult. Most research of this type is actually based on probabilistic

value analysis, the third and perhaps most surprising area. Many hard combi

natorial optimization problems, notably those with a Euclidean structure

such as routing and location problems in the plane, allow a simple probabil

istic description of their optimal solution value as a function of problem

parameters. The shining example here is the planar traveling salesman prob

lem: the length of a shortest tour through n cities, uniformly distributed

over a circle of area 1, is almost surely equal to 8/ri", where 8 is a constant

that can be estimated numerically [6,23,59]; the analysis of Karp's parti

tioning heuristic for the problem [31,60] is based on this theorem. Similar

results have been obtained for the planar K-median problem [19,24]. They

find application in the analysis of hierarchical planning systems for multi

stage scheduling and distribution problems [14,15,51].

There i~ a second way in which probability theory has entered complexity

11

theory. This is through the notion of a probabilistic algorithm, i.e., an

algorithm that flips a coin at certain points in order to decide how to pro

ceed [56]. A decision problem is in the class RP if there exists a probabil

istic algorithm that runs in polynomial time and, if the answer is yes, pro

duces that answer with probability greater than½- (This probability can, in

fact, be brought up to any value smaller than 1.) The most prominent member

of RP is COMPOSITE NUMBER (see Section 3) [57]; the rejection of a number by

Rabin's algorithm yields virtual certainty that it is a prime.

It is clear that Pis a subset of RP, and the two classes might well be

the same. If a problem belongs to RP, that provides circumstantial evidence

against its NP-completeness. Moreover, the polynomial probabilistic algorithm

for its solution might be quite practical.

5. AROUND P AND NP

Many problem classes have arisen around P and NP. The class RP defined above

is one of them. Some of the others will be briefly discussed here.

Of some relevance to operations researchers is the class co-NP. A prob

lem is in co-NP if its complement is in NP. For example, the HAMILTONIAN

CIRCUIT problem (given a graph, does it contain a Hamiltonian circuit?)

belongs to NP, and therefore its complement NO HAMILTONIAN CIRCUIT (given a

graph, does it contain no Hamiltonian circuit?) belongs to co-NP. The latter

problem is not known to be in NP: there is no obvious structure corresponding

to the non-existence of a Hamiltonian circuit, let alone a polynomial algo

rithm for its verification. It is conjectured that the only problems in NP
as well as in co-NP are precisely those in P. Hence, if a problem and its

complement are both in NP, this provides a strong indication for the existence

of a polynomial algorithm. Because of duality theory, LINEAR PROGRAMMING is

such a problem, and the indication has been correct. COMPOSITE NUMBER is

another one [55]; as we have seen before, the problem might very well turn

out to belong to P.
Other examples are the class DLOGSPACE of problems that (in addition to

the space used for the input) require no more than logarithmic space for their

solution, and the class PSPACE of problems that require polynomial space. It ,,

12

is not hard to see that DLOGSPACE c Pc NP_::_ PSPACE, and it is conjectured

that each of these inclusions is a proper one. LINEAR PROGRAMMING has been

shown to be log-space complete for Pin the sense that all other problems in

Pare transformable to it in logarithmic space [16]; hence, DLOGSPACE = P if

LINEAR PROGRAMMING would belong to DLOGSPACE, but that would represent a

dramatic improvement over the ellipsoid method.

Beyond the problems in PSPACE, there are the intractable problems, for

which superpolynomial worst case time requirement is not merely conjectured

but has been proved.

For a detailed discussion of thes~ and still other problem classes, we

refer to [21,Ch.7]. The basic distinction between solvability in polynomial

time and NP-hardness provides sufficient terminology for everyday practice

in combinatorial optimization.

6. P VERSUS NP

A puzzling aspect of the state of the art in computational complexity is the

very fact that the concentrated effort of so many researchers has failed to

settle the Pf NP conjecture. The equality P = NP is after all very unlikely

to hold in the real world of computation. If it would be true, then our

impression that the empirical notions of easy and hard had found their theo

retical counterpart would have been a sad mistake.

Why should this problem be as hard as it seems to be? The basic notion

of complexity, leading to the simple distinction between solvability in

polynomial time and NP-hardness, appears to be too complex to be described

and understood by the use of formal mathematics. Several lines of attack to

the problem are reviewed below. Each of them has yielded a lot of fruitful

insights, but has failed to settle the conjecture, thereby confirming that

its true implications have not yet been grasped.

Originally, the merit of Cook's result that SATISFIABILITY is NP-complete

[11] seemed to be that it reduced the effort needed to settle the conjecture.

To verify that Pf NP, one only had to prove the nonexistence of a polynomial

algoritj1m for SATISFIABILITY - and if someone would unexpectedly come up with

13

such an algorithm, then P = NP would follow. The thousands of NP-completeness

results obtained in the past decade should have improved the chance of one

of the two events to occur. However, the situation has not changed at all,

since it has been shown that all known NP-complete problems are essentially

the same: they are polynomially isomorphic in the sense that they are reduci

ble to one another by means of one-to-one surjective transformations [9].

It is not known whether this statement is true for all NP-complete

problems. That conjecture implies that Pf NP, by the following trivial

argument: if P = NP, then all problems in Pare NP-complete and hence iso

morphic; but P contains problems with a finite as well as with an infinite

number of feasible instances, which cannot be isomorphic.

A standard tool that has been used to prove intractability and even undecid

ability of problems is the diagonalization construction. Let (P
1

,P
2

, •••) be

a list of all problems in P, and let (I
1
,r

2
, •••) be a list of all their

instances in some standard encoding .and enumeration scheme. A problem Q which

is guaranteed to be not in Pis then easily defined by Q ={I.Ir. i P., i =
J. 1 J.

1,2, ... }. So all that remains to be done in order to prove Pf NP is to orga-

nize the lists in such a way that the resulting problem Q belongs to NP. No

one has been able to do this so far.

There are indications that such an approach is doomed to fail. They are

based on the observation that the above argument is hardly related to the

real world of computation and carries through in other worlds. One way to

create such a world is relativization of our concepts with respect to a given

problem P, by the use of an oracle machine. An oracle machine has a special

instruction to test in unit time whether any given instance is feasible for

problem P. For a model of computation extended with this feature one can

define classes rand Nr, analogous to P and NP. For example, if P =¢,then

Pp= P and NPP = NP; if P = SATISFIABILITY, then r ~ NP (since SATISFIABILITY

is NP-complete).

If one could prove P =f NP by diagonalization, then this might suggest

that that Pp .J. NPP the proof would continue to work after relativization, so r

PP = NrP for arbitrary P. It has been shown, however, that for some problems

P whereas PQ f NPQ for other problems Q [4]. This does not imply that P =f NP
cannot be proved by diagonalization, but it does imply that such a proof

14

must be based on a model of computation for the real world, so that relativ

ization to an arbitrary problem is impossible. We refer to [35] for further

developments in this direction.

Another way to proceed is to start from the assumption that P = NP (or Pf
NP) and to see whether it leads to a contradiction. A typical result along

this line is as follows: under the hypothesis that Pf NP, there are problems

in NP that are neither in P nor NP-complete; in fact, there would be an

infinite hierarchy of distinct equivalence classes between P and the class

of NP-complete problems [36]. This approach suggests some really weird prob~

lems in NP, but does not answer the Pf NP conjecture.

This type of investigation is comparable to the efforts undertaken in

the eighteenth century by researchers in Euclidean geometry, who tried to

prove the parallel postulate. Living in the twentieth century, we know that

the parallel postulate is independent of the other axioms in geometry: one

can construct perfectly reasonable models of geometry in which it is valid

and others in which it is not, and non-Euclidean geometry is now a well-es

tablished branch of mathematics.

One could imagine that the Pf NP conjecture will ultimately achieve

the same status in the theory of computation over the natural numbers as the

parallel postulate in geometry, i.e., that it turns out to be independent of

the underlying axiom system. Combinatorial computations are founded on a

formal theory known as Peano arithmetic, and the natural question to ask is

whether both P = NP and Pf NP can be consistent with this theory.

A partial result in this direction [13] is that the P = NP assumption

is consistent with ET, a theory which is weaker than Peano arithmetic. There

are far more models of ET than of Peano arithmetic. On closer analysis [27],

some of these appear to behave in a very strange way which does not reflect

our intuitions about the real world at all. An extreme example is that some

models of ET allow computations which have bounded running time but fail to

halt! Altogether, the result from [13] does not imply that P = NP is a valid

assumption in the real world, which is believed to be a model of Peano

arithmetic.

?
Research into the P NP question is going on. We do not expect that it will

fi

15

yield an immediate answer, but rich side benefits will be obtained .• In a

broader sense, computational complexity will continue to fascinate a wide

spectrum of researchers, stretching from pure mathematicians to those engaged

in practical problem solving.

REFERENCES

1. L.M. Adleman, c. Pomerance and R.S. Rumely, On distinguishing prime

numbers from composite numbers, Ann. of Math., to appear.

2. L. Babai, Moderately exponential bound for graph isomorphism, in:

F. Gecseg, ed., Fundamentals of Computation Theory, Lecture Notes

in Computer Science 117 (Springer, Berlin, 1981) 34-50.

3. L. Babai and L. Kucera, Graph canonization in linear average time,

Proc. 20th Annual Symp. Foundations of Computer Science (1979) 39-46.

4. T. Baker, J. Gill and R. Solovay, Relativizations of the P =? NP

question, SIAM J. Comput. 4 (1975) 431-442.

5. E. Balas and E. Zemel, An algorithm for large zero-one knapsack

problems, Oper. Res. 28 (1980) 1130-1154.

6. J. Beardwood, J.H. Halton and J.M. Hammersley, The shortest path

through many points, Proc. Cambridge Phil. Soc. 55 (1959) 299-327.

7. M. Bellmore and J.C. Malone, Pathology of traveling-salesman subtour

elimination algorithms, Oper. Res. 19 (1971) 278-307,1766.

8. c. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

9. L. Berman and J. Hartmanis, On isomorphisms and density of NP and

other complete sets, SIAM J. Comput. 6 (1977) 305-322.

10. R.G. Bland, D. Goldfarb and M.J. Todd, The ellipsoid method: a

survey, Oper. Res. 29 (1981) 1039-1091.

11. S.A. Cook, The complexity of theorem-proving procedures, Proc. 3rd

Annual ACM Symp. Theory of Computing (1971) 151-158.

12. G.B. Dantzig, Expected number of steps of the simplex method for a

linear program with a convexity constraint, Report SOL 80-3R, Systems

Op~imization Laboratory, Stanford University (1980).

16

13. R.A. DeMillo and R.J. Lipton, The consistency of 'P = NP' and related

problems with fragments of number theory, Proc. 12th Annual ACM Symp.

Theory of Computing (1980) 45-57.

14. M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra

and A.H.G. Rinnooy Kan, Analytical evaluation of hierarchical planning

systems, Oper. Res. 29 (1981) 707-716.

15. M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra

and A.H.G. Rinnooy Kan, Analysis of heuristics for stochastic pro

gramming: results for hierarchical scheduling problems, Report BW 142,

Mathematisch Centrum, Amsterdam (1981).

16. D. Dobkin, R. Lipton ands. Reiss, Linear programming is log-space

hard for P, Inform. Process. Lett. 8 (1979) 96-97.

17. J. Edmonds, Seymour's theorem and good algorithms for totally uni

modular matrices, in preparation.

18. P. Erdos and J. Spencer, Probabilistic Methods in Combinatorics

(Academic Press, New York, 1974).

19. M.L. Fisher and D.S. Hochbaum, Probabilistic analysis of the planar

K-median problem, Math. Oper. Res. 5 (1980) 27-34.

20. P. Gacs and L. Lovasz, Khachian's algorithm for linear programming,

Math. Programming Stud. 14 (1981) 61-68.

21. M.R. Garey and o.s. Johnson, Computers and Intractability; a Guide to

the Theory of NP-Completeness (Freeman, San Fransisco, 1979).

22. M. Grotschel, L. Lovasz and A. Schrijver, The ellipsoid method and

its consequences in combinatorial optimization, Combinatorica 1 (1981)

169-197.

23. J.H. Halton and R. Terada, A fast algorithm for the Euciidean traveling

salesman problem, optimal with probability one, SIAM J. Comput. 11

(1982) 28-46.

24. D. Hochbaum and J.M. steele, steinhaus' geometric location problem for

random samples in the plane, Adv. in Appl• Probab• 14 (1981) 56-67,

25. I. Holyer, The NP-completeness of edge coloring, SIAM J, Comput. 10

(1981) 718-720.

26. D.S. Johnson, The NP-completeness column: an ongoing guide, J. Algo

rithms 4 (1981) 393-405.

17

27. D. Joseph and P. Young, A survey of some recent results on computational

complexity in weak theories of arithmetic, in: J. Gruska and M. Chytil,

eds., Mathematical Foundations of Computer Science 1981, Lecture Notes

in Computer Science 118 (Springer, Berlin, 1981) 46-60.

28. R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller

and J.w. Thatcher, eds., Complexity of Computer Computations (Plenum,

New York, 1972) 85-103.

29. R.M. Karp, On the computational complexity of combinatorial problems,

Networks 5 (1975) 45-68.

30. R.M. Karp, The probabilistic analysis of some combinatorial search

algorithms, in: J.F. Traub, ed., Algorithms and Complexity: New Direc

tions and Recent Results (Academic Press, New York, 1976) 1-19.

31. R.M. Karp, Probabilistic analysis of partitioning algorithms for the

traveling-salesman problem in the plane, Math. Oper. Res. 2 (1977)

209-224.

32. R.M. Karp and C.H. Papadimitriou, On linear characterizations of com

binatorial optimization problems, Proc. 21st Annual Symp. Foundations of

Computer Science (1980) 1-9.

33. L.G. I<hachiyan, A polynomial algorithm in linear programming, Soviet

Math. Dokl. 20 (1979) 191-194.

34. v. Klee and G.J. Minty, How good is the simplex algorithm?, in: o.
Shisha, ed., Inequalities III (Academic Press, New York, 1972) 159-175.

35. D. Kozen and M. Machtey, On relative diagonals, Report RC 8184, IBM

Thomas J. Watson Research Center, Yorktown Heights (1980).

36. R.E. Ladner, On the structure of polynomial time reducibility, J.

Assoc. Comput. Mach. 22 (1975) 155-171.

37. B.J. Lageweg, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Computer

aided complexity classification of deterministic scheduling problems,

Report BW 138, Mathematisch Centrum, Amsterdam (1981).

38. B.J. Lageweg, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Computer

18

aided complexity classification of combinatorial problems, Comm. ACM,

to appear.

39. E.L. Lawler, Optimization without representation, in preparation.

40. E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Recent developments

in deterministic sequencing and scheduling: a survey, in: M.A.H.

Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, eds., Deterministic and

Stochastic Scheduling (Reidel, Dordrecht, 1982) 35-73.

41. E.L. Lawler and o. Vornberger, The partial order dimension problem is

NP-complete, unpublished manuscript.

42. A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovasz, Factoring polynomials

with rational coefficients, Report IW 195, Mathematisch Centrum,

Amsterdam (1982).

43. H.W. Lenstra, Jr., Integer programming with a fixed number of variables,

Report 81-03, Department of Mathematics, University of Amsterdam (1981).

44. H.W. Lenstra, Jr., Primality testing algorithms (after Adleman, Rumely

and Williams), Seminaire Bourbaki 33 (1980/1981) No. 576, Lecture

Notes in Mathematics 901 (Springer, Berlin, 1981) 243-257.

45. J.K. Lenstra and A.H.G. Rinnooy Kan, On the expected performance of

branch-and-bound algorithms, Oper. Res. 26 (1978) 347-349.

46. J.K. Lenstra and A.H.G. Rinnooy Kan, Computational complexity of dis

crete optimization problems, Ann. Discrete Math. 4 (1979) 121-140.

47. J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of vehicle routing and

scheduling problems, Networks 11 (1981) 221-227.

48. L. Lovasz, Matroid matching and some applications, J. Combin. Theory

Ser. B 28 (1980) 208-236.

49. L. Lovasz, The matroid matching problem, in: L. Lovasz and v. Sos,

eds., Algebraic Methods in Graph Theory, Vol. II (North-Holland,

Amsterdam, 1981) 495-517.

50. E.M. Luks, Isomorphism of bounded valence can be tested in polynomial

time, Proc. 21st Annual Symp. Foundations of Computer Science (1980)

42-49.

51. A. Marchetti Spaccamela, A.H.G. Rinnooy Kan and L. Stougie, Hierarchical

vehicle routing, in preparation.

52. J.F. Maurras, K. Truemper and M. Akgiil, Polynomial algorithms for a

class of linear programs, Math. Programming 21 (1981) 121-136.

19

53. A. Orden, Computational investigation and analysis of probabilistic

parameters of convergence of a simplex algorithm, in: A. Prekopa, ed.,

Progress in Operations Research, Vol. II (North-Holland, Amsterdam,

1976) 705-715.

54. C.H. Papadimitriou, On the complexity of integer programming, J. Assoc.

Comput. Mach. 28 (1981) 765-768.

55. v. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4

(1975) 214-220.

56. M.O. Rabin, Probabilistic algorithms, in: J.F. Traub, ed., Algorithms

and Complexity: New Directions and Recent Results (Academic Press,

New York, 1976) 21-39.

57. M.O. Rabin, Probabilistic algorithms for testing primality, J. Number

Theory 12 (1980) 128-138.

58. P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory

Ser. B 28 (1980) 305-359.

59. J.M. Steele, Subadditive Euclidean functionals and nonlinear growth

in geometric probability, Ann. Probab. 9 (1981) 365-376.

60. J.M. Steele, Complete convergence of short paths and Karp's algorithm

for the TSP, Math. Oper. Res. 6 (1981) 374-378.

61. M. Yannakakis, On a class of totally unimodular matrices, Proc. 21st

Annual Symp. Foundations of Computer Science (1980) 10-16.

62. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J.

Algebraic Discrete Methods 2 (1981) 77-79.

63. M. Yannakakis, The complexity of the partial order dimension problem,

unpublished manuscript.

64. V.N. Zemlyachenko, in preparation.

nMT\IAN"►N 1 0 ME 11982

